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Beweis dass jede Covariante und Invariante einer binaren
Form eine ganze Function mit numerischen Coefficienten einer
endlichen Anzahl solcher Formen ist.

In modern language: G = SL>(C) as algebraic group.

GV :=C2, C[V]=C[X,Y],

W, = C[V]y, Wo = {aX? 4+ bXY + ¢Y?}, C[Ws] = Cla,b,d],
b2 — 4ac € C[W5]C an invariant (= fixed point).

Gordan: C[W,]C is finitely generated (f.g.) as a C-algebra.
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Hilbert 1890

G = SL,(C) acting algebraically on some finite dimensional
complex vector space V.

Here ‘algebraically’ means the action is given by polynomials:
For each v € V there is a polynomial f, in the matrix entries of
g € G with coefficients in V so that ¢g-v = fu(g).

Example: The above action of G = SL>(C) on W5.

Then Hilbert shows nonconstructively (‘theology’) that C[V]¢ is
finitely generated as a C-algebra.

Examples Consider the action of G = GL,(C) by conjugation on

the vector space V = M, (C) of n x n matrices. So g € G sends

m € V to gmg—1. Then C[V]C is generated by the coefficients ¢;

of the characteristic polynomial det(m —AI) = cg+ci A+ - cpA".
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Next let G be the group of permutations of the n variables
in the polynomial ring C[X1,...,Xn]. Then C[Xy,...,Xn]¢ =
Clp1,.--,pn], Wwhere p; = X4 4 ... X7

Encouraged by an incorrect claim of Maurer Hilbert asked in
his fourteenth problem if this finite generation of invariants is a
general fact about actions of algebraic Lie groups on domains of
finite type over C.

A counterexample of Nagata (1959) showed this was too opti-
mistic.



By then it was understood that finite generation of invariants
holds for compact connected real Lie groups like orthogonal
groups (cf. Hurwitz 1897). Hurwitz considers compact group K
with Haar measure dk and introduces the method of averaging.
KNV linear. Get linear equivariant retract V — VE from
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Finite generation also holds for the complexifications of
compact Lie groups, also known as the connected reductive

complex algebraic Lie groups (Weyl 1926).




Finite groups have been treated by Emmy Noether (1926), so
connectedness may be dropped. (Algebraic Lie groups have
finitely many connected components.)

Mumford (1965) needed finite generation of invariants for
reductive algebraic groups over fields of arbitrary characteristic
in order to construct moduli spaces.

Say k is an infinite field and G = SLp,(k) is acting algebraically
on some finite dimensional k-vector space V.

Then Mumford needs in particular that k[V]C is finitely
generated as a k-algebra.



In his book Geometric Invariant Theory (1965) Mumford
introduced a condition, often referred to as

geometric reductivity. He conjectured it to be true for reductive
algebraic groups and he conjectured it implies finite generation
of invariants.

These conjectures were confirmed by Haboush (1975) and
Nagata (1964) respectively.

Nagata treated any algebra of finite type over the base field, not
just domains. We adopt this generality. It rather changes the
problem of finite generation of invariants.



The proof of Nagata was actually based on a property that
Franjou and the speaker call ‘power reductivity’.

We call G power reductive if, whenever G acts algebraically on
a commutative k-algebra A, leaving invariant an ideal I, there is
for every f € (A/I)C a power f™ that lifts to AC.

For a group like SL,(C) one could take n = 1.

Actually Mumford wrote his book after this work of Nagata, and
his formulation of the problem amounts to conjecturing power
reductivity for the relevant G. As long as the base ring is a
field, power reductivity is easily equivalent to what is known as
geometric reductivity, which we do not define here.



The standard story has the Mumford conjecture stated in terms
of geometric reductivity.

We have followed that custom here, even though we know that
over more general base ring power reductivity is the superior
notion.

Let us say that G satisfies property (FQG) if, whenever G acts on a
commutative algebra of A finite type over k, the ring of invariants
AG is also finitely generated over k. So then the theorem of
Haboush and Nagata says that connected reductive algebraic
groups like SLy, over a field have property (FG). Of course the
action of G on A should be consistent with the nature of G and
A respectively. Thus if GG is an algebraic group, then the action
should be algebraic and the multiplication map AR, A — A should
be equivariant.



It turns out that (FG) is equivalent to power reductivity, and
this continues to hold if our field k is replaced with an arbitrary
commutative noetherian base ring. (The correct formulation
now involves group schemes, not groups.) Here it is essential
that we changed the rules by allowing any algebra of finite type
over the base ring, not just domains.

T his equivalence may be used to prove that connected reductive
group schemes like SL,, have property (FG) over an arbitrary
commutative noetherian base ring R.



Example
Let R =%, G = SLo acting in its adjoint representation M with
basis

O O 1 O 01
=(10) =0 % )=(35)
So g € G sends a matrix m to gmg—1. The class of H in M/2M is
invariant. It is very common that such a modular invariant does
not lift to characteristic zero.
But when we embed M into an algebra we can apply Power
Reductivity. It tells that actually some power of
H mod 2M € (S*(M/2M))E must lift to (S*M)C.
Indeed H?2 4+ 4XY € (S2M)C.

Note that it is essential that one allows nonfree modules when
forging this link between characteristics.



The equivalence of (FG) with power reductivity leads to easy
counterexamples to (FG). For instance, let G be the Lie group
C with addition as operation.

Let t € G act on A=C[X,Y,Z]/(XZ) by

X—X, Y—=Y+tX, Z—Z.

Then AG contains X, Z and Y'Z for i > 1, and A% is not finitely
generated. This is an awful lot simpler than the famous Nagata
counterexample from 1959. But we have changed the rules and
A is no domain.

If I is the ideal generated by X in A, then one also sees that G
fails power reductivity. No power of Y € (A/I)C lifts to AC.
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Such failure of lifting is what the cohomology group H(G,I)
is about. So we naturally end up studying cohomology when
looking at invariant theory. One has A¢ = HO9(G, A) and the
H(G, —) are the derived functors of the fixed point functor (=)¢.

Let us say that G satisfies the cohomological finite generation
property (CFQG) if, whenever G acts on a commutative algebra
A of finite type over k, the cohomology algebra H*(G, A) is also
finitely generated over k.

Evens (1961) proved that finite groups have (CFG) and this has
been the starting point of the theory of support varieties. In this
theory one exploits a connection between the rate of growth of
a minimal projective resolution and the dimension of a ‘support
variety’, which is a subvariety of the spectrum of H®Ve"(G, k).
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People working in representation theory of algebraic groups
wanted to join this activity. Thus one needed to show that the
result of Evens extends to more general finite group schemes.
(An algebraic group scheme G is called finite if its coordinate
ring k[G] is a finite dimensional vector space.) This turned out
to be surprisingly elusive (Friedlander Suslin 1997).

Friedlander and Suslin had to invent a new representation theory,
the strict polynomial functors, in order to construct
universal cohomology classes that enabled them to bring some
Hochschild—Serre spectral sequences under control.

Their representation theory uses the Schur algebras S(n,d)
introduced by I. Schur in his 1901 thesis.



The S(n,d)-modules correspond with polynomial
representations, homogeneous of degree d, of GL,. The setting
of Friedlander and Suslin captures S(n, d) for all n simultaneously.
Intuitively one thus finds the behaviour as n — oo.

Now I had noticed that if one could show that GL, has (CFQG)
for large n, then it would follow that finite group schemes have
(CFQG). I could soon prove (2004) that GL» has (CFG), but 2
is not large. Then I started to find corollaries to (CFG) that
seemed wrong. So the game became to disprove the corollaries.
This was a big failure. Instead of disproving I started to prove
more and more cases. Thus it became my conjecture that GLyp
has (CFG) (when the base ring is a field).
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To follow the strategy of Friedlander and Suslin and prove my
conjecture, more universal cohomology classes were needed.

This required a two variable variant of strict polynomial
functors, the strict polynomial bifunctors of

Franjou and Friedlander (2008), and some miraculous arguments
of Touzé (2010).

One now wonders if (CFQG) still holds for GL, when the base
ring is just a commutative noetherian ring R. It is so for n = 2
and also if R contains a field.

We are not aware of striking applications of the general (CFG)
theorem, but investigating the (CFG) conjecture has led to new
insights. As H~9(G,k) vanishes for reductive G, there is no
obvious theory of support varieties for reductive G.
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