

Two triangular matrices

Wilberd van der Kallen

Universiteit Utrecht

September 2025

The two matrices

We put

$$\mathcal{P}_v = \mathcal{L}(P(-e_v)) \text{ and } \mathcal{Q}_v = \mathcal{L}(Q(e_v)).$$

We are interested in $\langle [\mathcal{P}_v], [\mathcal{Q}_w] \rangle$, for semi-orthogonality.

The two matrices

We put

$$\mathcal{P}_v = \mathcal{L}(P(-e_v)) \text{ and } \mathcal{Q}_v = \mathcal{L}(Q(e_v)).$$

We are interested in $\langle [\mathcal{P}_v], [\mathcal{Q}_w] \rangle$, for semi-orthogonality.

Say $k = \mathbb{C}$. Write $\alpha_{vw} = \langle [\mathcal{O}_{X_w^+}], [\mathcal{Q}_v] \rangle$. So

$$[\mathcal{Q}_v] = \sum \alpha_{vw} [\mathcal{O}_{X^w}(-\partial X^w)]$$

Write $\beta_{vw} = \langle [\mathcal{O}_{X^w}(-\partial X^w)], [\mathcal{P}_v] \rangle$. So

$$[\mathcal{P}_v] = \sum \beta_{vw} [\mathcal{O}_{X_w^+}]$$

Our main result concerning these auxiliary matrices is that, with a suitable reordering of rows and columns, the matrices (α_{vw}) and (β_{vw}) are upper triangular and invertible. And that we know enough entries to compute the needed $\langle [\mathcal{P}_v], [\mathcal{Q}_w] \rangle$.

Rewriting

Let us start with (β_{vw}) . Write $\langle [\mathcal{O}_C], [\mathcal{F}] \rangle$ as $\chi(C, \mathcal{F})$ when C is a T -invariant closed subset of $\mathcal{B} = G/B$ and \mathcal{F} is a T -equivariant coherent sheaf.

Rewriting

Let us start with (β_{vw}) . Write $\langle [\mathcal{O}_C], [\mathcal{F}] \rangle$ as $\chi(C, \mathcal{F})$ when C is a T -invariant closed subset of $\mathcal{B} = G/B$ and \mathcal{F} is a T -equivariant coherent sheaf.

So $(\beta_{vw}) = \chi(X^w, \mathcal{L}(P(-e_v))) - \chi(\partial X^w, \mathcal{L}(P(-e_v))) = \chi(\overline{Bww_0B}/B, \mathcal{L}(\Gamma(X_y, \mathcal{L}_\lambda))) - \chi(\overline{\partial Bww_0B}/B, \mathcal{L}(\Gamma(X_y, \mathcal{L}_\lambda))),$ with λ dominant, $y\lambda = -e_v.$

Rewriting

Let us start with (β_{vw}) . Write $\langle [\mathcal{O}_C], [\mathcal{F}] \rangle$ as $\chi(C, \mathcal{F})$ when C is a T -invariant closed subset of $\mathcal{B} = G/B$ and \mathcal{F} is a T -equivariant coherent sheaf.

So $\underline{(\beta_{vw})} = \chi(X^w, \mathcal{L}(P(-e_v))) - \chi(\partial X^w, \mathcal{L}(P(-e_v))) = \chi(\overline{Bww_0B}/B, \mathcal{L}(\Gamma(X_y, \mathcal{L}_\lambda))) - \chi(\overline{\partial Bww_0B}/B, \mathcal{L}(\Gamma(X_y, \mathcal{L}_\lambda))),$ with λ dominant, $y\lambda = -e_v.$

We get to study $\chi(S_Y/B, \mathcal{L}(\Gamma(X_z, \mathcal{L}_\lambda)))$ when λ is dominant, $z \in W$ and $S_Y := \bigcup_{w \in Y} \overline{BwB}$ for some subset Y of $W.$

We claim the *contraction property*

$$\chi(S_Y/B, \mathcal{L}(\Gamma(X_z, \mathcal{L}_\lambda))) = \chi(S_Y \overline{BzB}/B, \mathcal{L}_\lambda).$$

Rewriting

Let us start with (β_{vw}) . Write $\langle [\mathcal{O}_C], [\mathcal{F}] \rangle$ as $\chi(C, \mathcal{F})$ when C is a T -invariant closed subset of $\mathcal{B} = G/B$ and \mathcal{F} is a T -equivariant coherent sheaf.

So $(\beta_{vw}) = \chi(X^w, \mathcal{L}(P(-e_v))) - \chi(\partial X^w, \mathcal{L}(P(-e_v))) = \chi(\overline{Bwv_0B}/B, \mathcal{L}(\Gamma(X_y, \mathcal{L}_\lambda))) - \chi(\overline{\partial Bwv_0B}/B, \mathcal{L}(\Gamma(X_y, \mathcal{L}_\lambda))),$ with λ dominant, $y\lambda = -e_v.$

We get to study $\chi(S_Y/B, \mathcal{L}(\Gamma(X_z, \mathcal{L}_\lambda)))$ when λ is dominant, $z \in W$ and $S_Y := \bigcup_{w \in Y} \overline{BwB}$ for some subset Y of $W.$

We claim the *contraction property*

$$\chi(S_Y/B, \mathcal{L}(\Gamma(X_z, \mathcal{L}_\lambda))) = \chi(S_Y \overline{BzB}/B, \mathcal{L}_\lambda).$$

By Ramanathan $\mathcal{O}_{G/B} \xrightarrow{\cdot} F_* \mathcal{O}_{G/B}$ the intersections $(S_Y/B) \cap (S_V/B)$ are reduced. [Invent. Math. 1985]

Therefore we have the Mayer-Vietoris relation

$$[\mathcal{O}_{S_Y/B}] + [\mathcal{O}_{S_V/B}] = [\mathcal{O}_{S_Y \cup S_V/B}] + [\mathcal{O}_{S_Y \cap S_V/B}].$$

Proof of contraction property

The contraction property is well-known when Y is a singleton ([Polo 1989, Prop. 1.4.2], Demazure operators, Bott-Samelson-Demazure-Hansen resolution, ...). So we can argue by induction along the poset of the S_Y provided that both sides in the contraction claim satisfy a Mayer-Vietoris law.

Proof of contraction property

The contraction property is well-known when Y is a singleton ([Polo 1989, Prop. 1.4.2], Demazure operators, Bott-Samelson-Demazure-Hansen resolution, ...). So we can argue by induction along the poset of the S_Y provided that both sides in the contraction claim satisfy a Mayer-Vietoris law.

We need the *distributive laws*

$$(S_Y \cup S_V)\overline{BzB} = (S_Y\overline{BzB}) \cup (S_V\overline{BzB}).$$

$$(S_Y \cap S_V)\overline{BzB} = (S_Y\overline{BzB}) \cap (S_V\overline{BzB}).$$

The non-obvious inclusion is

$$(S_Y \cap S_V)\overline{BzB} \supset (S_Y\overline{BzB}) \cap (S_V\overline{BzB}).$$

Proof of contraction property

The contraction property is well-known when Y is a singleton ([Polo 1989, Prop. 1.4.2], Demazure operators, Bott-Samelson-Demazure-Hansen resolution, ...). So we can argue by induction along the poset of the S_Y provided that both sides in the contraction claim satisfy a Mayer-Vietoris law.

We need the *distributive laws*

$$(S_Y \cup S_V)\overline{BzB} = (S_Y\overline{BzB}) \cup (S_V\overline{BzB}).$$

$$(S_Y \cap S_V)\overline{BzB} = (S_Y\overline{BzB}) \cap (S_V\overline{BzB}).$$

The non-obvious inclusion is

$$(S_Y \cap S_V)\overline{BzB} \supset (S_Y\overline{BzB}) \cap (S_V\overline{BzB}).$$

We may write z in reduced form, $z = s_1 \cdots s_n$. Then

$\overline{BzB} = \overline{Bs_1B} \cdots \overline{Bs_nB}$. We may assume z is simple, say $z = s$.

Proof of contraction property

The contraction property is well-known when Y is a singleton ([Polo 1989, Prop. 1.4.2], Demazure operators, Bott-Samelson-Demazure-Hansen resolution, ...). So we can argue by induction along the poset of the S_Y provided that both sides in the contraction claim satisfy a Mayer-Vietoris law.

We need the *distributive laws*

$$(S_Y \cup S_V)\overline{BzB} = (S_Y\overline{BzB}) \cup (S_V\overline{BzB}).$$

$$(S_Y \cap S_V)\overline{BzB} = (S_Y\overline{BzB}) \cap (S_V\overline{BzB}).$$

The non-obvious inclusion is

$$(S_Y \cap S_V)\overline{BzB} \supset (S_Y\overline{BzB}) \cap (S_V\overline{BzB}).$$

We may write z in reduced form, $z = s_1 \cdots s_n$. Then

$\overline{BzB} = \overline{Bs_1B} \cdots \overline{Bs_nB}$. We may assume z is simple, say $z = s$.

So let $\overline{BuB} \subset (S_Y\overline{BsB}) \cap (S_V\overline{BsB})$. Then $u \leq y * s$ for some $y \in Y$ and $u \leq x * s$ for some $x \in V$.

Let u' be the unique minimal coset representative of $u < s >$.

Then $\overline{BuB} \subset \overline{BuB} \overline{BsB} = \overline{Bu'B} \overline{BsB}$ with $\overline{Bu'B} \subset (S_Y \cap S_V)$.

Rappels: Minimal coset representatives

Let λ be a dominant weight. Let I be the set of simple roots perpendicular to λ . Then the stabilizer in W of λ is the subgroup W_I generated by the s_α with $\alpha \in I$. One calls W_I a parabolic subgroup of W .

Rappels: Minimal coset representatives

Let λ be a dominant weight. Let I be the set of simple roots perpendicular to λ . Then the stabilizer in W of λ is the subgroup W_I generated by the s_α with $\alpha \in I$. One calls W_I a parabolic subgroup of W .

Every coset wW_I has a unique shortest element, known as the minimal coset representative. An element w is the minimal coset representative of wW_I if and only if $w\alpha > 0$ for $\alpha \in I$.

One denotes by W' the set of minimal coset representatives.

$(u, v) \mapsto uv$ is a bijection $W' \times W_I \rightarrow W$, with

$\ell(uv) = \ell(u) + \ell(v)$, and $W \rightarrow W'$ respects Bruhat order.

Extremal weights

Thanks to the contraction property we may view (β_{vw}) as
 $\chi(\overline{Bww_0B}X_y, \mathcal{L}_\lambda)) - \chi(\partial\overline{Bww_0B}X_y, \mathcal{L}_\lambda)),$
with λ dominant, $y\lambda = -e_v$.

Extremal weights

Thanks to the contraction property we may view (β_{vw}) as
 $\chi(\overline{Bww_0B}X_y, \mathcal{L}_\lambda)) - \chi(\partial\overline{Bww_0B}X_y, \mathcal{L}_\lambda)),$
with λ dominant, $y\lambda = -e_v$.

Ramanan–Ramanathan tells that the $H^i(S_V/B, \mathcal{L}_\lambda)$ vanish for $i > 0$ and that $\Gamma(G/B, \mathcal{L}_\lambda) \rightarrow \Gamma(S_V/B, \mathcal{L}_\lambda)$ is surjective.
So $\Gamma(\overline{Bww_0B}X_y, \mathcal{L}_\lambda))$ maps onto $\Gamma(\partial\overline{Bww_0B}X_y, \mathcal{L}_\lambda))$.

Extremal weights

Thanks to the contraction property we may view (β_{vw}) as
 $\chi(\overline{Bww_0B}X_y, \mathcal{L}_\lambda)) - \chi(\partial\overline{Bww_0B}X_y, \mathcal{L}_\lambda)),$
with λ dominant, $y\lambda = -e_v$.

Ramanan–Ramanathan tells that the $H^i(S_V/B, \mathcal{L}_\lambda)$ vanish for $i > 0$ and that $\Gamma(G/B, \mathcal{L}_\lambda) \rightarrow \Gamma(S_V/B, \mathcal{L}_\lambda)$ is surjective.

So $\Gamma(\overline{Bww_0B}X_y, \mathcal{L}_\lambda))$ maps onto $\Gamma(\partial\overline{Bww_0B}X_y, \mathcal{L}_\lambda))$.

We also know that $\Gamma(S_V/B, \mathcal{L}_\lambda)$ has a filtration by $Q(\mu)$ with μ running over the extremal weights of $\Gamma(S_V/B, \mathcal{L}_\lambda)$.

The extremal weights that occur have multiplicity one.

They are the $x\lambda$ with $x \leq u$ for some $u \in V$.

Extremal weights

Thanks to the contraction property we may view (β_{vw}) as
 $\chi(\overline{Bww_0B}X_y, \mathcal{L}_\lambda)) - \chi(\partial\overline{Bww_0B}X_y, \mathcal{L}_\lambda)),$
with λ dominant, $y\lambda = -e_v$.

Ramanan–Ramanathan tells that the $H^i(S_V/B, \mathcal{L}_\lambda)$ vanish for $i > 0$ and that $\Gamma(G/B, \mathcal{L}_\lambda) \rightarrow \Gamma(S_V/B, \mathcal{L}_\lambda)$ is surjective.

So $\Gamma(\overline{Bww_0B}X_y, \mathcal{L}_\lambda))$ maps onto $\Gamma(\partial\overline{Bww_0B}X_y, \mathcal{L}_\lambda))$.

We also know that $\Gamma(S_V/B, \mathcal{L}_\lambda)$ has a filtration by $Q(\mu)$ with μ running over the extremal weights of $\Gamma(S_V/B, \mathcal{L}_\lambda)$.

The extremal weights that occur have multiplicity one.

They are the $x\lambda$ with $x \leq u$ for some $u \in V$.

To determine β_{vw} it suffices to know the characters of the $Q(\mu)$ that occur in $\Gamma(\overline{Bww_0B}X_y, \mathcal{L}_\lambda)$ but not in $\Gamma(\partial\overline{Bww_0B}X_y, \mathcal{L}_\lambda)$.

Zeroes in β matrix on one side of the 'diagonal'

So to get β_{vw} , we need to find the complement of $\{x\lambda \mid x \leq z * y \text{ for some } z < ww_0\}$ in $\{x\lambda \mid x \leq (ww_0) * y\}$.
Here $\lambda = -w_0 v e_v$, $y = v^{-1} w_0$.

Zeroes in β matrix on one side of the 'diagonal'

So to get β_{vw} , we need to find the complement of $\{x\lambda \mid x \leq z * y \text{ for some } z < ww_0\}$ in $\{x\lambda \mid x \leq (ww_0) * y\}$.

Here $\lambda = -w_0 v e_v$, $y = v^{-1} w_0$.

Say $vw_0 \not\leq w$. Then $\ell((ww_0) * y)$ is not $\ell(ww_0) + \ell(y)$, because otherwise there would be $u \in W$ with

$\ell(u) + \ell(ww_0) + \ell(y) = \ell(uww_0y) = \ell(w_0)$, so
 $u * (ww_0) = w_0 y^{-1} = v$, so $v \geq ww_0$, $vw_0 \leq w$.

Zeroes in β matrix on one side of the 'diagonal'

So to get β_{vw} , we need to find the complement of $\{x\lambda \mid x \leq z * y \text{ for some } z < ww_0\}$ in $\{x\lambda \mid x \leq (ww_0) * y\}$.

Here $\lambda = -w_0 v e_v$, $y = v^{-1} w_0$.

Say $vw_0 \not\leq w$. Then $\ell((ww_0) * y)$ is not $\ell(ww_0) + \ell(y)$, because otherwise there would be $u \in W$ with

$$\ell(u) + \ell(ww_0) + \ell(y) = \ell(uww_0 y) = \ell(w_0), \text{ so}$$

$$u * (ww_0) = w_0 y^{-1} = v, \text{ so } v \geq ww_0, \quad vw_0 \leq w.$$

As $\ell((ww_0) * y)$ is not $\ell(ww_0) + \ell(y)$, there is a $z < ww_0$ for which $z * y$ and $(ww_0) * y$ are equal. Therefore β_{vw} vanishes if $vw_0 \not\leq w$ and the β matrix is triangular after rearranging rows and columns:

$$\beta_{vw_0, w} = 0 \text{ if } vw_0 \succ w.$$

Zeroes in β matrix on one side of the ‘diagonal’

So to get β_{vw} , we need to find the complement of $\{x\lambda \mid x \leq z * y \text{ for some } z < ww_0\}$ in $\{x\lambda \mid x \leq (ww_0) * y\}$.

Here $\lambda = -w_0 v e_v$, $y = v^{-1} w_0$.

Say $vw_0 \not\leq w$. Then $\ell((ww_0) * y)$ is not $\ell(ww_0) + \ell(y)$, because otherwise there would be $u \in W$ with

$$\ell(u) + \ell(ww_0) + \ell(y) = \ell(uww_0 y) = \ell(w_0), \text{ so}$$

$$u * (ww_0) = w_0 y^{-1} = v, \text{ so } v \geq ww_0, \quad vw_0 \leq w.$$

As $\ell((ww_0) * y)$ is not $\ell(ww_0) + \ell(y)$, there is a $z < ww_0$ for which $z * y$ and $(ww_0) * y$ are equal. Therefore β_{vw} vanishes if $vw_0 \not\leq w$ and the β matrix is triangular after rearranging rows and columns:

$$\beta_{vw_0, w} = 0 \text{ if } vw_0 \succ w.$$

On the ‘diagonal’ we expect invertible elements, because we are comparing two bases of $K_T(G/B)$. (That the classes of the $[\mathcal{P}_v]$ generate $K_T(G/B)$ is known from a different story.)

When $vw_0 = w$

Let $vw_0 = w$, $\lambda = -w_0 v e_v$, $y = v^{-1} w_0$. Again we need to find the complement of $\{x\lambda \mid x \leq z \star y \text{ for some } z < ww_0\}$ in $\{x\lambda \mid x \leq ww_0 \star y\}$.

We claim that this complement is the singleton $\{-v e_v\}$.

When $vw_0 = w$

Let $vw_0 = w$, $\lambda = -w_0 ve_v$, $y = v^{-1}w_0$. Again we need to find the complement of $\{x\lambda \mid x \leq z \star y \text{ for some } z < ww_0\}$ in $\{x\lambda \mid x \leq ww_0 \star y\}$.

We claim that this complement is the singleton $\{-ve_v\}$.

Indeed $ww_0 \leq ww_0 \star y$ and $ww_0\lambda = vw_0(-w_0 ve_v) = -ve_v$.

When $vw_0 = w$

Let $vw_0 = w$, $\lambda = -w_0 ve_v$, $y = v^{-1}w_0$. Again we need to find the complement of $\{x\lambda \mid x \leq z \star y \text{ for some } z < ww_0\}$ in $\{x\lambda \mid x \leq ww_0 \star y\}$.

We claim that this complement is the singleton $\{-ve_v\}$.

Indeed $ww_0 \leq ww_0 \star y$ and $ww_0\lambda = vw_0(-w_0 ve_v) = -ve_v$.

Now suppose $-ve_v$ is in $\{x\lambda \mid x \leq z \star y \text{ for some } z < v\}$. We may always take z smaller so that $z \star y = zy$.

Then $-ve_v = x(-w_0 ve_v)$, so xw_0 lies in the parabolic subgroup W_I of elements that fix ve_v . And $xw_0 \geq zyw_0 = zv^{-1}$. But v^{-1} is a minimal coset representative and z^{-1} would be smaller. This is absurd. So the complement contains $-ve_v$.

When $vw_0 = w$

Let $vw_0 = w$, $\lambda = -w_0 ve_v$, $y = v^{-1}w_0$. Again we need to find the complement of $\{x\lambda \mid x \leq z \star y \text{ for some } z < ww_0\}$ in $\{x\lambda \mid x \leq ww_0 \star y\}$.

We claim that this complement is the singleton $\{-ve_v\}$.

Indeed $ww_0 \leq ww_0 \star y$ and $ww_0\lambda = vw_0(-w_0 ve_v) = -ve_v$.

Now suppose $-ve_v$ is in $\{x\lambda \mid x \leq z \star y \text{ for some } z < v\}$. We may always take z smaller so that $z \star y = zy$.

Then $-ve_v = x(-w_0 ve_v)$, so xw_0 lies in the parabolic subgroup W_I of elements that fix ve_v . And $xw_0 \geq zyw_0 = zv^{-1}$. But v^{-1} is a minimal coset representative and z^{-1} would be smaller. This is absurd. So the complement contains $-ve_v$.

There cannot be more in the complement, as that would spoil the invertibility of β_{v, vw_0} in $R(T)$.

Sanity check

But let us look anyway at $-uve_v$ with $-uve_v \neq -ve_v$. We may take u minimal. As $\ell(u) \geq 1$, there is a simple refection $s = s_\alpha$ with $\ell(us) = \ell(u) - 1$ and $sve_v \neq ve_v$. From the definition of e_v we see that $v^{-1}\alpha < 0$, so $v^{-1}s < v^{-1}$. Put $z = sv$, $x = uw_0$. Then $z < v = ww_0$, $z \star y = (sv) \star v^{-1}w_0 = sw_0$, $-uve_v = x\lambda$, $x = uw_0 \leq sw_0 = z \star y$. So $-uve_v$ lies in $\{x\lambda \mid x \leq z \star y \text{ for some } z < ww_0\}$.

A 'diagonal' element

We are still looking at β_{v, vw_0} .

If $vw_0 = w$, we have found that only the character of $Q(-ve_v)$ remains, but we expected an invertible element, because we are comparing two bases of $K_T(G/B)$.

Indeed $Q(-ve_v)$ is one dimensional.

A 'diagonal' element

We are still looking at β_{v, vw_0} .

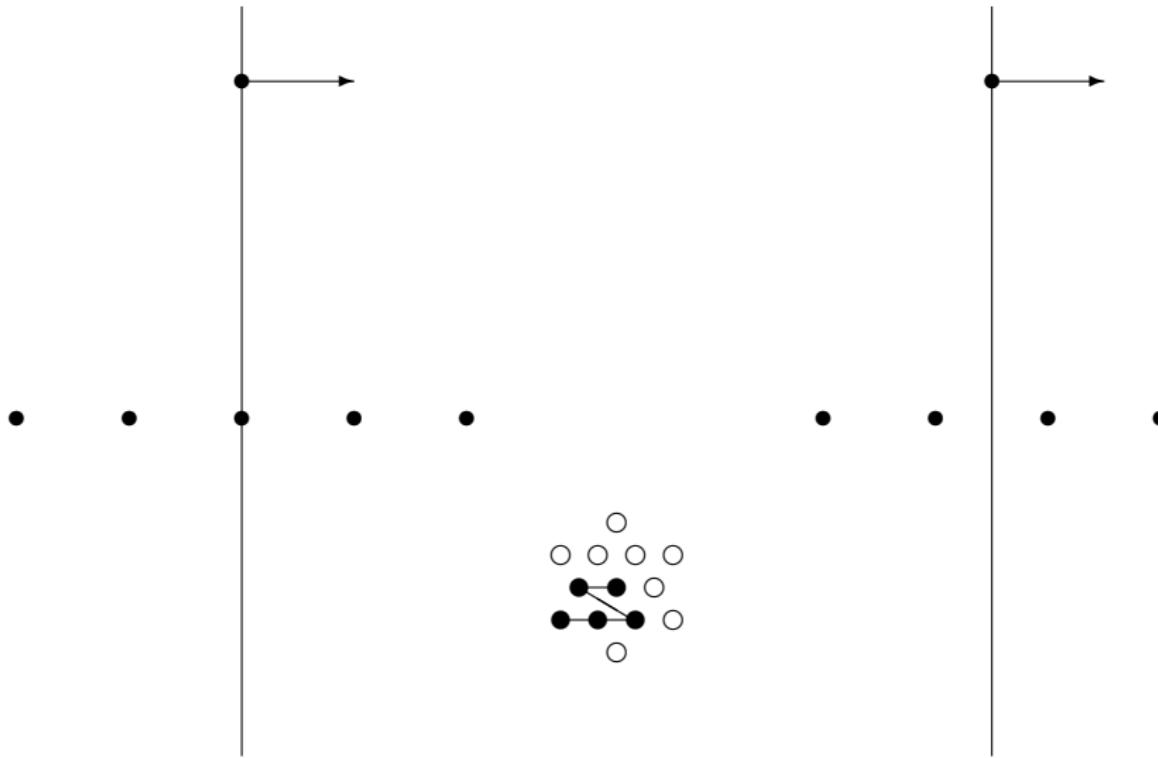
If $vw_0 = w$, we have found that only the character of $Q(-ve_v)$ remains, but we expected an invertible element, because we are comparing two bases of $K_T(G/B)$.

Indeed $Q(-ve_v)$ is one dimensional.

Proof: We may assume to be working over \mathbb{C} . Now $Q(-ve_v)$ has B -socle of weight $-ve_v$ and all other weights are strictly smaller. If there is another weight, then there also must be another weight of the form $-ve_v + n\alpha$ with α simple. That is because we can get from any weight of $Q(-ve_v)$ to $-ve_v$ by acting with elements $X_{-\beta} \in \mathfrak{b}$, where β is a simple root. But $-ve_v$ is too close to the s_α reflection hyperplane. See picture.

This ends the discussion of the β matrix.

The reflection hyperplane



The α matrix

When looking at α_{vw} we must work with B^+ .

The α matrix

When looking at α_{vw} we must work with B^+ .

Now at x_+ the fiber of \mathcal{Q}_v is $Q^+(w_0 e_v)$, so

$\mathcal{Q}_v = \ker : \mathcal{L}^+(\Gamma(X_z^+, \mathcal{L}_\lambda^+)) \rightarrow \mathcal{L}^+(\Gamma(\partial X_z^+, \mathcal{L}_\lambda^+))$ with λ *anti-dominant* and $z\lambda = w_0 e_v$.

The α matrix

When looking at α_{vw} we must work with B^+ .

Now at x_+ the fiber of \mathcal{Q}_v is $Q^+(w_0 e_v)$, so

$\mathcal{Q}_v = \ker : \mathcal{L}^+(\Gamma(X_z^+, \mathcal{L}_\lambda^+)) \rightarrow \mathcal{L}^+(\Gamma(\partial X_z^+, \mathcal{L}_\lambda^+))$ with λ *anti-dominant* and $z\lambda = w_0 e_v$.

So we want to know the difference between

$\langle [\mathcal{O}_{X_w^+}], [\mathcal{L}^+(\Gamma(X_z^+, \mathcal{L}_\lambda^+))] \rangle$ and $\langle [\mathcal{O}_{X_w^+}], [\mathcal{L}^+(\Gamma(\partial X_z^+, \mathcal{L}_\lambda^+))] \rangle$

The α matrix

When looking at α_{vw} we must work with B^+ .

Now at x_+ the fiber of \mathcal{Q}_v is $Q^+(w_0 e_v)$, so

$\mathcal{Q}_v = \ker : \mathcal{L}^+(\Gamma(X_z^+, \mathcal{L}_\lambda^+)) \rightarrow \mathcal{L}^+(\Gamma(\partial X_z^+, \mathcal{L}_\lambda^+))$ with λ *anti-dominant* and $z\lambda = w_0 e_v$.

So we want to know the difference between

$\langle [\mathcal{O}_{X_w^+}], [\mathcal{L}^+(\Gamma(X_z^+, \mathcal{L}_\lambda^+))] \rangle$ and $\langle [\mathcal{O}_{X_w^+}], [\mathcal{L}^+(\Gamma(\partial X_z^+, \mathcal{L}_\lambda^+))] \rangle$

We get to study $\langle [\mathcal{O}_{X_z^+}], [\mathcal{L}^+(\Gamma(S_Y^+ / B^+, \mathcal{L}_\lambda^+))] \rangle$

when $S_Y^+ := \bigcup_{w \in Y} \overline{B^+ w B^+}$ for some subset Y of W .

We claim the *contraction property*

$$\langle [\mathcal{O}_{X_z^+}], [\mathcal{L}^+(\Gamma(S_Y^+ / B^+, \mathcal{L}_\lambda^+))] \rangle = \langle [\mathcal{O}_{\overline{B^+ z B^+} / B^+}], [\mathcal{L}_\lambda^+] \rangle$$

Proof of contraction property

Actually the contraction property for this situation has been known for a long time. But let us argue as above.

Proof of contraction property

Actually the contraction property for this situation has been known for a long time. But let us argue as above.

One has the *distributive laws*

$$\overline{B^+ z B^+}(S_Y^+ \cup S_V^+) = (\overline{B^+ z B^+} S_Y^+) \cup (\overline{B^+ z B^+} S_V^+).$$

$$\overline{B^+ z B^+}(S_Y^+ \cap S_V^+) = (\overline{B^+ z B^+} S_Y^+) \cap (\overline{B^+ z B^+} S_V^+).$$

The non-obvious inclusion is

$$\overline{B^+ z B^+}(S_Y^+ \cap S_V^+) \supset (\overline{B^+ z B^+} S_Y^+) \cap (\overline{B^+ z B^+} S_V^+).$$

Apply the map $g \mapsto g^{-1}$.

Zeroes in α matrix on one side of the ‘diagonal’

To get α_{vw} , we need to find the complement of $\{x\lambda \mid x \leq w \star y \text{ for some } y < z\}$ in $\{x\lambda \mid x \leq w \star z\}$, with λ anti-dominant and $z\lambda = w_0 e_v$.
Here $\lambda = w_0 v e_v$, $z = w_0 v^{-1} w_0$.

Zeroes in α matrix on one side of the ‘diagonal’

To get α_{vw} , we need to find the complement of $\{x\lambda \mid x \leq w * y \text{ for some } y < z\}$ in $\{x\lambda \mid x \leq w * z\}$, with λ anti-dominant and $z\lambda = w_0 e_v$.

Here $\lambda = w_0 v e_v$, $z = w_0 v^{-1} w_0$.

If $w \not\leq vw_0$, then $\ell(w * z)$ is not $\ell(w) + \ell(z)$, because otherwise there would be $u \in W$ with $u * w * z = uwz = w_0$, $\ell(u) + \ell(w) + \ell(z) = \ell(w_0)$, $uw = vw_0$, $w \leq vw_0$.

Zeroes in α matrix on one side of the ‘diagonal’

To get α_{vw} , we need to find the complement of $\{x\lambda \mid x \leq w * y \text{ for some } y < z\}$ in $\{x\lambda \mid x \leq w * z\}$, with λ anti-dominant and $z\lambda = w_0 e_v$.

Here $\lambda = w_0 v e_v$, $z = w_0 v^{-1} w_0$.

If $w \not\leq vw_0$, then $\ell(w * z)$ is not $\ell(w) + \ell(z)$, because otherwise there would be $u \in W$ with $u * w * z = uwz = w_0$,

$\ell(u) + \ell(w) + \ell(z) = \ell(w_0)$, $uw = vw_0$, $w \leq vw_0$.

When $\ell(w * z)$ is not $\ell(w) + \ell(z)$, there is a $y < z$ so that $w * y$ and $w * z$ are equal. Therefore α_{vw} vanishes if $w \not\leq vw_0$ and the α matrix is triangular after rearranging rows and columns.

When $w = vw_0$

Now let $w = vw_0$. We claim that the complement of $\{x\lambda \mid x \leq w \star y \text{ for some } y < z\}$ in $\{x\lambda \mid x \leq w \star z\}$ is the singleton $\{ve_v\}$.

When $w = vw_0$

Now let $w = vw_0$. We claim that the complement of $\{x\lambda \mid x \leq w \star y \text{ for some } y < z\}$ in $\{x\lambda \mid x \leq w \star z\}$ is the singleton $\{ve_v\}$.

Observe that $Q^+(ve_v)$ is one dimensional. We have $\lambda = w_0 ve_v$, $z = w_0 v^{-1} w_0$, $wz = vw_0 w_0 v^{-1} w_0 = w_0$, so if one takes $x = w_0$, then $x \leq w \star z$ and $x\lambda = ve_v$.

When $w = vw_0$

Now let $w = vw_0$. We claim that the complement of $\{x\lambda \mid x \leq w \star y \text{ for some } y < z\}$ in $\{x\lambda \mid x \leq w \star z\}$ is the singleton $\{ve_v\}$.

Observe that $Q^+(ve_v)$ is one dimensional. We have $\lambda = w_0 ve_v$, $z = w_0 v^{-1} w_0$, $wz = vw_0 w_0 v^{-1} w_0 = w_0$, so if one takes $x = w_0$, then $x \leq w \star z$ and $x\lambda = ve_v$.

Now suppose there are $y < z$ and $x \leq w \star y$ with $x\lambda = ve_v$. Replacing y by a lesser element we may assume

$w \star y = wy = vw_0 y$. Then xw_0 fixes ve_v , $x \leq vw_0 y$, so $xw_0 \geq vw_0 yw_0$. As xw_0 lies in the parabolic subgroup W_I of elements fixing ve_v , we must have $vw_0 yw_0 \in W_I$. And $y < z$, so $w_0 yw_0 < w_0 zw_0 = v^{-1}$. Thus $w_0 yw_0$ is shorter than the minimal coset representative v^{-1} . This is absurd.

So the complement contains at least ve_v . Again there cannot be more, as α_{v, vw_0} must be invertible.

Sanity check

But let us consider a u with $u \leq w \star z$ and $uve_v \neq ve_v$. We want to show that uve_v is in the subset $\{x\lambda \mid x \leq w \star y \text{ for some } y < z\}$. We may replace u with the minimal coset representative in its coset of the stabilizer W_1 of ve_v . As $\ell(u) \geq 1$ there is a simple refection $s = s_\alpha$ with $\ell(us) = \ell(u) - 1$ and $sve_v \neq ve_v$. From the definition of e_v we see that $v^{-1}\alpha < 0$, so $v^{-1}s < v^{-1}$.

Recall that $\lambda = w_0ve_v$, $z = w_0v^{-1}w_0$, $w = vw_0$.

Put $y = w_0v^{-1}sw_0$, $x = uw_0$. Then $y < z$,

$$w_0(w \star y)w_0 = w_0((vw_0) \star (w_0v^{-1}sw_0))w_0 = (w_0v) \star (v^{-1}s) = w_0s.$$

And $x \leq sw_0 = w \star y$, $x\lambda = uve_v$. Done.

The End

THANK YOU!