
Feedback in an interactive equation solver

Harrie Passier
Open University

Heerlen, the Netherlands

and

Johan Jeuring
Open University

Heerlen, the Netherlands
and

Department of Computer Science
Utrecht University, the Netherlands

Abstract. E-learning tools for mathematical problem solving such as
solving linear equations should be interactive. As with pen and paper, a
student constructs a solution stepwise. E-learning tools provide the ca-
pability to give feedback to a student at each step. Feedback is essential
for effective learning and hence crucial for interactive e-learning tools.
This paper describes a framework for providing feedback in interactive
e-learning tools. The framework is particularly useful for domains with
hierarchically structured terms, a set of rewrite rules to rewrite the terms
from the domain into other terms, and a well-described goal. The frame-
work is used to give feedback about syntactical errors, about several
kinds of semantic errors, and about progression towards a solution. The
framework explicitly uses the structure in the data to produce feedback.
We discuss an e-learning tool for solving linear equations in which the
framework for feedback is used. The techniques for providing feedback
are taken from compiler technology and rewriting theory.

1 Introduction

Mathematics is constructive in nature: mathematics students learn to construct
solutions to mathematical problems. Solving mathematical problems is often
done with pen and paper, but e-learning tools offer great possibilities. Interactive
e-learning tools that support learning mathematics should provide the capability
to give feedback to a student at each step. To illustrate our approach, we will
use an e-learning tool for solving a system of linear equations. We call this tool
the Equation Solver. Figure 1 shows a screenshot of our tool.

The Equation Solver consists of three text fields. The top text field is the
working area, in which a student can edit a system of equations stepwise to a
solution. The current system of equations is



Fig. 1. The Equation Solver



2*x = 3+2*3*x-z-5
y = 3*x-z-5
2*z = 3*x

The second text field displays the history of equations. Apparently the previous
system of equations was

2*x = 3+2*y
y = 3*x-z-5
2*z = 3*x

and the student replaced y by 3*x-z-5, forgetting to parenthesize the result.
The third text field displays the feedback. In the figure it explains why the last
step is incorrect.

The Equation Solver presents a system of equations to a student, for example

2*x = 3+2*y
y+5 = 3*x-z
2*z = 3*x

and the student has to rewrite these equations into a form with a variable to the
left of the equals symbol, and a constant to the right of the equals symbol, for
example x = 7;y = 11/2;z = 21/2. The student presses the Submit button
to submit an edited system of equations, and the Undo button to undo the
last step (or any amount of steps). If a student wants help, he or she presses
the Hint button to get a suggestion about how to proceed. Finally, the Equation
Solver gives information about progress towards a solution by showing how many
variables have been solved, and several other kinds of information.

The Equation Solver gives feedback about two kinds of mistakes:

– syntactical mistakes, for example when a student writes y+5 = 3*x- instead
of y+5 = 3*x-z,

– semantical mistakes, usually mistakes in applying a step towards a solution,
for example when a student rewrites y = 3+1 by y = 5,

and it gives feedback about (lack of) progression towards a solution.
The Equation Solver consists of a solver, which performs symbolic calcula-

tions, an analyser, which analyses the submitted equations of a student based
on a set of rewrite rules for the domain of a system of equations, and several
indicators, which indicate the progression of a (series of) rewrite step(s).

Note that we try to mimic the pen-and-paper situation as closely as possible,
by letting students enter and rewrite equations in a text field. An other approach
is to offer the possible rewrite steps to the student, and let the student select a
rewrite step, which is then applied to the system of equations by the Equation
Solver, as propagated by Beeson [1] in MathXpert. In such a situation, it is
impossible to make a syntactical mistake, or to rewrite an equation incorrectly.
The former approach has the advantage that a student also learns to enter correct
equations, and to choose and apply rewrite steps correctly. Furthermore, it is



closer to the pen-and-paper situation. The latter approach has the advantage
that a student can concentrate solely on solving a system of equations. The only
feedback that needs to be provided in the latter approach is feedback about
progression. Although we do not support the latter approach, it is orthogonal to
our approach, and easily added to our tool.

This paper discusses a framework for providing feedback, in which feedback
about syntactical mistakes, semantical mistakes, and (lack of) progression in the
solving process is produced. The framework assumes a structured domain (like
linear equations), for which a set of rewrite rules (or transformations) is defined
(like x+0 = x for all x), a goal is specified (like rewrite all equations to a form
where there is a single variable to the left, and a constant to the right of the
equality symbol), and one or more measures can be defined with which we can
(possibly partly) determine the distance to the goal.

The main results of our work are:

– We show how results from theoretical Computer Science, in particular from
the term-rewriting and compiler technology (and in particular parsing) fields,
can be used to develop tools that provide semantically rich feedback to stu-
dents.

– We show how using structural information in data for feedback improves the
feedback a tool can give.

We think our framework is useful for several purposes. Developing a tool in our
framework forces the developer (a teacher) to be explicit about all aspects of a
particular domain, and it helps developers of e-learning tools to set up a well-
structured feedback component that gives better feedback than existing tools.

This paper is organised as follows. Section 2 discusses the framework for
feedback. Section 3 briefly discusses our approach to syntactic feedback. Section
4 discusses how we provide feedback on individual rewriting steps towards a
solution. Section 5 discusses the indicators we have defined and how we help
students that seem to be stuck. In Section 6 we draw our conclusions, describe
related work, and list planned future work.

2 The feedback framework

Our framework for providing feedback assumes we have the following compo-
nents:

1. A domain with a semantics.
2. A set of rewrite rules for the domain.
3. A goal that can be reached by applying the rewrite rules in a certain order.
4. A set of progression indicators to determine the distance between the goal

and the current situation.

Our framework provides feedback about syntactic errors, semantic errors
(incorrectly applied rewrite rules), and about progression, using the progression
indicators.



To illustrate our framework, we will use the Equation Solver introduced in the
Introduction. Solving a system of n linear equations with n variables x1, . . . , xn

amounts to finding constants c1, . . . , cn such that x1 = c1, . . . , xn = cn is a
solution to the system of equations.

We describe the components of our framework for the Equation Solver.

Domain and semantics of the Equation Solver. The domain of the Equation
Solver consists of a system of linear equations. We use Haskell [9] types to de-
scribe this domain. The top-level type is a list of equations:

type Equations = [Equation]

Each equation consists of a left and a right hand expression separated by a ’=’
(in Haskell denoted by the infix constructor :=:) symbol.

data Equation = Expr :=: Expr

An expression is either zero, a constant, a variable, or two expressions separated
by an operator ’+’, ’-’, ’*’, or ’/’.

data Expr = Zero
| Con Rational
| Var String
| Expr :+: Expr
| Expr :-: Expr
| Expr :*: Expr
| Expr :/: Expr

The semantics describes how the domain should be interpreted. For the Equation
Solver, the semantics is the solution to the system of linear equations.

Rewrite rules for the Equation Solver. A domain has a set of rewrite rules with
which terms in the domain can be rewritten.

A rewrite rule rewrites a term of a particular domain to another term of
that domain. For example, we have the following rewrite rule for expressions:
(a + b)c → ac + bc, which says that we can rewrite the expression (a + b)c to
the expression ac + bc (distribute multiplication over addition) in any context
in which this expression appears. For a general introduction to rewrite systems,
see Dershowitz et al. [4].

Using rewrite rules, we rewrite terms in the domain to some desired form.
For the Equation Solver, the goal is to rewrite the given system of equations to
a solution. We now informally present the rewrite rules for the domain of the
Equation Solver.

We follow the data representation of the domain and distinguish between
rules on the level of a system of linear equations, an equation, and an expression.
In these rules a, b, and c are rational numbers, x, y, and z are variables, and e
is an expression.



For a system of linear equations we have a single rewrite rule: substitution. If
we have an equation x = e1, we may replace occurrences of x in another equation
by e1. Informally:

[x = e1, . . . x . . . = e2, . . .] → [x = e1, . . . e1 . . . = e2, . . .]

For an equation we have four rewrite rules:

e1 = e2 → e1 ⊕ e = e2 ⊕ e

where ⊕ may be any of +, −, ∗, or /.
For an expression we have a large number of rewrite rules. First, constants

may be added, multiplied, etc:

a⊕ b → c,

where c is the rational number sum of a and b if ⊕ is +, and similarly for −,
∗, and /. Coefficients of the same variable are summed using the inverse rule of
distributing multiplication over addition.

a ∗ x + b ∗ x → (a + b) ∗ x

Furthermore, multiplication (division) distributes over addition (subtrac-
tion):

(e1 ⊕ e2)⊗ e3 → e1 ⊗ e3 ⊕ e2 ⊗ e3,

where ⊕ may be + or −, and ⊗ may be ∗ or /.
As argued by Beeson [1], many mathematical operations cannot be expressed

by rewrite rules, because they take an arbitrary number of arguments and be-
cause other arguments can come in between. Moreover, associativity and com-
mutativity cause problems in rewrite rules. Hence, applying rewrite rules or
recognising applications of rewrite rules in user-supplied equations is not a triv-
ial application of pattern matching, but requires more sophisticated programs.

A normal form of a term in the domain of a term-rewriting system is a term
which cannot be rewritten anymore. The solution of a system of linear equations
is a kind of normal form of a system of linear equations, but since we can always
add terms to a term, our system does not have normal forms. A term-rewriting
system terminates if for every term t, we can only rewrite t a finite number of
steps. Since we can distribute multiplication over addition and vice versa, our
term-rewriting system is clearly not terminating. A term t′ is reachable from
a term t, if there exists a sequence of term-rewriting steps with which we can
rewrite t into t′. Clearly, given a solvable system of linear equations, the solution
of this system is reachable. In a situation in which terms have normal forms, and
the rewriting system is terminating it is much easier to give useful feedback, but
for most domains about which we want to give feedback these properties do not
hold.



The goal of the Equation Solver. The goal of the Equation Solver is to find con-
stants c1, . . . , cn such that x1 = c1, . . . xn = cn is a solution to the system of
equations. We assume that all systems of equations set as exercises by the Equa-
tion Solver are solvable, a property that is easily verified. The goal is reachable
by applying the rewrite rules to the system of equations in a certain order.

Progress indicators for the Equation Solver. To inform a student about the
progress in solving a problem, we have defined indicators. An indicator is a
measure which (partly) describes the distance from the current system of equa-
tions to the solution (the goal). There are several ways to indicate the distance
between the currents system of equations and the solution. A possibility is to
determine the minimum number of rewriting steps needed to rewrite the current
system of equations to the solution. In this paper we investigate indicators that
follow the structure of the data. Thus we can provide more specific feedback than
just about the distance to the final solution. We have indicators that indicate
progress on the level of a system of equations, on the level of a single equation,
and on the level of an expression.

In the next sections, we describe how we provide feedback about syntactical
errors, semantical errors, and about progression using this frame work.

3 Syntax analysis

A student enters an expression in a text field in the Equation Solver. We have
to parse this expression in order to analyse it. We use error recovery parser
combinators [12] to collect as many errors as possible (not just the first), and
to suggest possible solutions to the errors we encounter. For example, when a
student enters 2*x = 3+2*y;y+5 = 3*x-;2*z = 3*x, the tool reports an error,
and says it expects a lower case identifier or an integer in the equation y+5 =
3*x-. Furthermore, it proceeds with parsing 2*z = 3*x, assuming the expression
y+5 = 3*x-<identifier> has been entered. The parser combinators are very
similar to the context-free grammar for the domain of equations. We have tuned
the parser such that common errors, such as writing 2y for 2*y, are automatically
repaired (and reported).

After parsing we perform several syntactic checks, such that the set of vari-
ables that occurs in the system of equations hasn’t changed, and that all equa-
tions are still linear equations, and not for example quadratic equations, which
would happen if the student would multiply both sides of the equation 2*z =
3*x by x. If such an error occurs, it is reported.

4 Rewriting terms

When a student submits a system of equations to the Equation Solver, the
analyser checks if something has changed. If something has changed, the solver
checks that the submitted system of equations has the same solution as the
original system, and the analyser tries to infer the rewrite rule applied by the



student. If the solution of the system has not changed, it is not necessary to
determine the rewrite rule that has been applied, but it might still be useful for
the student to see the name of the applied rule. If the solution has changed, the
student has made an error, and it is important to try to report the likely cause
of the error.

An important assumption (restriction) we apply here is that we assume a
student applies only one rewrite rule per submitted system of equations. In
practice, this will not always be the case, but the added complexity of recognising
multiple rewrite rules is left to future work.

In the rest of this section, we discuss the feedback produced by the Equa-
tion Solver by means of examples on each of the three levels of our domain.
To determine which rule a student intended to apply, we follow a hierarchical
approach.

Determining a rewrite on the system of equations level. The analyser starts with
trying to find out if the student intended to apply a rule on the level of the system
of equations: the substitution rule. The analyser can determine whether or not
the substitution rule has been applied by collecting the variables that appear in
the different equations. If one variable has disappeared from the set of variables
that appear in an equation a substitution step has been applied. Here we assume
that an expression such as x− x is internally represented as 0, so that replacing
x − x by 0 does not lead to the false conclusion that substitution has been
applied. The internal representation is some normal form of the expressions and
equations, where occurrences of the same variable are combined. The normalised
form of an expression is an expression of the form a1∗x1+...+anxn+c, where each
variable occurs once, and all constants have been added in a single constant c.
The Equation Solver determines which variable has disappeared, and checks that
applying the substitution using that variable leads to the submitted expression.
If this is not the case, the Equation Solver reports an error, and shows the
correct equation that results from the substitution. For example, if the system
of equations 2*x+2*y = 6;y = 4-2*x is rewritten to 2*x+2*(4+2*x) = 6; y =
4-2*x, the analyser produces the following error message:

Error: Since variable y has disappeared from the equation

2*x+2*(4+2*x) = 6

we assume you have tried to apply the substitution rule.
Correctly applying the substitution rule for y results in

2*x+2*(4-2*x) = 6

Is this what you meant?

There are several things to note about this message: it is only about the equation
that contains an error, it tells why it thinks a certain rewrite rule has been
applied, and it shows how the correct application of that rule looks.



Determining a rewrite on the equation level. If the analyser has detected a
change in the system of equations and in no equation the set of variables that
occur has changed, the analyser tries to find out if there exists an equation that
has been rewritten. An equation has been rewritten if both the left-hand side
and the right-hand side expression of an equation have changed. On the level
of an equation, four rewrite rules may be applied: e1 = e2 → e1 ⊕ e = e2 ⊕ e,
where ⊕ may be any of +, −, ∗, or /. The analyser determines whether or
not these rules have been applied by comparing the new equation with the old
equation. For example, if the previous system is 2*x+2*y = 5; x-y = 2 and the
submitted system is 2*x+2*y = 5; x-y+y = 2+y, the analyser concludes that
the rule: e1 = e2 → e1 + e = e2 + e has been applied on the second equation
of the system. In general, the analyser can infer an application of the addition
(and subtraction) rule on the level of an equation by calculating the value of
the expression (l-l’)-(r-r’), where l = r is the equation in the previous
system, and l’ = r’ is the submitted equation. If this value equals 0, then
it is likely that the student has performed an addition (or subtraction) step
with value l-l’ on both sides of the equation. If the value equals a constant
unequal 0 or a variable (possibly multiplied by a constant), then it is likely that
a student has performed an addition step, but has made an error in doing so.
This error is reported. Finally, if the value is not a constant or a variable, it is
likely that the student has performed a multiplication (or division). To determine
if a multiplication step has been performed, the analyser calculates the value of
(l/l’) - (r/r’). If this value equals 0, then it is likely that the student has
performed a multiplication (or division) step with value l/l’ on both sides of
the equation. If the value equals a constant, then it is likely that a student has
performed a multiplication step, but has made an error in doing so. This error
is reported. Finally, if the value is not a constant, something serious is wrong.

Determining a rewrite on the expression level. If no rewrite on the level of a
system of equations or on the level of an equation has taken place, the analyser
tries to determine if a rewrite on the level of an expression has taken place. It is
easy to determine which expression in the system of equations has been changed.

For example, suppose the previous system is 2*(2+y)+2*y = 5; x = 2+y
and the submitted system 2*2+2*y+2*y = 5; x = 2+y. The analyser infers that
the left-hand side expression of the first equation has changed. The analyser
checks that the normalised form of the new expression and the previous ex-
pression are the same. Furthermore, the analyser tries to infer which expression
rewrite rule has been applied. It does this by determining the expression dif-
ference between the old expression and the new expression. The expression dif-
ference of two expressions consists of the subexpressions that have disappeared
from the old expression in the new expression, and the subexpressions that have
appeared in the new expression. In the above example, the expression difference
is 2*(2+y) (disappeared) and 2*2+2*y (appeared). These expressions match the
rewrite rule for distributing multiplication over addition. If the normalised form
of the new expression and the old expression are different, an error is reported,



and the analyser shows all possible correct rewrites of the subexpression that
has disappeared from the expression.

The hierarchical approach to determining which rewrite rule has been applied
allows us to pinpoint precisely, in many cases, which mistake (likely) has been
made.

5 Progression and hints

An indicator gives a distance from the current system of equations to the so-
lution (the goal). It is used to inform a student about progression towards a
solution. Before calculating the value of the different indicators, the Equation
Solver detects whether or not a student has completed the problem. In that
case, the system of equations has the form of x1 = c1, . . . , xn = cn. This is easily
detected.

We have defined a number of indicators in the Equation Solver.
The first indicator calculates the number of variables for which a student has

found a solution. If this number increases the student makes progression.
If the number of variables for which the student has found a solution has not

increased, the Equation Solver uses the second indicator, which calculates the
number of occurrences of variables in a system of equations. Progression is made
if this number decreases. For example, in the system 4 + 2*y + 2*x = 5; x =
2 + y there are four occurrences of variables. Substituting 2+y for x in the first
equation reduces the value of this indicator by one. Sometimes the value of this
indicator increases due to a substitution, so we do not enforce that the value of
this indicator decreases or stays the same at each step.

If the previous indicators do not notice a change, we check if the expression
size of the left-hand side expression of an equation has decreased. Since in our
solution we want the left-hand side expression of an equation to be a single vari-
able, a reduction in the size of the left-hand side expression (without removing
all variables, since in the end a single variable should remain) indicates progres-
sion. For example, rewriting the expression y+3-1 to y+2 reduces the size of the
expression from 5 to 3 (where operators, constants, and variables all count for
1).

The indicators are independent of the rewrite rules in the Equation Solver. So
if a student performs a transformation on the system of equations that doesn’t
change the semantics of the system of equations, but for which the analyser
cannot find a corresponding rewrite rule, the indicators can still inform the
student about his or her progress.

If a student is stuck, he or she can press the hint button. The Equation
Solver will then give a next step, or a hint to help the student to produce a
next step. The next step depends on the solving strategy used. We have only
implemented the Gaussian solving method in the Equation Solver. The Equation
Solver produces a next step or a hint based on the previous system of equations
submitted by the student, the set of rewrite rules and the solving strategy. For



example, if the previous system submitted by the student is 4+2*y+2*x = 5; x
= 2+y, the system will suggest:

Try to substitute 2+y for x in the first equation.

We intend to offer various levels of help. In the above situation we can think of
the following, increasingly detailed, messages:

Try to apply the substitution rule.

Try to substitute 2+y for x in the first equation.

Substitute 2+y for x in the first equation, resulting in
4 + 2*y + 2*(2+y) = 5
x = 2 + y

6 Discussion

Conclusions. We have introduced a framework for providing feedback in an e-
learning tool for a structured domain. Using the structure in the domain, we
can provide more detailed feedback. The framework consists of a domain with a
certain semantics, a set of rewrite rules for the domain, a goal that can be reached
by applying the rewrite rules in a certain order, and finally a set of indicators to
determine the distance between the desired solution and the current situation.
We have used our framework in a prototype e-learning tool for solving a system
of linear equations. All of our ideas have been implemented, but we have yet to
add the bells and whistles to turn the Equation Solver into a mature tool.

Feedback is crucial in education and is used in many learning paradigms.
It is an essential element needed for effective learning. Nevertheless, electronic
learning environment courses frequently lack effective feedback [7]. Almost all
feedback is related to question-answer situations, is hard coded, and does not
use a structural approach. In general, this situation also holds for the field of
learning mathematics. If feedback is a crucial element in education and electronic
environments increasingly support mathematics education, this gap needs to be
filled.

We think our framework will be useful for students, teachers, and e-learning
tool developers that build interactive tools in which students have to construct
solutions stepwise. It forces a teacher to be explicit about all terms and the se-
mantics of a particular domain, the goal that has to be reached, how progression
of the solving process can be measured, and which rewrite rules may be used. It
helps the (software) developer to build the feedback component in a structural
way. The steps a student can take in such a tool are not limited by a predefined
set of rewrite rules provided by the tool, but can be any combination of correct
steps, or erroneous steps. The tool tries to recover the rewrite steps taken by the
student in order to provide detailed feedback about possible errors. If the tool
cannot recover the rewrite rules, the indicators can still help a student in deter-
mining whether or not he or she is on the right track. This is important because



it is hard if not impossible to always determine which sequence of rewrite rules
has been applied by a student.

We have said little about the form and content of the feedback messages. We
have shown two messages: one error and one advice message. The error message
not only tells that an error has been made, but also which equation contains the
error and additional information based on the rewrite analysis. This additional
information is important because information about the nature of the error and
the way it can be corrected is much more effective for learning than simply
being informed that an error has been made without any further guidance [6].
This is especially important when students are working in a ’pen-and-paper’ like
environment, instead of an environment where rewrite rules can be selected from
a menu.

Our Equation Solver satisfies most of Beesons [1] eight criteria that must be
met if we are to provide successful computer support for education in algebra,
trig, and calculus. The first two are cognitive fidelity, which means that the
software solves the problem in the same way as the student should solve it, and
the glass box principle, which means that a student can see how the computer
solves the problem. To produce feedback and advice about which step to take
next, the Equation Solver uses a well-known set of rewrite rules and a solving
strategy. The feedback and advice are based on the application of a single rule.
Applying multiple rules in a single rewrite step is not supported yet, in the sense
that it is allowed, but no feedback is given if an error is made, other than the
fact that an error has been made. It follows that our Equation Solver does not
completely meet the customised to the level of the user criterion. Indicators still
help advanced users that apply multiple rules in one step though. The fourth
criterion is the correctness principle, which mean that a student cannot perform
incorrect operations. The Equation Solver calculates after each submission the
solution of the system of linear equations. If the solution is changed, the analyser
will inform the student and, if possible, point out the erroneously applied rule.
However, the student can still enter an incorrect equation. We think this has
an added advantage: the student becomes aware of the syntax of systems of
equations, and learns how to apply rewrite rules. The fifth criterion, user in
control, means that the student decides what steps should be taken and the
computer can help a student when he or she is stuck. As mentioned in the
introduction, we try to stay as close as possible to the pen-and-paper situation.
Instead of selecting rewrite steps from a menu, a student rewrites equations
in a text field. When a student is stuck he/she press on the help button and
a next step is produced. This also shows that the computer can take over if
the user is lost criterion is satisfied. We think our Equation Solver is easy to
use: no unnecessary typing is required, an infinite Undo is provided, and no
unnecessary distractions have been added to the Equation Solver. Finally, the
Equation Solver goes beyond the answer-only approach and is thus usable with a
standard curriculum: it supports a standard curriculum in mathematics, which
emphasizes step-by-step solutions.



We have implemented the Equation Solver in Haskell using standard tools
from compiler technology, such as parser combinators, and pretty-printing com-
binators, and using the standard compiler architecture, consisting of a parsing
phase, an analysis phase, and a code-generation phase. In our case the code-
generation phase is the feedback-generation phase. We intend to make our tool
publicly available in the future. The latest version of the tool can be obtained
via email from the authors.

Related work. We have found little literature on structured feedback in e-learning
tools, and the way feedback is produced. Most intelligent tutoring systems that
have a feedback component use techniques from Artificial Intelligence to report
feedback. We think that using the structure in the data and the rewrite rules,
we can give more precise and detailed feedback. Of course, there will still be
situations where our feedback is insufficient: the amount of possible errors is
infinite.

Other tools for solving systems of linear equations pay little or no attention to
feedback. For example, the Linear System solver (using determinant) [2] returns
‘ERROR in perl script on line 23: Illegal division by zero at (eval 129) line
37’, if an unsolvable system of equations is entered. Commercial tools such as
Algebrator [11] and MathXpert [1] do give feedback on the syntactical level,
and hints about making progression, but do not use a structural approach to
providing feedback about rewriting steps entered by the student

In [3] an implementation of a generic exercise for computing the derivative of
elementary functions is presented. The system uses rewrite rules called domain
rules and decomposes the original problem into sub-problems obtaining a multi-
step exercise based on a solution graph. An interactive exercise is than seen as a
collection of problems together with the order in which they are solved. Accord-
ing to the students answer and a predefined strategy, a next step is selected. The
correctness of a students answer is evaluated by a computer algebra system. In
this way, a student is guided in solving the initial exercise. A similar approach
is taken by Goguadze et al. in ActiveMath [5]. Our approach is not based on a
solution graph, but uses indicators to inform the student about progression of
the solving process and a rewrite analysis module to determine which rewrite
rule has been (correctly or incorrectly) applied. As a result, the steps a student
can take are not limited by a predefined set of rewrite rules or solving strategy,
but can be any combination of correct or erroneous rewrite steps. If a step is
erroneous, the tool of course complains, but it also tries to give a helpful error
message to the student. If the tool cannot recover which rewrite rules have been
used, the indicators can still help a student in determining whether or not he or
she is on the right track.

Future work. The work reported on in this paper is part of our work about
feedback, see [8] for a general description of our research. In the future we want
to work on several things:



– We want to investigate if we can recognise the application of more than
one rewrite rule when comparing a submitted system of equations with the
previous system. This probably requires some advanced reachability analysis.

– We want to apply our framework in more domains taken from mathematics.
– We want to allow for nice presentations in our tool, so that for example

(3/2)*x can be displayed as 3x
2 . The Proxima editor [10], or Amaya [13],

might be useful here.
– We want to do more research on types of feedback and the way these can

be incorporated in the framework. For example, feedback about the goal
structure leads to better performance than feedback about the reasons for
the error [6]. Goal related feedback allows students to correct the incorrect
actions more often than other types of feedback. Our framework explicitly in-
corporates the goal and the indicators relate the current system of equations
with the goal.

– We want to perform experiments with our tool, in order to obtain experience
with different levels of detail in feedback and progression indicators.

– We want to apply our framework on a rather different domain such as UML
diagrams: can we apply the framework to provide feedback in an e-learning
tool that supports the construction of UML diagrams?

Applying our framework to other mathematical domains, and to more or less
structured domains outside mathematics will help us in evaluating the applica-
bility of our ideas.

On a different note: we would like to analyse the behaviour of a student using
the Equation Solver to generate new problems, in which rules a student has not
applied yet have to be used, or in which the student has to practice rules in
applying which he or she made errors solving the last problem.

Acknowledgements. Bert Zwaneveld gave feedback on drafts of this paper.
Evert van de Vrie pointed us to the right information. Doaitse Swierstra and
Atze Dijkstra helped us in using the Utrecht parsing, scanning, and attribute
grammar tools.

References

1. M. Beeson. Design principles of mathpert: Software to support education in alge-
bra and calculus. In N. Kajler, editor, Computer-Human Interaction in Symbolic
Computation, pages 89–115. Springer-Verlag, 1998.

2. Igor Chudov. Linear system solver (using determinant), 2004. See http://www.

algebra.com/algebra/homework/coordinate/linear.solver.

3. Arjeh Cohen, Hans Cuypers, Dorina Jibetean, and Mark Spanbroek. Interactive
learning and mathematical calculus. In Mathematical Knowledge Management,
2005.

4. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of
theoretical computer science (vol. B): formal models and semantics, pages 243–320,
Cambridge, MA, USA, 1990. MIT Press.



5. G.Goguadze, A.González Palomo, and E.Melis. Interactivity of exercises in active-
math. 2005.

6. J. McKendree. Effective feedback content for tutoring complex skills. Human
computer interaction, 5:381 – 413, 1990.

7. E. Mory. Feedback research revisited. In D.H. Jonassen, editor, Handbook of
research for educational communications and technology, 2003.

8. Harrie Passier and Johan Jeuring. Ontology based feedback generation in design-
oriented e-learning systems. In P.Isaias, P. Kommers, and Maggie McPherson,
editors, Proceedings of the IADIS International conference, e-Society, volume II,
pages 992–996, 2004.

9. Simon Peyton Jones et al. Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press, 2003. A special issue of the Journal of Functional
Programming, see also http://www.haskell.org/.

10. Martijn M. Schrage. Proxima – a presentation-oriented editor for structured doc-
uments. PhD thesis, Utrecht University, The Netherlands, Oct 2004.

11. Sofmath. Algebrator – algebra help software, 2005. See http://www.

algebra-help.com/g2-solve-x.html.
12. S. D. Swierstra and L. Duponcheel. Deterministic, error-correcting combinator

parsers. In John Launchbury, Erik Meijer, and Tim Sheard, editors, Advanced
Functional Programming, volume 1129 of LNCS-Tutorial, pages 184–207. Springer-
Verlag, 1996.

13. World Wide Web Consortium. Amaya web editor/browser. http://www.w3.org/

Amaya, 2004.


