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The two matrices

We put
Py = L(P(~e,)) and Q, = L(Q(e,)).

We are interested in ([P,], [Qw]), for semi-orthogonality.
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The two matrices

We put
Py = L(P(~e,)) and Q, = L(Q(e,)).

We are interested in ([P,], [Qw]), for semi-orthogonality.
Say k = C. Write iy = ([Ox+], [Qv]). So

[Q] = ZO‘VW[OXW(_aXW)]
Write Sy = ([Oxw(—0X")],[P.]). So

[Pv] = Z 5VW[OX;]

Our main result concerning these auxiliary matrices is that, with a
suitable reordering of rows and columns, the matrices (a, ) and
(Buw) are upper triangular and invertible. And that we know
enough entries to compute the needed ([P,], [Qw])-
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Let us start with (Syw). Write ([Oc], [F]) as x(C,F) when C is a
T-invariant closed subset of B = G/B and F is a T-equivariant
coherent sheaf.
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Let us start with (Syw). Write ([Oc], [F]) as x(C,F) when C is a
T-invariant closed subset of B = G/B and F is a T-equivariant
coherent sheaf.

So (Bu) = X(X*, L(P(~e,))) — X(X*, L(P(~e,))) =
xX(BwwoB/B, L(T'(X,,L)))) — x(0BwwoB/B, L(I'(X,, Ly))), with
A dominant, yA = —e,.
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Let us start with (Syw). Write ([Oc], [F]) as x(C,F) when C is a
T-invariant closed subset of B = G/B and F is a T-equivariant
coherent sheaf.

So (Bu) = X(X*, L(P(~e,))) — X(X*, L(P(~e,))) =
xX(BwwoB/B, L(T'(X,,L)))) — x(0BwwoB/B, L(I'(X,, Ly))), with
A dominant, yA = —e,.

We get to study x(Sy /B, L(I'(Xz, £y))) when A is dominant,

ze W and Sy :=J,cy BwB for some subset Y of W.

We claim the contraction property
X(Sy /B, L(T(Xz, L)) = x(SyBzB/B, L))].
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Let us start with (Syw). Write ([Oc], [F]) as x(C,F) when C is a
T-invariant closed subset of B = G/B and F is a T-equivariant
coherent sheaf.
So (Bu) = X(X*, L(P(~e,))) — X(X*, L(P(~e,))) =
xX(BwwoB/B, L(T'(X,,L)))) — x(0BwwoB/B, L(I'(X,, Ly))), with
A dominant, yA = —e,.

We get to study x(Sy /B, L(I'(Xz, £y))) when A is dominant,
z€ W and Sy :=J,,cy BwB for some subset Y of W.
We claim the contraction property

X(Sy/B, L(N(Xz, £2))) = x(SyBzB/B, L3)].

By Ramanathan Og,g — F.Og/p the intersections

(Sy/B) N (Sy/B) are reduced. [Invent. Math. 1985]

Therefore we have the Mayer-Vietoris relation

[Os, /8] +10s, /8] = [Os,us, /8] + [Os,ns, /8]
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Proof of contraction property

The contraction property is well-known when Y is a singleton
([Polo 1989, Prop. 1.4.2], Demazure operators,
Bott-Samelson-Demazure-Hansen resolution, ...). So we can
argue by induction along the poset of the Sy provided that both
sides in the contraction claim satisfy a Mayer-Vietoris law.
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Proof of contraction property

The contraction property is well-known when Y is a singleton
([Polo 1989, Prop. 1.4.2], Demazure operators,
Bott-Samelson-Demazure-Hansen resolution, ...). So we can
argue by induction along the poset of the Sy provided that both
sides in the contraction claim satisfy a Mayer-Vietoris law.

We need the distributive laws

(Sy U 5\/)@ = (Sy@) U (5\/@)

(Sy N Sy)BzB = (SyBzB) N (SyBzB).

The non-obvious inclusion is

(Sy N Sy)BzB > (SyBzB) N (SyBzB).
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Proof of contraction property

The contraction property is well-known when Y is a singleton
([Polo 1989, Prop. 1.4.2], Demazure operators,
Bott-Samelson-Demazure-Hansen resolution, ...). So we can
argue by induction along the poset of the Sy provided that both
sides in the contraction claim satisfy a Mayer-Vietoris law.

We need the distributive laws

(Sy U 5\/)@ = (Sy@) U (5\/@)

(Sy N Sy)BzB = (SyBzB) N (SyBzB).

The non-obvious inclusion is

(Sy N Sy)BzB > (SyBzB) N (SyBzB).

We may write z in reduced form, z = sy ---s,. Then

BzB = Bs;B - - - Bs,B. We may assume z is simple, say z = s.
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Proof of contraction property

The contraction property is well-known when Y is a singleton
([Polo 1989, Prop. 1.4.2], Demazure operators,
Bott-Samelson-Demazure-Hansen resolution, ...). So we can
argue by induction along the poset of the Sy provided that both
sides in the contraction claim satisfy a Mayer-Vietoris law.

We need the distributive laws

(Sy U 5\/)@ = (Sy@) U (5\/@)

(Sy N Sy)BzB = (SyBzB) N (SyBzB).

The non-obvious inclusion is

(Sy N Sy)BzB > (SyBzB) N (SyBzB).

We may write z in reduced form, z = sy ---s,. Then

BzB = Bs;B - - - Bs,B. We may assume z is simple, say z = s.
So let BuB C (SyBsB) N (SyBsB). Then u < y x s for some
vy €Y and u < xxs for some x € V.

Let o/ be the unique minimal coset representatative of u < s >.
Then BuB C BuB BsB = Bu'B BsB with Bu’B C (Sy N Sy).
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Rappels: Minimal coset representatives

Let A be a dominant weight. Let / be the set of simple roots
perpendicular to A. Then the stabilizer in W of X is the subgroup
W, generated by the s, with o € I. One calls W, a parabolic

subgroup of W.
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Rappels: Minimal coset representatives

Let A be a dominant weight. Let / be the set of simple roots
perpendicular to A. Then the stabilizer in W of X is the subgroup
W, generated by the s, with o € I. One calls W, a parabolic
subgroup of W.

Every coset wW, has a unique shortest element, known as the
minimal coset representative. An element w is the minimal coset
representative of wW, if and only if wa > 0 for o € /.

One denotes by W/ the set of minimal coset representatives.
(u,v) + uv is a bijection W' x W, — W, with

{(uv) = £(u) + £(v), and W — W! respects Bruhat order.
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Extremal weights

Thanks to the contraction property we may view (,,) as
X(BWW()B)Q,7 ,C)\))) - X(@BWW()BX},, [,)\))),
with A dominant, yA = —e,.
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Extremal weights

Thanks to the contraction property we may view (,,) as
X(BWW()B)Q,7 [,)\))) - X(@BWWoBXy, [,)\))),

with A dominant, yA = —e,.

Ramanan—Ramanathan tells that the H'(Sy/B, L)) vanish for
i >0 and that [(G/B, L)) — I'(Sy/B, L)) is surjective.

So M(BwwyBXy, L))) maps onto '(0BwwgBX,, L,))).
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Extremal weights

Thanks to the contraction property we may view (,,) as
X(BWW()B)Q,7 [,)\))) - X(@BWWoBXy, [,)\))),

with A dominant, yA = —e,.

Ramanan—Ramanathan tells that the H'(Sy/B, L)) vanish for

i >0 and that [(G/B, L)) — I'(Sy/B, L)) is surjective.

So M(BwwyBXy, L))) maps onto '(0BwwgBX,, L,))).

We also know that '(Sy /B, L)) has a filtration by Q(u) with
running over the extremal weights of ['(Sy/B, L)).

The extremal weights that occur have multiplicity one.

They are the xA with x < u for some v € V.
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Extremal weights

Thanks to the contraction property we may view (,,) as
X(BWW()B)Q,7 [,)\))) - X(aBWW()BXy, [,)\))),

with A dominant, yA = —e,.

Ramanan—Ramanathan tells that the H'(Sy/B, L)) vanish for

i >0 and that [(G/B, L)) — I'(Sy/B, L)) is surjective.

So M(BwwyBXy, L))) maps onto '(0BwwgBX,, L,))).

We also know that '(Sy /B, L)) has a filtration by Q(u) with
running over the extremal weights of ['(Sy/B, L)).

The extremal weights that occur have multiplicity one.

They are the xA with x < u for some v € V.

To determine (,,, it suffices to know the characters of the Q(u)
that occur in [(BwwoBX,, L) but not in I'(0BwwyBXy, L)).
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Zeroes in [§ matrix on one side of the ‘diagonal’

So to get B,w, we need to find the complement of
{xA| x < zxy for some z < wwp} in {x\ | x < (wwp) *y}.
Here A = —wpve,, y = v 1wp.
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Zeroes in [§ matrix on one side of the ‘diagonal’

So to get B,w, we need to find the complement of

{xA| x < zxy for some z < wwp} in {x\ | x < (wwp) *y}.
Here A = —wpve,, y = v 1wp.

Say vwp % w. Then {((wwp) * y) is not £(wwp) + £(y), because
otherwise there would be v € W with

(u) + L(wwy) + £(y) = L(uwwpy) = £(wp), so

ux(wwp) = woy 1 =v, sov>wwp, vy < w.
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Zeroes in [§ matrix on one side of the ‘diagonal’

So to get B,w, we need to find the complement of

{xA| x < zxy for some z < wwp} in {x\ | x < (wwp) *y}.

Here A = —wpve,, y = v 1wp.

Say vwp % w. Then {((wwp) * y) is not £(wwp) + £(y), because
otherwise there would be v € W with

(u) + L(wwy) + £(y) = L(uwwpy) = £(wp), so

ux(wwp) = woy 1 =v, sov>wwp, vy < w.

As £((wwp) x y) is not £(wwp) + (y), there is a z < wwy for which
zxy and (wwp) x y are equal. Therefore 8, vanishes if vy £ w
and the 8 matrix is triangular after rearranging rows and columns:
/BVWO,W =0if vwp > w.
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Zeroes in [§ matrix on one side of the ‘diagonal’

So to get B,w, we need to find the complement of

{xA| x < zxy for some z < wwp} in {x\ | x < (wwp) *y}.

Here A = —wpve,, y = v 1wp.

Say vwp % w. Then {((wwp) * y) is not £(wwp) + £(y), because
otherwise there would be v € W with

(u) + L(wwy) + £(y) = L(uwwpy) = £(wp), so

ux(wwp) = woy 1 =v, sov>wwp, vy < w.

As £((wwp) x y) is not £(wwp) + (y), there is a z < wwy for which
zxy and (wwp) x y are equal. Therefore 8, vanishes if vy £ w
and the 8 matrix is triangular after rearranging rows and columns:
/BVWO,W =0if vwp > w.

On the ‘diagonal’ we expect invertible elements, because we are
comparing two bases of K7(G/B). (That the classes of the [P,]
generate K1(G/B) is known from a different story.)
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When vy = w

Let vig = w, A = —wpve,, y = v 1wg. Again we need to find the
complement of {x\ | x < z %y for some z < wwp} in

{xA | x < wwp xy}.

We claim that this complement is the singleton {—ve,}.
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When vy = w

Let vig = w, A = —wpve,, y = v 1wg. Again we need to find the
complement of {x\ | x < z %y for some z < wwp} in

{xA | x < wwp xy}.

We claim that this complement is the singleton {—ve,}.

Indeed wwy < wwp * y and wwpA = vp(—wpve,) = —ve,.
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When vy = w

Let vig = w, A = —wpve,, y = v 1wg. Again we need to find the
complement of {x\ | x < z %y for some z < wwp} in

{xA | x < wwp xy}.

We claim that this complement is the singleton {—ve,}.

Indeed wwy < wwp * y and wwpA = vp(—wpve,) = —ve,.

Now suppose —ve, is in {x\ | x < z %y for some z < v}. We
may always take z smaller so that zxy = zy.

Then —ve, = x(—wpve,), so xwy lies in the parabolic subgroup
W, of elements that fix ve,. And xwy > zywy = zv 1 Butvlis
a minimal coset representative and z~! would be smaller. This is
absurd. So the complement contains —ve, .
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When vy = w

Let vig = w, A = —wpve,, y = v 1wg. Again we need to find the
complement of {x\ | x < z %y for some z < wwp} in

{xA | x < wwp xy}.

We claim that this complement is the singleton {—ve,}.

Indeed wwy < wwp * y and wwpA = vp(—wpve,) = —ve,.

Now suppose —ve, is in {x\ | x < z %y for some z < v}. We
may always take z smaller so that zxy = zy.

Then —ve, = x(—wpve,), so xwy lies in the parabolic subgroup
W, of elements that fix ve,. And xwy > zywy = zv 1 Butvlis
a minimal coset representative and z~! would be smaller. This is
absurd. So the complement contains —ve, .

There cannot be more in the complement, as that would spoil the
invertibility of 3y v, in R(T).
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But let us look anyway at —uve, with —uve, # —ve,. We may
take u minimal. As /(u) > 1, there is a simple refection s = s,
with ¢(us) = ¢(u) — 1 and sve, # ve,. From the definition of e,
we see that v la < 0, so v is < vl Put z = sv, x = uwp.
Then z < v =wwp, zxy = (sv) x v iwy = swp, —uve, = x),
X=uwg < swy=2zxy.

So —uve, lies in {x\ | x < zxy for some z < wwy}.
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A ‘diagonal’ element

We are still looking at Sy, yu-

If vwp = w, we have found that only the character of Q(—ve,)
remains, but we expected an invertible element, because we are
comparing two bases of K1 (G/B).
Indeed Q(—ve,) is one dimensional.
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A ‘diagonal’ element

We are still looking at Sy, yu-

If vwp = w, we have found that only the character of Q(—ve,)
remains, but we expected an invertible element, because we are
comparing two bases of K1 (G/B).

Indeed Q(—ve,) is one dimensional.

Proof: We may assume to be working over C. Now Q(—ve,) has
B-socle of weight —ve, and all other weights are strictly smaller. If
there is another weight, then there also must be another weight of
the form —ve, + na with « simple. That is because we can get
from any weight of Q(—ve,) to —ve, by acting with elements
X_pg € b, where 3 is a simple root. But —ve, is too close to the s,
reflection hyperplane. See picture.

This ends the discussion of the 8 matrix.
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The reflection hyperplane

*— ¢ —
° ° ° [} ° ° ° ° °
@)
(O ONONG]
oo
@)
@)
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The oo matrix

When looking at c,,, we must work with B*.
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When looking at c,,, we must work with B*.

Now at x; the fiber of Q, is Q" (woe,), so

Q, = ker : LY(I(X;, L)) = LT(T(0X, L)) with A
anti-dominant and z\ = wye,.
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When looking at c,,, we must work with B*.

Now at x; the fiber of Q, is Q" (woe,), so

Q, = ker : LY(I(X;, L)) = LT(T(0X, L)) with A
anti-dominant and z\ = wye,.

So we want to know the difference between

([Oxs ], ILH(TXG, L)) and ([Oxs ], [£F(T (X, L))
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When looking at c,,, we must work with B*.

Now at x; the fiber of Q, is Q" (woe,), so

Q, = ker : LY(I(X;, L)) = LT(T(0X, L)) with A
anti-dominant and z\ = wye,.

So we want to know the difference between

([Oxs ], ILH(TXG, L)) and ([Oxs ], [£F(T(OXC, L))
We get to study ([OX;], [E*(F(S#}/B*,Ej\“))])

when S :=J, cy BtwB™ for some subset Y of W.

We claim the contraction property

([O0x L IEF(T(SY /BT L) = (O gvsg 5 L)
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Proof of contraction property

Actually the contraction property for this situation has been known
for a long time. But let us argue as above.
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Proof of contraction property

Actually the contraction property for this situation has been known
for a long time. But let us argue as above.

One has the distributive laws

B+ZB+(5+ U 5*) (B+zB+S+) (B*zB*S\J;).

B+ZB+(5+ N S*) (B+zB+S+) (B*zB*Sﬁ).

The non-obvious inclusion is

B+zB+(5;§ N S\J/r) D (B+zB+S¢) N (B*zB*S\J/F).

Apply the map g — g~ !
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Zeroes in o matrix on one side of the ‘diagonal’

To get ayy, we need to find the complement of

{XA | x <wxy forsome y <z} in {x\|x < wxz}, with A
anti-dominant and z\ = wye, .

Here A = wyvey, z = wov 1wyp.
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Zeroes in o matrix on one side of the ‘diagonal’

To get ayy, we need to find the complement of

{XA | x <wxy forsome y <z} in {x\|x < wxz}, with A
anti-dominant and z\ = wye, .

Here A = wyvey, z = wov 1wyp.

If w £ vwg, then £(w x z) is not £(w) + ¢(z), because otherwise
there would be u € W with uxw x z = uwz = wy,

Uu) + 6w) + £(z) = U(wp), uw = vwg, w < viyg.
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Zeroes in o matrix on one side of the ‘diagonal’

To get ayy, we need to find the complement of

{XA | x <wxy forsome y <z} in {x\|x < wxz}, with A
anti-dominant and z\ = wye, .

Here A = wyvey, z = wov 1wyp.

If w £ vwg, then £(w x z) is not £(w) + ¢(z), because otherwise
there would be u € W with uxw x z = uwz = wy,
Lu)+Ll(w)+4(z) = wp), uw = vig, w < vwug.

When £(w * z) is not £(w) + £(z), there is a y < z so that w x y
and w x z are equal. Therefore a,, vanishes if w f_ vwy and the o
matrix is triangular after rearranging rows and columns.

Wilberd van der Kallen Two triangular matrices



When w = vwy

Now let w = vwy. We claim that the complement of
{x\ | x <wxy forsome y <z} in {x\| x < wxz} is the
singleton {ve,}.
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When w = vwy

Now let w = vwy. We claim that the complement of

{x\ | x <wxy forsome y <z} in {x\| x < wxz} is the
singleton {ve,}.

Observe that Q™ (ve,) is one dimensional. We have A\ = wyve,,
z=wov lwy, wz = vwowov twy = wp, so if one takes x = wy,
then x < w*z and x\ = ve,.
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When w = vwy

Now let w = vwy. We claim that the complement of

{x\ | x <wxy forsome y <z} in {x\| x < wxz} is the
singleton {ve,}.

Observe that Q™ (ve,) is one dimensional. We have A\ = wyve,,
z=wov lwy, wz = vwowov twy = wp, so if one takes x = wy,
then x < w*z and x\ = ve,.

Now suppose there are y < z and x < w % y with x\ = ve,.
Replacing y by a lesser element we may assume

wxy = wy = vigy. Then xwy fixes ve,, x < vipy, so

xwp > vwpywy. As xwy lies in the parabolic subgroup W, of
elements fixing ve,, we must have vwgywy € W). And y < z, so
woywp < Wozwp = vl Thus woywy is shorter than the minimal
coset representative v—1. This is absurd.

So the complement contains at least ve,. Again there cannot be
more, as ov,,vw, Must be invertible.
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But let us consider a v with u < wxz and uve, # ve,. We want to
show that wuve, is in the subset {x\ | x < w x y for some y < z}.
We may replace u with the minimal coset representative in its
coset of the stabilizer W, of ve,. As ¢(u) > 1 there is a simple
refection s = s, with ¢(us) = ¢(u) — 1 and sve, # ve,. From the
definition of e, we see that v 1a <0, so v is < v L

Recall that A = wyve,, z = wov twy, w = vwyp.

Put y = wov lswp, x = uwp. Then y < z,

wo(wxy)wo = wo((vwo)*(wov—tswo))wo = (wov)*(v1s) = wps.
And x < swp = w x y, xA = uve,. Done.
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The End

THANK YOU!
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