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Invariants

P. Gordan 1868, J.f.d. reine u. angew. Math., 69 Beweis dass jede
Covariante und Invariante einer binaren Form eine ganze Function
mit numerischen Coefficienten einer endlichen Anzahl solcher
Formen ist.

In modern language: G = SL,(C) as algebraic group.

GAV =C?, C[V]=C[X,Y], Wy:=C[V]q4,

Wy = {aX? + bXY + cY?}, C[Ws] = CJa, b, ],

b? — 4ac € C[W»]® an invariant (= fixed point).

C[Wy]® is finitely generated (f.g.) as a C-algebra and

(Wy ® C[W,4])€ is a noetherian C[Wy4]®-module.
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Hilbert 1890

Let G = SL,(C) act algebraically on some finite dimensional
complex vector space V. Here ‘algebraically’ means the action is
‘given by polynomials’: For each v € V there is f, € V ®¢ C[G] so
that g - v = f,(g). Here C[G] denotes the coordinate ring of G, a
polynomial ring in the matrix entries of g € G. All actions will be
algebraic. (comodules).

Example: The above action of G = SL(C) on W,. Then Hilbert
shows nonconstructively (‘theology’) that C[V]C is finitely
generated as a C-algebra.
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Consider the action of G = GL,(C) by conjugation on the vector
space V = M,(C) of n x n matrices. So g € G sends m € V to
gmg~!. Then C[V]C is generated by the coefficients ¢; of the
characteristic polynomial det(m — A) = co + 1A + - - - cpA".
Next let G be the group of permutations of the n variables in the
polynomial ring C[X1, ..., X,]. Then

C[X1,. .-, Xn]® =Clp1, ..., pn], where p; = X{ +--- X[
Encouraged by an incorrect claim of Maurer Hilbert asked in his
fourteenth problem if this finite generation of invariants is a
general fact about actions of algebraic Lie groups on domains of
finite type over C.

A counterexample of Nagata (1959) showed this was too
optimistic.
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Nowadays we know more generally: Let G be a reductive algebraic
group over a noetherian ring k.

Modern version: If Ais a f.g. k-algebra, GAA, then A® is f.g.
Consequently, if M is noetherian A-module, GAM, AQ M — M
equivariant, then MG is noetherian A®-module.

Traditional case: A=C[V], M=W®®A, GV, W linear,
dim V < 0o, dim W < co. Then M© is noetherian over the f.g.
AC. Observe that the algebra A is isomorphic to a polynomial ring
and that the action respects the grading. Note further that

M C C[V & W#].

The traditional case is different: Finite generation of invariants
even holds when G is the additive subgroup G, of SL»(C)

1 x .
0o 1) acting on a
polynomial algebra, respecting the grading. (Weitzenbdck 1932 at
Amsterdam = Maurer 1899)

consisting of matrices of the form <
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How we got there

Hilbert 1890 Math. Annalen 36

Finite generation (the traditional case) for G = SL,(C), using the
Q process of Cayley and noetherian arguments. Nonconstructive.

Hurwitz 1897 considers compact group K with Haar measure dk

and replaces the Q process with the method of averaging. K~V
linear. Get linear equivariant retract V — V¥ from

[ kv dk
[ dk

Weyl 1926 takes in a semi-simple complex Lie group G a maximal
compact subgroup K and notes that the retract is also
G-equivariant from V to V©.

One can then handle any base field of characteristic zero.
(faithfully flat base change).

V =
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Characteristic p > 0

Let k be a field of characteristic p.

E. Noether 1926 considers a finite group G. If A is f.g. k-algebra,
GAA, then AC is f.g. Also if M is noetherian A-module, GM,
A® M — M equivariant, then ME is noetherian A®-module.
Further A is integral over A®.

Mumford GIT 1965. Say reductive G acts on the affine variety
Spec(A). One wants to form the quotient Spec(A)/G, hopes it is
affine and in fact equal to Spec(A®). In particular one wants again
that A® is f.g. But equivariant linear retracts are no longer
available.

Consider GAM, dimM < oo, f : M — k. Then Mumford asks for
an n = pY so that the kernel of S"f has a complement.

Nagata has shown that a positive solution implies finite generation
of AC.

Wilberd van der Kallen Reductivity and finite generation



Power reductivity, a basic notion

Let G be a flat affine group scheme over k.

Definition (after Mumford, GIT book 1965)

The group G is power reductive over k if the following holds.

Property (Power reductivity)

Let ¢ : M — k be a surjective map of G-modules. Then there is a
positive integer d such that the d-th symmetric power of ¢ is a
split surjection of G-modules

S9%:59M 5 sk

In other words, one requires the kernel of S%¢ to have a
complement in SYM.

Remark
If no such d exists, then (S*k) is no noetherian (S*M)¢ module.
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Equivalent formulations

Definition

A morphism of k-algebras ¢ : S — R is power surjective if for every
element r of R there is a positive integer n such that the power r”
lies in the image of ¢.

Proposition
Let G be a flat affine group scheme over k. The following are
equivalent
1. G is power reductive,
2. For every power surjective G-homomorphism of commutative
k-algebras f : A — B the map A® — B is power surjective,

3. For every surjective G-homomorphism of commutative
k-algebras f : A — B the ring B® is integral over the image
f(AC) of AC.

Wilberd van der Kallen Reductivity and finite generation



Let k = Z, G = 5L, acting in its adjoint representation M with

) 00 1 0 01
baS|sX—<1 0>,H—<0 _1>,Y—<0 0>.The

class of H in M/2M is invariant. One does not expect such a
modular invariant to lift to characteristic zero.

However, G is power reductive, and this tells that actually some
power of H mod 2M € (S*(M/2M))¢ must lift to (S*M)C.
Indeed H? 4 4XY € (S2M)°C.

Note that it is essential that one allows nonfree modules when
forging this link between characteristics.
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Hilbert's fourteenth problem

Theorem (Hilbert's fourteenth problem)

Let k be a noetherian ring and let G be a flat affine group scheme
over k. Let A be a finitely generated commutative k-algebra on
which G acts through algebra automorphisms. If G is power
reductive, then the subring of invariants A® is a finitely generated
k-algebra.

Gordan 1868, Hilbert 1890, Hurwitz 1897, Weyl 1926, Emmy
Noether 1926, Nagata 1964, Mumford 1965, Serre 1968, Haboush
1975, Springer 1977, Seshadri 1977, Thomason 1987, Franjou—vdK
2010, Jarod Alper 2014.
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Nagata's finite generation Theorem

Let k be a field.
Theorem (Nagata 1964)

Let G be power reductive. If G acts by algebra automorphisms on
the finitely generated k algebra A, then AC is finitely generated.

Remark
One may reduce to the case that A is graded, generated in degree
one, where G respects the grading.

Strategy

Suppose such a graded A is a counterexample. By noetherian
induction one may assume that for every nonzero graded G
invariant ideal /, the algebra is A/l no counterexample. Power
reductivity is then used to derive a contradiction.
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Traditional

If G — GLp is a homomorphism then it defines a representation of
G with underlying k module k/.

We call such a representation traditional.

On a traditional representation one has coordinates and thus
polynomial functions. If M — k with M traditional, then one can
rephrase the question whether S"M — 57k splits in terms of
polynomial functions on M. This is what geometric reductivity in
the 1977 theorem of Seshadri is about.

The 1977 theorem of Seshadri is a theorem and it uses the nice
term geometric reductivity. However, it distorts the problem posed
by Mumford and thus no longer matches the strategy of Nagata.
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Resolution

Suppose N — k is given and one can find a traditional M and a
map M — N so that the composite map M — k is surjective.
Then splitting of SYM — S% implies splitting of SIN — S%k.
Thus we encounter the resolution problem: If N is finitely
generated as a k module, can we find M — N with M traditional?
[The problem of equivariant resolution by vector bundles.]

This reduces an easy problem to a hard one. The hard problem is
an interesting problem, but it belongs elsewhere.

The easy problem: Just answer the correct question.

The hard problem: Prove the resolution property [to reduce to the
traditional case treated by Seshadri].

If k is a Dedekind ring then Serre 1968 has established the
resolution property.

Thomason 1987 establishes the resolution property in several cases,
but under assumptions on the structure of G.
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Base change properties

Power reductivity has marvelous base change properties.

Proposition

Let k — S be a map of commutative rings.

1.
2.

If G is power reductive, then so is Gs.

If k = S is faithfully flat and Gs is power reductive, then so
is G.

If Gy, is power reductive for every maximal ideal m of k, then
G is power reductive.
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Geometric reductivity over a field

Proposition (Popov, Waterhouse)
Let k be a field and let G be an affine algebraic group over k.
The following are equivalent.
1. G is power reductive.
2. G is geometrically reductive.
3. The connected component G2 ; of its reduced subgroup Gyeq
is reductive.
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Examples

e Recall that a finite flat group scheme G over a commutative ring
k is an affine group scheme over k whose coordinate ring is a
finitely generated projective k-module. They are power reductive.
e Reductive group schemes in the sense of SGA3 are also power
reductive. Key case: Chevalley group G over Z.

So the qualitative form ['Hilbert's fourteenth problem'] of the First
Fundamental Theorem holds for these examples.
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The group scheme GLy

The group scheme GLy over the base ring k associates to a
commutative k-algebra R the group GLy(R) of invertible N by N
matrices with entries in R.

- Its coordinate ring k[GLy] is generated over k by the x;; and

1/ det, where x;; picks out the ij-th matrix entry. Every f € k[GLy]
defines a map GLy(R) — R, for every R.

- A GLy-module is a k-module M together with a functorial action
of GLy(R) on R ®k M for all commutative k-algebras R.

- G acts algebraically. For every v € M there are f; € k[GLy] and
m; € M such that g - v =) . fi(g)m; for g € GLy(k), and
similarly g - (1 ® v) =, fi(g)(1 ® m;) for g € GLn(R).

(Finite sums. This is algebra, not analysis.)

Examples
e M = k[GLy] with (g - f)(x) = f(g71x).
e k=7, M =Homg(ZN,ZN & 7./27) ® A3(ZN).
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Additive group scheme G,

The additive group scheme G, over the base ring k represents the
functor that associates to a commutative k-algebra R its additive
group G,(R) := (R, +).

Its behaviour is rather different than that of GLy.

- For instance, when k = C we may let G,(C) act on the algebra
A = C[x?,x3,y, z] such that t € C sends x' to x/, y to y + tx3, z
to z + tx?. The ring of invariants A% has as minimal generating
set over C the set {x%(y — xz)ﬂ}a€{273}7520}. So A% is not
finitely generated (Neena Gupta). X (Modern).

Maurer 1899: G, ~ Clxy, ..., x,] v'(Traditional)

Nagata counterexample 1958: G,*3 ~ Clx,...,x32] X
(Traditional)

Totaro 2008: G,*> ~ F[xi,...,xig] X (Traditional)

- The only irreducible representation of G, over C is the trivial
representation C, so most representations of G, are not completely
reducible.
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The End

THANK YOU!
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