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The two matrices

We put
Pv = L(P(−ev )) and Qv = L(Q(ev )).

We are interested in ⟨[Pv ], [Qw ]⟩, for semi-orthogonality.

Say k = C. Write αvw = ⟨[OX+
w
], [Qv ]⟩. So

[Qv ] =
∑

αvw [OXw (−∂Xw )]

Write βvw = ⟨[OXw (−∂Xw )], [Pv ]⟩. So

[Pv ] =
∑

βvw [OX+
w
]

Our main result concerning these auxiliary matrices is that, with a
suitable reordering of rows and columns, the matrices (αwv ) and
(βvw ) are upper triangular and invertible. And that we know
enough entries to compute the needed ⟨[Pv ], [Qw ]⟩.
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Rewriting

Let us start with (βvw ). Write ⟨[OC ], [F ]⟩ as χ(C ,F) when C is a
T -invariant closed subset of B = G/B and F is a T -equivariant
coherent sheaf.

So (βvw ) = χ(Xw ,L(P(−ev )))− χ(∂Xw ,L(P(−ev ))) =
χ(Bww0B/B,L(Γ(Xy ,Lλ)))− χ(∂Bww0B/B,L(Γ(Xy ,Lλ))), with
λ dominant, yλ = −ev .
We get to study χ(SY /B,L(Γ(Xz ,Lλ))) when λ is dominant,
z ∈ W and SY :=

⋃
w∈Y BwB for some subset Y of W .

We claim the contraction property
χ(SY /B,L(Γ(Xz ,Lλ))) = χ(SYBzB/B,Lλ)].
By Ramanathan OG/B

↶→ F∗OG/B the intersections
(SY /B) ∩ (SV /B) are reduced. [Invent. Math. 1985]
Therefore we have the Mayer-Vietoris relation
[OSY /B ] + [OSV /B ] = [OSY∪SV /B ] + [OSY∩SV /B ].
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Proof of contraction property

The contraction property is well-known when Y is a singleton
([Polo 1989, Prop. 1.4.2], Demazure operators,
Bott-Samelson-Demazure-Hansen resolution, . . . ). So we can
argue by induction along the poset of the SY provided that both
sides in the contraction claim satisfy a Mayer-Vietoris law.

We need the distributive laws
(SY ∪ SV )BzB = (SYBzB) ∪ (SVBzB).
(SY ∩ SV )BzB = (SYBzB) ∩ (SVBzB).
The non-obvious inclusion is
(SY ∩ SV )BzB ⊃ (SYBzB) ∩ (SVBzB).
We may write z in reduced form, z = s1 · · · sn. Then
BzB = Bs1B · · ·BsnB. We may assume z is simple, say z = s.
So let BuB ⊂ (SYBsB) ∩ (SVBsB). Then u ≤ y ⋆ s for some
y ∈ Y and u ≤ x ⋆ s for some x ∈ V .
Let u′ be the unique minimal coset representatative of u < s >.
Then BuB ⊂ BuB BsB = Bu′B BsB with Bu′B ⊂ (SY ∩ SV ).
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Rappels: Minimal coset representatives

Let λ be a dominant weight. Let I be the set of simple roots
perpendicular to λ. Then the stabilizer in W of λ is the subgroup
WI generated by the sα with α ∈ I . One calls WI a parabolic
subgroup of W .

Every coset wWI has a unique shortest element, known as the
minimal coset representative. An element w is the minimal coset
representative of wWI if and only if wα > 0 for α ∈ I .
One denotes by W I the set of minimal coset representatives.
(u, v) 7→ uv is a bijection W I ×WI → W , with
ℓ(uv) = ℓ(u) + ℓ(v), and W → W I respects Bruhat order.
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Extremal weights

Thanks to the contraction property we may view (βvw ) as
χ(Bww0BXy ,Lλ)))− χ(∂Bww0BXy ,Lλ))),
with λ dominant, yλ = −ev .

Ramanan–Ramanathan tells that the H i (SV /B,Lλ) vanish for
i > 0 and that Γ(G/B,Lλ) → Γ(SV /B,Lλ) is surjective.
So Γ(Bww0BXy ,Lλ))) maps onto Γ(∂Bww0BXy ,Lλ))).
We also know that Γ(SV /B,Lλ) has a filtration by Q(µ) with µ
running over the extremal weights of Γ(SV /B,Lλ).
The extremal weights that occur have multiplicity one.
They are the xλ with x ≤ u for some u ∈ V .
To determine βvw it suffices to know the characters of the Q(µ)
that occur in Γ(Bww0BXy ,Lλ) but not in Γ(∂Bww0BXy ,Lλ).
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Zeroes in β matrix on one side of the ‘diagonal’

So to get βvw , we need to find the complement of
{xλ | x ≤ z ⋆ y for some z < ww0} in {xλ | x ≤ (ww0) ⋆ y}.
Here λ = −w0vev , y = v−1w0.

Say vw0 ≰ w . Then ℓ((ww0) ⋆ y) is not ℓ(ww0) + ℓ(y), because
otherwise there would be u ∈ W with
ℓ(u) + ℓ(ww0) + ℓ(y) = ℓ(uww0y) = ℓ(w0), so
u ⋆ (ww0) = w0y

−1 = v , so v ≥ ww0, vw0 ≤ w .
As ℓ((ww0) ⋆ y) is not ℓ(ww0) + ℓ(y), there is a z < ww0 for which
z ⋆ y and (ww0) ⋆ y are equal. Therefore βvw vanishes if vw0 ≰ w
and the β matrix is triangular after rearranging rows and columns:
βvw0,w = 0 if vw0 ≻ w .
On the ‘diagonal’ we expect invertible elements, because we are
comparing two bases of KT (G/B). (That the classes of the [Pv ]
generate KT (G/B) is known from a different story.)
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When vw0 = w

Let vw0 = w , λ = −w0vev , y = v−1w0. Again we need to find the
complement of {xλ | x ≤ z ⋆ y for some z < ww0} in
{xλ | x ≤ ww0 ⋆ y}.
We claim that this complement is the singleton {−vev}.

Indeed ww0 ≤ ww0 ⋆ y and ww0λ = vw0(−w0vev ) = −vev .
Now suppose −vev is in {xλ | x ≤ z ⋆ y for some z < v}. We
may always take z smaller so that z ⋆ y = zy .
Then −vev = x(−w0vev ), so xw0 lies in the parabolic subgroup
WI of elements that fix vev . And xw0 ≥ zyw0 = zv−1. But v−1 is
a minimal coset representative and z−1 would be smaller. This is
absurd. So the complement contains −vev .
There cannot be more in the complement, as that would spoil the
invertibility of βv ,vw0 in R(T ).
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Sanity check

But let us look anyway at −uvev with −uvev ̸= −vev . We may
take u minimal. As ℓ(u) ≥ 1, there is a simple refection s = sα
with ℓ(us) = ℓ(u)− 1 and svev ̸= vev . From the definition of ev
we see that v−1α < 0, so v−1s < v−1. Put z = sv , x = uw0.
Then z < v = ww0, z ⋆ y = (sv) ⋆ v−1w0 = sw0, −uvev = xλ,
x = uw0 ≤ sw0 = z ⋆ y .
So −uvev lies in {xλ | x ≤ z ⋆ y for some z < ww0}.
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A ‘diagonal’ element

We are still looking at βv ,vw0 .
If vw0 = w , we have found that only the character of Q(−vev )
remains, but we expected an invertible element, because we are
comparing two bases of KT (G/B).
Indeed Q(−vev ) is one dimensional.

Proof: We may assume to be working over C. Now Q(−vev ) has
B-socle of weight −vev and all other weights are strictly smaller. If
there is another weight, then there also must be another weight of
the form −vev + nα with α simple. That is because we can get
from any weight of Q(−vev ) to −vev by acting with elements
X−β ∈ b, where β is a simple root. But −vev is too close to the sα
reflection hyperplane. See picture.
This ends the discussion of the β matrix.
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comparing two bases of KT (G/B).
Indeed Q(−vev ) is one dimensional.
Proof: We may assume to be working over C. Now Q(−vev ) has
B-socle of weight −vev and all other weights are strictly smaller. If
there is another weight, then there also must be another weight of
the form −vev + nα with α simple. That is because we can get
from any weight of Q(−vev ) to −vev by acting with elements
X−β ∈ b, where β is a simple root. But −vev is too close to the sα
reflection hyperplane. See picture.
This ends the discussion of the β matrix.
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The reflection hyperplane
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The α matrix

When looking at αvw we must work with B+.

Now at x+ the fiber of Qv is Q+(w0ev ), so
Qv = ker : L+(Γ(X+

z ,L+
λ )) → L+(Γ(∂X+

z ,L+
λ )) with λ

anti-dominant and zλ = w0ev .
So we want to know the difference between
⟨[OX+

w
], [L+(Γ(X+

z ,L+
λ ))]⟩ and ⟨[OX+

w
], [L+(Γ(∂X+

z ,L+
λ ))]⟩

We get to study ⟨[OX+
z
], [L+(Γ(S+

Y /B+,L+
λ ))]⟩

when S+
Y :=

⋃
w∈Y B+wB+ for some subset Y of W .

We claim the contraction property
⟨[OX+

z
], [L+(Γ(S+

Y /B+,L+
λ ))]⟩ = ⟨[O

B+zB+S+
Y /B+ ,L+

λ ))]⟩
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Proof of contraction property

Actually the contraction property for this situation has been known
for a long time. But let us argue as above.

One has the distributive laws
B+zB+(S+

Y ∪ S+
V ) = (B+zB+S+

Y ) ∪ (B+zB+S+
V ).

B+zB+(S+
Y ∩ S+

V ) = (B+zB+S+
Y ) ∩ (B+zB+S+

V ).
The non-obvious inclusion is
B+zB+(S+

Y ∩ S+
V ) ⊃ (B+zB+S+

Y ) ∩ (B+zB+S+
V ).

Apply the map g 7→ g−1.
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Zeroes in α matrix on one side of the ‘diagonal’

To get αvw , we need to find the complement of
{xλ | x ≤ w ⋆ y for some y < z} in {xλ | x ≤ w ⋆ z}, with λ
anti-dominant and zλ = w0ev .
Here λ = w0vev , z = w0v

−1w0.

If w ≰ vw0, then ℓ(w ⋆ z) is not ℓ(w) + ℓ(z), because otherwise
there would be u ∈ W with u ⋆ w ⋆ z = uwz = w0,
ℓ(u) + ℓ(w) + ℓ(z) = ℓ(w0), uw = vw0, w ≤ vw0.
When ℓ(w ⋆ z) is not ℓ(w) + ℓ(z), there is a y < z so that w ⋆ y
and w ⋆ z are equal. Therefore αvw vanishes if w ≰ vw0 and the α
matrix is triangular after rearranging rows and columns.
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When w = vw0

Now let w = vw0. We claim that the complement of
{xλ | x ≤ w ⋆ y for some y < z} in {xλ | x ≤ w ⋆ z} is the
singleton {vev}.

Observe that Q+(vev ) is one dimensional. We have λ = w0vev ,
z = w0v

−1w0, wz = vw0w0v
−1w0 = w0, so if one takes x = w0,

then x ≤ w ⋆ z and xλ = vev .
Now suppose there are y < z and x ≤ w ⋆ y with xλ = vev .
Replacing y by a lesser element we may assume
w ⋆ y = wy = vw0y . Then xw0 fixes vev , x ≤ vw0y , so
xw0 ≥ vw0yw0. As xw0 lies in the parabolic subgroup WI of
elements fixing vev , we must have vw0yw0 ∈ WI . And y < z , so
w0yw0 < w0zw0 = v−1. Thus w0yw0 is shorter than the minimal
coset representative v−1. This is absurd.
So the complement contains at least vev . Again there cannot be
more, as αv ,vw0 must be invertible.
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Sanity check

But let us consider a u with u ≤ w ⋆ z and uvev ̸= vev . We want to
show that uvev is in the subset {xλ | x ≤ w ⋆ y for some y < z}.
We may replace u with the minimal coset representative in its
coset of the stabilizer WI of vev . As ℓ(u) ≥ 1 there is a simple
refection s = sα with ℓ(us) = ℓ(u)− 1 and svev ̸= vev . From the
definition of ev we see that v−1α < 0, so v−1s < v−1.
Recall that λ = w0vev , z = w0v

−1w0, w = vw0.
Put y = w0v

−1sw0, x = uw0. Then y < z ,
w0(w ⋆y)w0 = w0((vw0)⋆(w0v

−1sw0))w0 = (w0v)⋆(v
−1s) = w0s.

And x ≤ sw0 = w ⋆ y , xλ = uvev . Done.
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The End

THANK YOU!
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