
Invariants

P. Gordan 1868,

J.f.d. reine u. angew. Math., 69

Beweis dass jede Covariante und Invariante einer

binären Form eine ganze Function mit

numerischen Coefficienten einer endlichen

Anzahl solcher Formen ist.

In modern language:

G = SL2(C) as algebraic group.

GyV := C2, C[V ] = C[X, Y ], Wd := C[V ]d,

W2 = {aX2 + bXY + cY 2}, C[W2] = C[a, b, c],

b2−4ac ∈ C[W2]
G an invariant (= fixed point).

C[Wd]
G is finitely generated (f.g.) as a

C-algebra and (Wd ⊗ C[Wd])
G is a noetherian

C[Wd]
G-module.
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Nowadays
we know more generally:
G reductive linear algebraic group over C.
A f.g. C-algebra, GyA, then AG is f.g.
Consequently, if M is noetherian A-module,
GyM , A⊗M →M equivariant, then
MG is noetherian AG-module.

Traditional case: A = C[V ], M = W ⊗A,
GyV, W linear, dimV <∞, dimW <∞. Then
MG is noetherian over the f.g. AG. Observe
that now the algebra A has no zero divisors
and that M is flat over A. Note that M ⊆
C[V ⊕W#].

The traditional case is different: Finite gener-
ation of invariants even holds when G is the
additive subgroup Ga of SL2(C) consisting of

matrices of the form

(
1 x
0 1

)
(Weitzenböck

1932 at Amsterdam). By Jacobson-Morozov
the action then extends to SL2(C) and a result
of Grosshans 1983 applies.
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How we got there

Hilbert 1890 Math. Annalen 36
Finite generation (the traditional case) for G =
SLn(C), using the Ω process of Cayley and
noetherian arguments. Nonconstructive.

Hurwitz 1897 considers compact group K with
Haar measure dk and replaces the Ω process
with the method of averageing. KyV linear.
Get linear equivariant retract V → V K from

v 7→
∫
K kv dk∫

K dk
.

Weyl 1926 takes in a semi-simple complex Lie
group G a maximal compact subgroup K and
notes that the retract is also G-equivariant from
V to V G.

One can handle any base field of characteristic
zero. (faithfully flat base change).
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Characteristic p > 0

Let k be a field of characteristic p.

E. Noether 1926 considers a finite group G.

If A is f.g. k-algebra, GyA, then AG is f.g.

Also if M is noetherian A-module, GyM ,

A⊗M →M equivariant, then

MG is noetherian AG-module.

Further A is integral over AG.

Mumford GIT 1965. Say reductive G acts on

the affine variety Spec(A). One wants to form

the quotient Spec(A)/G, hopes it is affine and

in fact equal to Spec(AG). In particular one

wants again that AG is f.g. But equivariant

linear retracts are no longer available.

Consider GyV linear, dimV <∞, L ⊆ V G one

dimensional. Then Mumford asks for an equiv-

ariant map (polynomial) f : V → L, so that f |L
is non-constant.

If such f always exists, call G geometrically

reductive.
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Necessity
Consider k[L] as k[V ]-module through
restriction φ 7→ φ|L. Then
f exists iff k[L]G is noetherian module for k[V ]G.

Nagata 1964 showed that if G is geometrically
reductive, the finite generation theorems hold
and, if G is a subgroup of some group L, he
argued that L/G = Spec(k[L]G) is affine.

Haboush 1975
‘Reductive groups are geometrically reductive.’

Borsari & Ferrer Santos 1992 observed that
the f.g. proofs of Nagata work for any
geometrically reductive affine group scheme
G ⊆ GLn.

In particular, if G is a finite group scheme,
i.e. dim(k[G]) < ∞, then this applies. One
can show directly that finite group schemes are
geometrically reductive. For finite generation
one can more easily follow Noether and show
that A is integral over AG.
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Cohomology.

Evens 1961 takes a finite group G and
generalizes the result of Noether: If A is f.g.
k-algebra, GyA, then H∗(G, A) is f.g.
Also if M is noetherian A-module, GyM ,
A⊗M →M equivariant, then
H∗(G, M) is noetherian H∗(G, A)-module.
This result is important as starting point of the
theory of support varieties.

For modular representation theory of algebraic
groups Frobenius kernels are important.
For example for G = SLn one puts (scheme
theoretically) Gr = ker F r : G→ G, so

Gr := {( aij ) | ( a
pr

ij ) = 1n} ⊂ SLn .

A G1-module is the same as a module for the
Lie algebra g with its [p]-structure. Unlike in
characteristic zero the first order is not enough
and one needs the higher Gr also.

lim← Ext∗Gr
(V, W ) = Ext∗G(V, W )

if V , W are finite dimensional. (Friedlander-
Parshall 1987,. . . [Jantzen 1987])
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For a theory of support varieties of semisimple
groups one needs a proof for the generalization
of Evens 1961 to finite group schemes. This
“proved surprisingly elusive”.

Friedlander–Suslin 1997. Let G be a finite
group scheme. The following theorem is cu-
riously missing, for nonconnected G. (What
they do state suffices as starting point for the
theory of support varieties.)
If A is f.g. k-algebra, GyA, then H∗(G, A) is
f.g.
Also if M is noetherian A-module, GyM ,
A⊗M →M equivariant, then
H∗(G, M) is noetherian H∗(G, A)-module.

Let us say that an affine group scheme has
property CFG (cohomological finite generation)
if H∗(G, A) is f.g. when A is f.g. k-algebra,
GyA.

So finite group schemes have CFG by
Friedlander–Suslin, “missing statement”.
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Lemma
If the linear algebraic group G over k satisfies
CFG and H is a geometrically reductive
subgroup scheme, then H satisfies CFG.

Proof. H∗(H, A) = H∗(G, indG
H(A)) because

G/H is affine. Now indG
H(A) = (A ⊗ k[G])H

is f.g.

Conjecture
SLn satisfies CFG.

Corollary to conjecture
Any geometrically reductive affine group scheme
satisfies CFG. (and conversely).

G, B, T , U .
Let G be semisimple, B a Borel subgroup, T a
maximal torus in B, U the unipotent radical of
B. Because the conjecture is about SLn, feel
free to take G = SLn, B the subgroup of upper
triangular matrices, T the subgroup of diagonal
matrices, U the subgroup of upper triangular
matrices with ones on the diagonal.
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We put an additive height function on the weight

lattice X(T ) = Hom(T, GL1)

ht : X(T )→ Z,

say ht = 2
∑

α>0 α∨. The height of positive

roots is strictly positive.

If V is a G-module, possibly of

infinite dimension, let V≤i denote the largest G-

submodule all whose weights have height ≤ i.

Thus V≤0 = V G.

The associated graded module we call the

Grosshans graded of V , (invented earlier by

Mathieu or Popov)

gr V = ⊕i≥0V≤i/V≤i−1.

If A is f.g. and GyA, then Grosshans 1992

shows that AU and gr A are f.g.
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For the finite generation of AU one uses the

transfer principle:

AU = (indG
U A)G = (A ⊗ k[G/U ])G where the

multicone k[G/U ] equals

⊕[L]∈PicΓ(G/B,L) = ⊕λ∈X(T )∇(λ).

If λ is dominant then ∇(λ) is the costandard

module of highest weight λ. It is the largest

G-module M with dimMU = 1 and highest

weight λ. (Weyl character formula gives its

character.)

We say that V has good filtration if gr V is

a direct sum of costandard modules. Unlike

Friedlander 1985 we do not require dimV ≤ ℵ0.

Modules with good fitration form an important

class, with some remarkable properties.

If V , W have good filtration, so does V ⊗W , by

Wang Jian-Pan 1982, Donkin 1985, Mathieu

1990.
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After Friedlander–Parshall 1986 we say that V

has good filtration dimension at most d, we

write dim∇(V ) ≤ d, if there is a resolution

V →M0 → · · · →Md → 0

where the Mi have good filtration.

Cohomological criterion

dim∇(V ) ≤ d⇔ Hd+1(G, V ⊗ k[G/U ]) = 0.

Note that Hi(G, V ) = 0 for i > dim∇(V ).

Connection between CFG and dim∇

Now suppose G satisfies CFG, A is f.g., GyA

with good filtration, M is noetherian A-module

with compatible G action. We claim that then

dim∇(M) <∞.
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Indeed H∗(G, A⊗k[G/U ]) is just (A⊗k[G/U ])G

and H∗(G, M⊗k[G/U ]) is by CFG a noetherian

module over it. In particular,

H∗(G, M ⊗ k[G/U ]) lives in only finitely many

degrees and we find that dim∇(M) <∞.

The conclusion

dim∇(A) = 0⇒ dim∇(M) <∞

surprised me. It looked like negative evidence

for the conjecture. Let us try to see why

dim∇(M) would be finite. We do not see how

to embed M into any noetherian A-module

with good filtration. So we turn around and try

a projective resolution. Indeed if W is a finite

dimensional G-submodule that generates M as

an A-module, we have a surjection W⊗A→M .

Repeating, we get a projective resolution of M .

But this almost never stops, as M rarely has

finite projective dimension.
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Thus the conclusion dim∇(M) < ∞ did not

look plausible before the 60th birthday of Eric.

I still do not understand. Nevertheless I proved

it after the birthday under the

Key hypothesis
The symmetric algebra S∗(∇($i)) has good fil-

tration for every fundamental weight $i.

The key hypothesis is satisfied when G = SLn,

n ≤ 5 and also when p ≥ dim(∇($i)) for all

$i. For instance, if G is of type E8, then

p = 6899079289 > 6899079264 is sufficiently

large.

Let us mention some ingredients of the proof.

One turns to gr M and gr A. Using the key

hypothesis one reduces to a situation where

the module is a module over a polynomial ring.

Then projective resolutions do stop and one

uses that projectives are free.
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The trick is to find a

diagonalizable group scheme D and make

G×D act on a tensor product

P =
⊗

S∗(∇($i))
⊗mi

in such a manner that there is a surjection

PD → gr A. View gr M as the summand of

D-invariants in P ⊗PD gr M . It remains to deal

with the module P ⊗PD gr M over the polyno-

mial ring P .

What about the conjecture itself? We can say

more about the flat deformation gr A of A than

about A itself. Say G = SLn. Under the key

hypothesis we can show that at least

H∗(G,gr A) is finitely generated,

for our f.g. A.
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The starting point is a result of Mathieu which
says that gr A is a noetherian module over a
Frobenius twist of an algebra with good
filtration. The Frobenius twist makes that we
get to look at the precise results of Friedlander–
Suslin. We then show the good filtration
dimension of H∗(Gr,gr A) is finite and apply
the Hochschild–Serre spectral sequence.

Only for G = SL2 or for p = 2, G = SL3 can
we pass to A itself and prove the conjecture.
This ‘degrading’ is achieved by means of a set
of universal cohomology classes c[m] that
interpolates the set constructed by Friedlander–
Suslin.

Recall that the divided power Γm(V ) consists
of the subspace of symmetric tensors in V ⊗m.
In general we would like to have classes
c[m] ∈ H2m(GLn,Γm(gl

(1)
n )) that lift the m-th

cup power c[1]∪m ∈ H2m(GLn, (gl
(1)
n )⊗m) of a

certain class c[1].
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This Witt vector class c[1] classifies the exten-

sion

1→ gl
(1)
n → GLn(W2(k))→ GLn(k)→ 1,

where W2(K) is the ring of length two Witt

vectors.

But this may be entirely the wrong way. An

alternative would be to try and show that

H∗(SLn, A) → H∗(SLn, A/J) is surjective up to

repeated pth powers, when J is an invariant

ideal.

Anyway, a better understanding would help.

Eric?

For my preprints: Google Wilberd
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