
banner above paper title

Integrating an interactive Haskell tool with a Web Application
an Experience Report

Sylvia Stuurman
Open University, Netherlands

Sylvia.Stuurman@ou.nl

Johan Jeuring
Universiteit Utrecht and Open University, the

Netherlands
Johan.Jeuring@ou.nl

Abstract
At the Open University, The Netherlands, we are developing in-
teractive Exercise Assistants that give good feedback to students
trying to solve mathematical or logical exercises. To simplify in-
stalling, maintaining, and adapting the tools, and to improve report-
ing facilities, we have turned our tools into web applications. Since
our tools are implemented in Haskell, this implies that we have to
be able to connect an interactive Haskell application to the web. We
have developed an architecture that makes it possible to change an
application written in Haskell into a light-weight webservice for an
Ajax-style web-based application.

In this paper, we discuss the various possibilities to combine
Haskell and a web-based application. We investigate the advan-
tages and disadvantages of the chosen architecture with respect to
changes in the interface of the tool written in Haskell.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures; D.2.12 [Software Engineering]: In-
teroperability; H.5.4 [Hypertext/Hypermedia]: Hypertext/Hyper-
media

General Terms Design, Experimentation

1. Introduction
1.1 Haskell and Web Applications

Techniques to use Haskell in web applications generally aim to use
Haskell for all aspects of the application. For example, Meijer et
al. [16] introduce Haskell server pages, which treat HTML or XML
fragments as ordinary Haskell expressions. HaskellScript [17]
has been introduced as an alternative for Javascript. The Haifa
project [5] aims ”to build a set of tools, which will enable inter-
operability applications to be built in the purely functional pro-
gramming language Haskell using technologies such as SOAP and
WSDL”, and WASH/CGI [24] is a set of server-side scripting lan-
guages based on Haskell for the generation of XHTML documents
and forms, for sessions, and for persistence. Cooper et al. [3] in-
troduce Links, a model-based approach: the presentation layer, the
logical layer and the database layer are generated from code written
in Links, a functional language based on O’Caml.

[copyright notice will appear here]

These techniques can be used to build a web application from
scratch, but they don’t offer a solution to integrate Haskell pro-
grams into existing web applications.

1.2 Exercise Assistant in Haskell

At the Open University, The Netherlands, we are developing sev-
eral exercise-assistant tools: tools in which a student stepwise con-
structs a solution to an exercise. Examples of exercises the tools
support are rewriting a logical expression to disjunctive normal
form [13], and solving a system of linear equations [22].

The user-interface of the tools is simple: a student is presented
with a text field that contains an exercise in which the student
rewrites the exercise toward a solution. After each step, the student
can press a Submit button and receive feedback, which appears in
the feedback field. The distinctive feature of our tools is the feed-
back the tools give when a student makes an error. Furthermore,
the tool keeps the history of the steps the student performs, and the
student can undo previous steps.

To implement our tools, we need functionality for parsing,
pretty-printing, symbolic evaluation, several analyses, etc. This
functionality builds, traverses or folds abstract syntax trees. Fur-
thermore, the exercise-assistant tools for the different domains
(logical expressions, linear equations) are very similar, and we
want to minimize code duplication. The lazy higher-order func-
tional programming language Haskell [10] is particularly good at
manipulating abstract syntax trees, and the high level of abstrac-
tion support by Haskell minimizes code duplication, so we have
implemented our tools in Haskell. Furthermore, using generic pro-
gramming techniques will further reduce code duplication [12].
These techniques are widely available for Haskell [9], and hardly
for any other programming language.

1.3 Exercise Assistant on-line

We want to turn our Exercise Assistants into web applications for
several reasons. First, the exercise-assistant tools have been devel-
oped recently, and are still evolving. Yet we want our students to
use the most recent versions of our tools. Deploying an evolving
tool is difficult. Deployment in the form of an on-line version of
the tool, maintained at a single location, is highly desirable. A web
application has the advantage that both the logical part and the pre-
sentational part of the application are located at a single location.
Therefore, both parts can be maintained without the need of up-
grading the application on user machines. Second, the distinguish-
ing feature of our tools is the feedback they give to the student. To
improve feedback, we want to log errors and feedback messages.
Logging is very hard if not impossible if the tools are installed on
user machines. It is much easier to connect a web application to a
database and store all errors and feedback messages. Third, we are
also considering providing feedback to teachers about common er-

short description of paper 1 2007/6/15



rors made by groups of students. Again, collecting such feedback
is much easier in a web application in which such a group of users
can login.

The reason that we did not make use of the ‘Haskell exclusively’
techniques described above, is that we would like to be able to
use the Exercise Assistant in existing web applications such as
Blackboard.

This paper shows how an interactive Haskell program can be
integrated into existing web applications. We describe the require-
ments for an interactive web application that uses Haskell for its
functionality in section 2. Section 3 discusses the various tech-
niques and architectures available for tying an interactive Haskell
to the web, and shows our solution, in which the tool is tied in
as a light-weight webservice. Section 4 discusses future research
around our web application.

2. Requirements
We have the following requirements for an on-line version of our
Exercise Assistant.

1. Interactivity. The application should have a response behavior
resembling a desktop application: there should not be a page
reload after each equation or formula that a student submits.

2. Presentation. It should be possible to present the web applica-
tion using different presentation mechanisms. In other words,
the functionality of the feedback tool should be separated from
the presentation. Then it is, for example, possible to fully in-
tegrate the application in a Blackboard course [1] or a Moodle
course [19].

3. Authentication. For the same reason, authentication should be
separated from the Exercise Assistant application, so that au-
thentication from the environment of the user (such as a Black-
board site) may be used.

4. Scalability. It should be possible to support the use of the
Exercise Assistant by many users at the same time.

5. Flexibility. In its present form the tool only covers two domains,
does not make use of the history of errors of a particular user,
and does not analyse the results of a group of students. In the
future we want to adapt our tools at least with respect to these
points, but we expect many other changes to be implemented. It
should be relatively easy to make changes to the tool, preferably
in a single location. The flexibility requirement can be further
refined as follows:

(a) Transparency. It should be transparent for the Exercise As-
sistant whether it resides in a desktop application with a
GUI or in a web application. Then the Exercise Assistant
can evolve without having to apply changes in different ver-
sions of the Exercise Assistant.

(b) Stateless connections. If possible, the web application
should adhere to the REST style (Representational State
Transfer) [4]. In REST, interactions between client and
server are stateless. The REST architecture is the architec-
ture that has made the web as scalable as it is, and adhering
to its principles will at least make it possible for a web ap-
plication to be flexible with respect to changes and scaling.

(c) Changeability. It should be possible to apply changes in the
Exercise Assistant without having to apply changes on the
various web servers.

3. Toward a solution
3.1 Communication through HTTP

In order to meet requirement 2, we clearly need communication be-
tween the Exercise Assistant in Haskell and several webservers. In
that case, we would meet requirement 3 at the same time. The com-
munication crosses machine boundaries, so HTTP is an obvious
choice as a protocol. The Exercise Assistant as we have developed
it is stateless, so requirement 5b is met as well.

http httpWeb 

browser

Web

server

Exercise 

assistant

HTML

pages

Figure 1. The Exercise assistant on-line

Figure 1 shows how the resources for the web application
around the Exercise Assistant are distributed over different ma-
chines. The Exercise Assistant may communicate with several web
servers, each of which may serve several browsers. Note however,
that we still have to find a way to add communication over HTTP
to the Exercise Assistant.

3.2 Interactivity through Ajax

The interactivity requirement 1 suggests to use of Ajax [7], which,
in short, implies that when a user submits a rewritten expression,
the action that follows is not an HTTP-Post request communicat-
ing the input to the server and resulting in a page reload, but an
XMLHTTP Post request, communicating the input and receiving
the feedback without a page reload. Code in a scripting language
in the page (in practice, the scripting language is almost always
Javascript) performs the action, and shows the response in one or
more components of the page. Because the web browser does not
need to render a whole page, Ajax-based applications have a re-
sponse time almost resembling a desktop application. By using the
Really Simple History framework [20], it is possible for the user to
undo previously submitted rewritings.

http httpWeb 
browser

Web
server

Model
Exercise 
assistant

View
HTML
page

Control
Javascript

xmlhttp xmlhttp

Figure 2. The Exercise assistant on-line with Ajax

Figure 2 shows that the webserver not only stores HTML pages,
but also Javascript code which is needed for the Ajax communica-
tion with the Exercise Assistant. The resources of the web server
will be sent to the browser, where the HTML is displayed, and the
Javascript code is interpreted. In fact, this architecture is an ex-
ample of the MVC architecture, with the Exercise Assistant as the
model, the HTML pages as the view, and the Javascript code as the
controller (with the possibility to apply changes in the HTML page
while it is displayed in the browser).

short description of paper 2 2007/6/15



When comparing the properties of this architecture with the re-
quirements, we may conclude that requirement 1 is met by using
Ajax. Requirement 2 is met by allowing different web servers to
communicate with the Exercise Assistant, and keeping the respon-
sibility of the look and feel of the application with the webserver.
The same properties also guarantee requirement 3. Requirement 4
is met because the work load can be distributed over several web
servers. However, there will be a limit to the number of web servers
that the Exercise Assistant can serve. Requirement 5b is met by the
nature of the Exercise Assistant, because it functions without state
and without side-effects.

Requirement 5 however, is not met entirely. In the first place, we
still have to find a way to establish communication through HTTP
between the Exercise Assistant and the web server, so we still do
not know whether such a mechanism guarantees requirement 5a.
And requirement 5c is only met for changes in the implementation
of the Exercise Assistant; not for changes within the interface for
the XMLHTTP requests.

3.3 Application server

To implement the architecture sketched in 2 we need a mechanism
for communicating between a program written in Haskell and a
program that is able to communicate over HTTP: a web server.
A number of techniques for calling a Haskell function from a
webserver are available.

Program Call. When the webserver supports server-side scripts
such as PHP, JSP or ASP, a script can simply call an executable
of a Haskell program with the input of the user as a parameter,
and send back the result to the user. The disadvantage of such
a solution is that each time a user presses a submit button, a
new process is started with an associated time delay, violating
the ‘interactivity’ requirement 1. Moreover, with many users
working at the same time, the number of processes may become
a bottleneck, violating the ‘scalability’ requirement 4.

CGI. CGI, the Common Gateway Interface, is a standard for pro-
grams to communicate with web servers. With CGI, it is pos-
sible to use a program without a scripting language like PHP.
However, using CGI has the same problems as the previous
technique: when a user presses submit, a new process is started.

Server-side scripting. Haskell Server Pages [18] treat HTML or
XML fragments as ordinary expressions. It is possible to refac-
tor our Exercise Assistant to Haskell Server Pages and thus turn
it into a web-service. However, we would have to maintain both
a desktop version of the tool and an on-line version, violating
the ‘transparency’ requirement 5a.

FastCGI. FastCGI [14] is a fast web server interface that solves
the performance problems inherent in CGI. It uses a persistent
process instead of a process for each request, like CGI. There
is a FastCGI implementation for Haskell [2]. To make use of
FastCGI, we would have to write a program which is capable
of scheduling the Exercise Assistant in several threads, and
keeping track of sessions if needed.

Apache module. In the same way as the Apache web server sup-
ports scripting languages like PHP, we can use an Apache mod-
ule supporting the interpretation of Haskell source code. Such a
module is available [8]. There are issues that have to be solved
(the Haskell interpreter is not thread-safe for instance) before
this would be a viable option. Another disadvantage is that in-
terpretation of the Exercise Assistant might be too slow with
respect to the ‘interactivity’ requirement 1.

Application server. A start for an application server for web ser-
vices could be Marlow’s web server in Haskell [15]. Another
candidate is the HTTP server of the HAIFA project [5, 6], which

offers a simple HTTP server with handlers to be built in as
Haskell functions. A third possibility is the HAppS application
server, which is the most complete server at this moment [11],
supporting sessions and DBMS access without having to use a
monad. We choose this application server for our web applica-
tion.

By using the HAppS server, we have met the 5a requirement,
because the HAppS server calls the same functions of the Exercise
Assistant as the user interface of the desktop version of the Exercise
Assistant.

3.4 Problems

However, the 5c requirement is not yet met: the interface of the
HAppS server will change when the functionality of the Exercise
Assistant changes. The HAppS server is configured by writing a
main module. Figure 3 shows part of the main module. There

app POST _ ["logic", "feedback"] = do
rq <- getEvent
sresult 200 (giveLogicFeedback

(lookS 200 rq "answer")
(lookS 200 rq "previousanswer"))

Figure 3. part of the Main Module of the application server

is a clause that declares what will be sent back over HTTP, in
case of an incoming (xml-)HTTP Post request. If the URL of the
request contains the stringslogic andfeedback, the values of the
variablesanswer andpreviousanswer sent with the request are
used as parameters of the function callgiveLogicFeedback of the
Exercise Assistant.

This approach has two disadvantages:

Compilation

The only way to add or change a clause coupling a pattern in the
request to a function call is by adding the clause to the main module
of the HAppS server, and compile the whole server, with the Exer-
cise Assistant included. Even if we change the Exercise Assistant
internally, without changing the interface, the whole server has to
be recompiled. In a production server that is unacceptable.

A possible solution would be to have a configuration file that
couples patterns in the URL of a request to the name of the function
to call, combined with pluggable functions. One of the patterns
could have an associated action to reread the configuration file. In
that case, functions can be compiled separately from the application
server, and there would be no downtime. Using the existing plugin-
technology for Haskell [21], such a solution is possible, at least in
theory. However, the plug-in technology is not yet stable enough to
be able to rely on it.

Another option is to choose the FastCGI solution instead of the
application server. The disadvantage of such a solution is that we
would have to write code for functionality that is already available
in the HAppS application server, such as scheduling of threads,
working with sessions, and database access.

For now we stick to the application server solution, but we may
have to choose another technique if we have to apply changes very
often.

Tightly coupled Model, View, and Control

Changes in the interface have consequences for the resources on
the web server. The requests to the application server contain vari-
ables, to be used as input for the Exercise Assistant. The names
of these variables should be known by the Javascript code that is
responsible for the Ajax communication between the browser and

short description of paper 3 2007/6/15



Figure 4. The Exercise assistant

the application server. The Javascript code needs to know which
page components hold the values to send, which variable, and in
which page components to put the results. In figure 4, the variable
namedanswer should get the value of the user input, while the
Javascript code should remember the value for the variable named
previousanswer. The feedback that is sent back to the browser
should be pasted in the page component in the lower left of fig-
ure 4. Obviously, both the HTML and the Javascript code should
be changed when the interface of the Exercise Assistant needs more
values in the request, or sends more values back.

When the coupling between a presentation layer and a logic
layer is too tight to keep changes in one layer, the solution is often
a model-based approach. A web application is modeled as a single
entity, and from the models, the presentation layer is generated. An
example of that approach is OOWS [23]. A model-based approach
might even be used to generate the presentation layer, the logical
layer and the database layer as in Links [3]. In our architecture, that
is not a viable option, because we want to keep the possibility to
use the Exercise Assistant from different web servers, which will,
in practice, not be under our control.

3.5 Model, View and Control in the Application Server

A solution to the problems of the previous subsection would be to
keep the HTML and Javascript on the application server, but that
would violate requirements 2 and 3. The solution which meets all
requirements therefore, is to store the Javascript code in the applica-
tion server, and shift the responsibility for the components that are
needed of the HTML page to the Javascript code. A web developer
who wants to use the Exercise Assistant then uses the URL for the
Javascript code in a web page, and calls a Javascript function which
will add the necessary components in the page. Figure 5 shows the

http httpWeb 
browser

Web
server

Model
Application

server

View
HTML
page

View +

Control
Javascript

xmlhttpxmlhttp

Figure 5. The Exercise assistant web application

distribution of resources in this solution. The responsibility for the

Control is shifted to the application server. Because of the tight cou-
pling mentioned above, the Control component provides the page
components that are vital for the application as well. They will be
pasted in the web page that is provided by the web server. The dot-
ted arrow from the View on the Web server to the View and Control
on the application server shows that the web page (served by the
web server) contains a reference to the Javascript code (stored on
the application server).

3.6 The Exercise Assistant on-line

The on-line Exercise Assistant in figure 4 is started when the user
types in the URL in the browser (at the moment the Exercise Assis-
tant can be found onhttp://www.exercise-assistants.org/
feedback/logic/. The domain-name will remain stable, the post-
fix feedback might change in the future.) A simple HTTP Get re-
quest is sent to the web server. The web server (in our reference
implementation an Apache web server supporting PHP) sends a
page to the browser, containing Javascript code from the applica-
tion server. The Javascript code, when interpreted in the browser,
asks the application server to generate an exercise using an XML-
HTTP request, and shows the resulting exercise in an editable ele-
ment that it has added to on the page. The user then starts to solve
the exercise. When the user presses the submit button, the necessary
data are sent to the application server in an XMLHTTP request by
the Javascript code in the page. The application server, after having
called the appropriate function of the Exercise Assistant, responds
by sending feedback to the browser, where Javascript code pastes
the result in the right places in the page. Figure 6 shows the Exer-

http

http

Web 
browser

Web
server

Model
Application

server

View
HTML page

Control
Javascript

View
HTML

components

xmlhttp

Figure 6. The Exercise assistant web application

cise Assistant application at run-time. The browser has received an
HTML page from the webserver (as indicated by the dotted arrow),
which contains Javascript code that has been served by the applica-
tion server (as indicated by the dotted arrow). The Javascript pastes
the necessary page components in the HTML page (as indicated by
the dotted arrow), and from then on sends the input from the user
to the application server, and pastes the answers in the right page
components.

short description of paper 4 2007/6/15



More than one webserver may connect to the application server,
and there are no restrictions regarding the technologies used in the
web server.

4. Conclusions and future work
We have shown that we can use existing techniques to turn an
interactive Haskell application into a web-based application. We
have listed a number of requirements that a solution should satisfy,
and we have discussed if and how several alternative approaches
available for Haskell applications satisfy these requirements. We
hope to contribute to the discussions about architectures for Haskell
web applications1.

Generation of Javascript code

A web application like the one we present here is hard to debug
because a bug may be located in different places, and the applica-
tion is built using several languages. Changing the Javascript code
by hand each time there is a change in the interface of the Exer-
cise Assistant will probably result in extra hours spent searching
for bugs. A possible solution might be to evolve a language like
Links [3], but because our Exercise Assistant is developed as a
desktop application, it is easier for us to develop and test the func-
tionality of the Exercise Assistant stand-alone, and find a way to
generate the Javascript-code that we need.

Valid Selections

Another future direction in our experiment is to enhance the edit-
ing capabilities of the application and to introduce the concept of
strategies. For each domain, we would like to be able to express dif-
ferent strategies that a user may follow while solving an exercise.
Strategies could be used to offer the user a set of possible trans-
formations for a given selection in the exercise at hand, or to give
feedback about the strategy that is used.

With respect to responsiveness, it will be necessary to build
the capability to recognise which selections in an expression are
valid or not, into the Javascript component. For example, in an
expressiona ∗ (b + c), b + c is a valid selection, whilea ∗ (b is
not.

We are planning to extend the Javascript code with this capabil-
ity. The Control component will then be able to tell the application
server which part of an expression is selected. We will need ways
to specify the rules for valid selections in different domains, and
these specifications will be used both by the Exercise Assistant in
Haskell and the Control component in Javascript.

So, switching the responsibility for the Javascript code to the
application server is not only needed for the flexibility with respect
to changes in the Exercise Assistant, it is also needed to turn the
browser into a smart editor that knows which selections in an
expression are valid.

Acknowledgements. Harrie Passier and Josje Lodder helped in
the implementation of the Exercise Assistant, and commented on
several aspects of the web application.

References
[1] The blackboard learning system.http://www.blackboard.com/.

[2] B. Bringert. fastcgi - a Haskell library for writing FastCGI
programs. http://www.cs.chalmers.se/~bringert/darcs/
haskell-fastcgi/doc/, 2006.

[3] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web
programming without tiers.http://groups.inf.ed.ac.uk/
links/papers/links-fmco06.pdf, 2006.

1 See for instance the fa.haskell Google group.

[4] R. T. Fielding and R. N. Taylor. Principled designn of modern web
architecture. InProceedings of 22nd International Conference on
Software Engineering, pages 407–416, June 2000.

[5] S. Foster. HAIFA: An XML based interoperability solution for
Haskell. In Proceedings of the 6th Symposium on Trends in
Functional Programming (TFP 2005), pages 103–118, 2005.

[6] S. Foster. HAIFA, 2006. http://www.dcs.shef.ac.uk/
~simonf/HAIFA.html, accessed june 2006.

[7] J. Garrett. Ajax: A new approach to web applications, 2005. http:
//www.adaptivepath.com/publications/essays/archives/
000385.php.

[8] A. Hemel and E. Dolstra. Mod Haskell.http://losser.st-lab.
cs.uu.nl/mod_haskell/docs/mod_haskell/manual.

[9] R. Hinze, J. Jeuring, and A. L̈oh. Comparing approches to generic
programming in Haskell. In R. Backhouse, J. Gibbons, R. Hinze,
and J. Jeuring, editors,Generic Programming, Advanced Lectures,
LNCS. Springer-Verlag, 2007.

[10] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of
Haskell: being lazy with class. InThe Third ACM SIGPLAN History
of Programming Languages Conference (HOPL-III), 2007.

[11] A. Jacobson. HAppS – haskell application server.http://happs.
org/, 2006.http://happs.org/, accessed November 2006.

[12] J. Jeuring, H. passier, and S. Stuurman. A generic framework for
developing exercise assistants. InThe 8th International Conference
on Information Technology Based Higher Education and Training,
ITHET’07, 2007.

[13] J. Lodder, J. Jeuring, and H. Passier. An interactive tool for
manipulating logical formulae. In M. Manzano, B. Pérez Lancho, and
A. Gil, editors,Proceedings of the Second International Congress on
Tools for Teaching Logic, 2006.

[14] O. Market. Fast CGI Whitepaper.http://fastcgi.com/devkit/
doc/fastcgi-whitepaper/fastcgi.htm, 1996.

[15] S. Marlow. Developing a high-performance web server in Concurrent
Haskell.Journal of Functional Programming, 12(4, 5):359–374, July
2002.

[16] E. Meijer. Server side web scripting in haskell.Journal of Functional
Programming, 10(1):1–18, January 2000.

[17] E. Meijer, D. Leijen, and J. Hook. Client-side web scripting with
HaskellScript. InProceedings PADL’99, volume 1551 ofLecture
Notes in Computer Science, pages 196–210. Springer-Berlag, 1999.

[18] E. Meijer and D. v. Velzen. Haskell server pages, functional
programming and the battle for the middle tier.Electronic Notes
in Theoretical Computer Science, 41(1), 2001.

[19] Moodle, a free, open source course management system for online
learning.http://moodle.org/.

[20] B. Neuberg. Ajax: How to handle bookmarks and back buttons,
2005. http://www.onjava.com/pub/a/onjava/2005/10/26/
ajax-handling-bookmarks-and-back-button.html.

[21] A. Pang, D. Stewart, S. Seefried, and M. M. T. Chakravarty. Plugging
Haskell in. InProceedings of the 2004 ACM SIGPLAN workshop on
Haskell, 2004.

[22] H. Passier and J. Jeuring. Feedback in an interactive equation solver.
In M. Sepp̈alä, S. Xambo, and O. Caprotti, editors,Proceedings of the
Web Advanced Learning Conference and Exhibition, WebALT 2006,
pages 53–68. Oy WebALT Inc., 2006.

[23] O. Pastor, J. Fons, and V. Pelechano. OOWS: A method to
develop web applications from web-oriented conceptual models.
In International Workshop on Web Oriented Software Technology
(IWWOST), 2003.

[24] P. Thiemann. An embedded domain-specific language for type-safe
server-side web scripting.ACM Transactions on Internet Technology,
5(1):1–46, 2005.

short description of paper 5 2007/6/15


