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Invariants

P. Gordan 1868, J.f.d. reine u. angew. Math., 69 Beweis dass jede
Covariante und Invariante einer binären Form eine ganze Function
mit numerischen Coefficienten einer endlichen Anzahl solcher
Formen ist.
In modern language: G = SL2(C) as algebraic group.
G↷V := C2, C[V ] = C[X ,Y ], Wd := C[V ]d ,
W2 = {aX 2 + bXY + cY 2}, C[W2] = C[a, b, c],
b2 − 4ac ∈ C[W2]

G an invariant (= fixed point).
C[Wd ]

G is finitely generated (f.g.) as a C-algebra and
(Wd ⊗ C[Wd ])

G is a noetherian C[Wd ]
G -module.
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Hilbert 1890

Let G = SLn(C) act algebraically on some finite dimensional
complex vector space V . Here ‘algebraically’ means the action is
‘given by polynomials’: For each v ∈ V there is fv ∈ V ⊗C C[G ] so
that g · v = fv (g). Here C[G ] denotes the coordinate ring of G , a
polynomial ring in the matrix entries of g ∈ G . All actions will be
algebraic. (comodules).
Example: The above action of G = SL2(C) on W2. Then Hilbert
shows nonconstructively (‘theology’) that C[V ]G is finitely
generated as a C-algebra.
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Examples

Consider the action of G = GLn(C) by conjugation on the vector
space V = Mn(C) of n × n matrices. So g ∈ G sends m ∈ V to
gmg−1. Then C[V ]G is generated by the coefficients ci of the
characteristic polynomial det(m − λI ) = c0 + c1λ+ · · · cnλn.
Next let G be the group of permutations of the n variables in the
polynomial ring C[X1, . . . ,Xn]. Then
C[X1, . . . ,Xn]

G = C[p1, . . . , pn], where pi = X i
1 + · · ·X i

n.
Encouraged by an incorrect claim of Maurer Hilbert asked in his
fourteenth problem if this finite generation of invariants is a
general fact about actions of algebraic Lie groups on domains of
finite type over C.
A counterexample of Nagata (1959) showed this was too
optimistic.
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Nowadays

Nowadays we know more generally: Let G be a reductive algebraic
group over a noetherian ring k.
Modern version: If A is a f.g. k-algebra, G↷A, then AG is f.g.
Consequently, if M is noetherian A-module, G↷M, A⊗M → M
equivariant, then MG is noetherian AG -module.
Traditional case: A = C[V ], M = W ⊗ A, G↷V ,W linear,
dimV < ∞, dimW < ∞. Then MG is noetherian over the f.g.
AG . Observe that the algebra A is isomorphic to a polynomial ring
and that the action respects the grading. Note further that
M ⊆ C[V ⊕W#].
The traditional case is different: Finite generation of invariants
even holds when G is the additive subgroup Ga of SL2(C)

consisting of matrices of the form

(
1 x
0 1

)
, acting on a

polynomial algebra, respecting the grading. (Weitzenböck 1932 at
Amsterdam = Maurer 1899)
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How we got there

Hilbert 1890 Math. Annalen 36
Finite generation (the traditional case) for G = SLn(C), using the
Ω process of Cayley and noetherian arguments. Nonconstructive.
Hurwitz 1897 considers compact group K with Haar measure dk
and replaces the Ω process with the method of averaging. K↷V
linear. Get linear equivariant retract V → VK from

v 7→
∫
K kv dk∫
K dk

.

Weyl 1926 takes in a semi-simple complex Lie group G a maximal
compact subgroup K and notes that the retract is also
G -equivariant from V to V G .
One can then handle any base field of characteristic zero.
(faithfully flat base change).
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Characteristic p > 0

Let k be a field of characteristic p.
E. Noether 1926 considers a finite group G . If A is f.g. k-algebra,
G↷A, then AG is f.g. Also if M is noetherian A-module, G↷M,
A⊗M → M equivariant, then MG is noetherian AG -module.
Further A is integral over AG .
Mumford GIT 1965. Say reductive G acts on the affine variety
Spec(A). One wants to form the quotient Spec(A)/G , hopes it is
affine and in fact equal to Spec(AG ). In particular one wants again
that AG is f.g. But equivariant linear retracts are no longer
available.
Consider G↷M, dimM < ∞, f : M ↠ k. Then Mumford asks for
an n = pν so that the kernel of Snf has a complement.
Nagata has shown that a positive solution implies finite generation
of AG .

Wilberd van der Kallen Reductivity and finite generation



Power reductivity, a basic notion

Let G be a flat affine group scheme over k.

Definition (after Mumford, GIT book 1965)

The group G is power reductive over k if the following holds.

Property (Power reductivity)

Let φ : M ↠ k be a surjective map of G-modules. Then there is a
positive integer d such that the d-th symmetric power of φ is a
split surjection of G-modules

Sdϕ : SdM
↶
↠ Sdk.

In other words, one requires the kernel of Sdϕ to have a
complement in SdM.

Remark
If no such d exists, then (S∗k)G is no noetherian (S∗M)G module.
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Equivalent formulations

Definition
A morphism of k-algebras ϕ : S → R is power surjective if for every
element r of R there is a positive integer n such that the power rn

lies in the image of ϕ.

Proposition

Let G be a flat affine group scheme over k. The following are
equivalent

1. G is power reductive,

2. For every power surjective G-homomorphism of commutative
k-algebras f : A → B the map AG → BG is power surjective,

3. For every surjective G-homomorphism of commutative
k-algebras f : A ↠ B the ring BG is integral over the image
f (AG ) of AG .
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Example

Let k = Z, G = SL2 acting in its adjoint representation M with

basis X =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 1
0 0

)
. The

class of H in M/2M is invariant. One does not expect such a
modular invariant to lift to characteristic zero.
However, G is power reductive, and this tells that actually some
power of H mod 2M ∈ (S∗(M/2M))G must lift to (S∗M)G .
Indeed H2 + 4XY ∈ (S2M)G .
Note that it is essential that one allows nonfree modules when
forging this link between characteristics.
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Hilbert’s fourteenth problem

Theorem (Hilbert’s fourteenth problem)

Let k be a noetherian ring and let G be a flat affine group scheme
over k. Let A be a finitely generated commutative k-algebra on
which G acts through algebra automorphisms. If G is power
reductive, then the subring of invariants AG is a finitely generated
k-algebra.

Gordan 1868, Hilbert 1890, Hurwitz 1897, Weyl 1926, Emmy
Noether 1926, Nagata 1964, Mumford 1965, Serre 1968, Haboush
1975, Springer 1977, Seshadri 1977, Thomason 1987, Franjou–vdK
2010, Jarod Alper 2014.
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Nagata’s finite generation Theorem

Let k be a field.

Theorem (Nagata 1964)

Let G be power reductive. If G acts by algebra automorphisms on
the finitely generated k algebra A, then AG is finitely generated.

Remark
One may reduce to the case that A is graded, generated in degree
one, where G respects the grading.

Strategy

Suppose such a graded A is a counterexample. By noetherian
induction one may assume that for every nonzero graded G
invariant ideal I , the algebra is A/I no counterexample. Power
reductivity is then used to derive a contradiction.
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Traditional

If G → GLN is a homomorphism then it defines a representation of
G with underlying k module kN .
We call such a representation traditional.
On a traditional representation one has coordinates and thus
polynomial functions. If M ↠ k with M traditional, then one can
rephrase the question whether SnM ↠ Snk splits in terms of
polynomial functions on M. This is what geometric reductivity in
the 1977 theorem of Seshadri is about.
The 1977 theorem of Seshadri is a theorem and it uses the nice
term geometric reductivity. However, it distorts the problem posed
by Mumford and thus no longer matches the strategy of Nagata.
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Resolution

Suppose N ↠ k is given and one can find a traditional M and a
map M → N so that the composite map M → k is surjective.
Then splitting of SdM ↠ Sdk implies splitting of SdN ↠ Sdk.
Thus we encounter the resolution problem: If N is finitely
generated as a k module, can we find M ↠ N with M traditional?
[The problem of equivariant resolution by vector bundles.]
This reduces an easy problem to a hard one. The hard problem is
an interesting problem, but it belongs elsewhere.
The easy problem: Just answer the correct question.
The hard problem: Prove the resolution property [to reduce to the
traditional case treated by Seshadri].
If k is a Dedekind ring then Serre 1968 has established the
resolution property.
Thomason 1987 establishes the resolution property in several cases,
but under assumptions on the structure of G .
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Base change properties

Power reductivity has marvelous base change properties.

Proposition

Let k → S be a map of commutative rings.

1. If G is power reductive, then so is GS .

2. If k → S is faithfully flat and GS is power reductive, then so
is G .

3. If Gkm is power reductive for every maximal ideal m of k, then
G is power reductive.
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Geometric reductivity over a field

Proposition (Popov, Waterhouse)

Let k be a field and let G be an affine algebraic group over k.
The following are equivalent.

1. G is power reductive.

2. G is geometrically reductive.

3. The connected component G o
red of its reduced subgroup Gred

is reductive.
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Examples

Examples

• Recall that a finite flat group scheme G over a commutative ring
k is an affine group scheme over k whose coordinate ring is a
finitely generated projective k-module. They are power reductive.
• Reductive group schemes in the sense of SGA3 are also power
reductive. Key case: Chevalley group G over Z.
So the qualitative form [‘Hilbert’s fourteenth problem’] of the First
Fundamental Theorem holds for these examples.
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The group scheme GLN

The group scheme GLN over the base ring k associates to a
commutative k-algebra R the group GLN(R) of invertible N by N
matrices with entries in R.
- Its coordinate ring k[GLN ] is generated over k by the xij and
1/ det, where xij picks out the ij-th matrix entry. Every f ∈ k[GLN ]
defines a map GLN(R) → R, for every R.
- A GLN -module is a k-module M together with a functorial action
of GLN(R) on R ⊗k M for all commutative k-algebras R.
- G acts algebraically: For every v ∈ M there are fi ∈ k[GLN ] and
mi ∈ M such that g · v =

∑
i fi (g)mi for g ∈ GLN(k), and

similarly g · (1⊗ v) =
∑

i fi (g)(1⊗mi ) for g ∈ GLN(R).
(Finite sums. This is algebra, not analysis.)

Examples

• M = k[GLN ] with (g · f )(x) = f (g−1x).
• k = Z, M = HomZ(ZN ,ZN ⊕ Z/2Z)⊕ ∧3(ZN).

Wilberd van der Kallen Reductivity and finite generation



Additive group scheme Ga

The additive group scheme Ga over the base ring k represents the
functor that associates to a commutative k-algebra R its additive
group Ga(R) := (R,+).
Its behaviour is rather different than that of GLN .
- For instance, when k = C we may let Ga(C) act on the algebra
A = C[x2, x3, y , z ] such that t ∈ C sends x i to x i , y to y + tx3, z
to z + tx2. The ring of invariants AGa has as minimal generating
set over C the set {xα(y − xz)β}α∈{2,3},β≥0}. So AGa is not
finitely generated (Neena Gupta). ✗ (Modern).
Maurer 1899: Ga ↷ C[x1, . . . , xn] ✓(Traditional)
Nagata counterexample 1958: Ga

13 ↷ C[x1, . . . , x32] ✗

(Traditional)
Totaro 2008: Ga

3 ↷ F [x1, . . . , x18] ✗ (Traditional)
- The only irreducible representation of Ga over C is the trivial
representation C, so most representations of Ga are not completely
reducible.
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The End

THANK YOU!
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