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Beweis dass jede Covariante und Invariante einer binären
Form eine ganze Function mit numerischen Coefficienten einer
endlichen Anzahl solcher Formen ist.

In modern language: G = SL2(C) as algebraic group.
GyV := C2, C[V ] = C[X, Y ],
Wd := C[V ]d, W2 = {aX2 + bXY + cY 2}, C[W2] = C[a, b, c],
b2 − 4ac ∈ C[W2]

G an invariant (= fixed point).

Gordan: C[Wd]
G is finitely generated (f.g.) as a C-algebra.
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Hilbert 1890
G = SLn(C) acting algebraically on some finite dimensional

complex vector space V .

Here ‘algebraically’ means the action is given by polynomials:

For each v ∈ V there is a polynomial fv in the matrix entries of

g ∈ G with coefficients in V so that g · v = fv(g).

Example: The above action of G = SL2(C) on W2.

Then Hilbert shows nonconstructively (‘theology’) that C[V ]G is

finitely generated as a C-algebra.

Examples Consider the action of G = GLn(C) by conjugation on

the vector space V = Mn(C) of n × n matrices. So g ∈ G sends

m ∈ V to gmg−1. Then C[V ]G is generated by the coefficients ci

of the characteristic polynomial det(m−λI) = c0+c1λ+ · · · cnλn.
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Next let G be the group of permutations of the n variables

in the polynomial ring C[X1, . . . , Xn]. Then C[X1, . . . , Xn]G =

C[p1, . . . , pn], where pi = Xi
1 + · · ·Xi

n.

Encouraged by an incorrect claim of Maurer Hilbert asked in

his fourteenth problem if this finite generation of invariants is a

general fact about actions of algebraic Lie groups on domains of

finite type over C.

A counterexample of Nagata (1959) showed this was too opti-

mistic.
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By then it was understood that finite generation of invariants

holds for compact connected real Lie groups like orthogonal

groups (cf. Hurwitz 1897). Hurwitz considers compact group K

with Haar measure dk and introduces the method of averaging.

KyV linear. Get linear equivariant retract V → V K from

v 7→
∫
K kv dk∫

K dk
.

Finite generation also holds for the complexifications of

compact Lie groups, also known as the connected reductive

complex algebraic Lie groups (Weyl 1926).
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Finite groups have been treated by Emmy Noether (1926), so

connectedness may be dropped. (Algebraic Lie groups have

finitely many connected components.)

Mumford (1965) needed finite generation of invariants for

reductive algebraic groups over fields of arbitrary characteristic

in order to construct moduli spaces.

Say k is an infinite field and G = SLn(k) is acting algebraically

on some finite dimensional k-vector space V .

Then Mumford needs in particular that k[V ]G is finitely

generated as a k-algebra.
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In his book Geometric Invariant Theory (1965) Mumford

introduced a condition, often referred to as

geometric reductivity. He conjectured it to be true for reductive

algebraic groups and he conjectured it implies finite generation

of invariants.

These conjectures were confirmed by Haboush (1975) and

Nagata (1964) respectively.

Nagata treated any algebra of finite type over the base field, not

just domains. We adopt this generality. It rather changes the

problem of finite generation of invariants.
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The proof of Nagata was actually based on a property that

Franjou and the speaker call ‘power reductivity’.

We call G power reductive if, whenever G acts algebraically on

a commutative k-algebra A, leaving invariant an ideal I, there is

for every f ∈ (A/I)G a power fn that lifts to AG.

For a group like SLm(C) one could take n = 1.

Actually Mumford wrote his book after this work of Nagata, and

his formulation of the problem amounts to conjecturing power

reductivity for the relevant G. As long as the base ring is a

field, power reductivity is easily equivalent to what is known as

geometric reductivity, which we do not define here.
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The standard story has the Mumford conjecture stated in terms

of geometric reductivity.

We have followed that custom here, even though we know that

over more general base ring power reductivity is the superior

notion.

Let us say that G satisfies property (FG) if, whenever G acts on a

commutative algebra of A finite type over k, the ring of invariants

AG is also finitely generated over k. So then the theorem of

Haboush and Nagata says that connected reductive algebraic

groups like SLn over a field have property (FG). Of course the

action of G on A should be consistent with the nature of G and

A respectively. Thus if G is an algebraic group, then the action

should be algebraic and the multiplication map A⊗kA → A should

be equivariant.
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It turns out that (FG) is equivalent to power reductivity, and

this continues to hold if our field k is replaced with an arbitrary

commutative noetherian base ring. (The correct formulation

now involves group schemes, not groups.) Here it is essential

that we changed the rules by allowing any algebra of finite type

over the base ring, not just domains.

This equivalence may be used to prove that connected reductive

group schemes like SLm have property (FG) over an arbitrary

commutative noetherian base ring R.



Example
Let R = Z, G = SL2 acting in its adjoint representation M with

basis

X =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 1
0 0

)
.

So g ∈ G sends a matrix m to gmg−1. The class of H in M/2M is

invariant. It is very common that such a modular invariant does

not lift to characteristic zero.

But when we embed M into an algebra we can apply Power

Reductivity. It tells that actually some power of

H mod 2M ∈ (S∗(M/2M))G must lift to (S∗M)G.

Indeed H2 + 4XY ∈ (S2M)G.

Note that it is essential that one allows nonfree modules when

forging this link between characteristics.
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The equivalence of (FG) with power reductivity leads to easy

counterexamples to (FG). For instance, let G be the Lie group

C with addition as operation.

Let t ∈ G act on A = C[X, Y, Z]/(XZ) by

X 7→ X, Y 7→ Y + tX, Z 7→ Z.

Then AG contains X, Z and Y iZ for i ≥ 1, and AG is not finitely

generated. This is an awful lot simpler than the famous Nagata

counterexample from 1959. But we have changed the rules and

A is no domain.

If I is the ideal generated by X in A, then one also sees that G

fails power reductivity. No power of Y ∈ (A/I)G lifts to AG.
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Such failure of lifting is what the cohomology group H1(G, I)

is about. So we naturally end up studying cohomology when

looking at invariant theory. One has AG = H0(G, A) and the

Hi(G,−) are the derived functors of the fixed point functor (−)G.

Let us say that G satisfies the cohomological finite generation

property (CFG) if, whenever G acts on a commutative algebra

A of finite type over k, the cohomology algebra H∗(G, A) is also

finitely generated over k.

Evens (1961) proved that finite groups have (CFG) and this has

been the starting point of the theory of support varieties. In this

theory one exploits a connection between the rate of growth of

a minimal projective resolution and the dimension of a ‘support

variety’, which is a subvariety of the spectrum of Heven(G, k).
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People working in representation theory of algebraic groups

wanted to join this activity. Thus one needed to show that the

result of Evens extends to more general finite group schemes.

(An algebraic group scheme G is called finite if its coordinate

ring k[G] is a finite dimensional vector space.) This turned out

to be surprisingly elusive (Friedlander Suslin 1997).

Friedlander and Suslin had to invent a new representation theory,

the strict polynomial functors, in order to construct

universal cohomology classes that enabled them to bring some

Hochschild–Serre spectral sequences under control.

Their representation theory uses the Schur algebras S(n, d)

introduced by I. Schur in his 1901 thesis.



The S(n, d)-modules correspond with polynomial

representations, homogeneous of degree d, of GLn. The setting

of Friedlander and Suslin captures S(n, d) for all n simultaneously.

Intuitively one thus finds the behaviour as n →∞.

Now I had noticed that if one could show that GLn has (CFG)

for large n, then it would follow that finite group schemes have

(CFG). I could soon prove (2004) that GL2 has (CFG), but 2

is not large. Then I started to find corollaries to (CFG) that

seemed wrong. So the game became to disprove the corollaries.

This was a big failure. Instead of disproving I started to prove

more and more cases. Thus it became my conjecture that GLn

has (CFG) (when the base ring is a field).
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To follow the strategy of Friedlander and Suslin and prove my
conjecture, more universal cohomology classes were needed.

This required a two variable variant of strict polynomial
functors, the strict polynomial bifunctors of
Franjou and Friedlander (2008), and some miraculous arguments
of Touzé (2010).

One now wonders if (CFG) still holds for GLn when the base
ring is just a commutative noetherian ring R. It is so for n = 2
and also if R contains a field.

We are not aware of striking applications of the general (CFG)
theorem, but investigating the (CFG) conjecture has led to new
insights. As H>0(G, k) vanishes for reductive G, there is no
obvious theory of support varieties for reductive G.

13


