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Cohomological Finite Generation and Bifunctors
Wilberd van der Kallen

Invariant theory

P. Gordan 1868,

J.f.d. reine u. angew. Math., 69, 323—354.

Beweis dass jede Covariante und Invariante einer binaren
Form eine ganze Function mit numerischen Coefficienten einer
endlichen Anzahl solcher Formen ist.



In modern language: G = SL>(C) as algebraic group.

GAV :=C?2, C[V]=C[X,Y],

Wy = C[V]y, Wo = {aX? 4+ bXY + cY?}, C[Ws] = Cla,b,d],
b2 — 4ac € C[W>]C an invariant (= fixed point).

Gordan: C[W,]% is finitely generated (f.g.) as a C-algebra.



Hilbert 1890

G = SL,(C) acting algebraically on some finite dimensional
complex vector space V.

Here ‘algebraically’ means the action is given by polynomials:
For each v € V there is a polynomial f, in the matrix entries of
g € G with coefficients in V so that ¢g-v = fu(g).

Example: The above action of G = SL>(C) on Who.

Then Hilbert shows nonconstructively that C[V]C is finitely

generated as a C-algebra.



Examples Consider the action of G = GL,(C) by conjugation on
the vector space V = M,(C) of n x n matrices. So g € G sends
m € V to gmg—1. Then C[V]C is generated by the coefficients ¢;
of the characteristic polynomial det(m—AI) = cg+ci1 A+ - -Fcn A",

Next let G be the group of permutations of the n variables
in the polynomial ring C[X7,...,Xn]. Then C[Xq,...,X,]C =
C[p177pn]1 where Ps :X%_ _I__I_X;Lz

Encouraged by an incorrect claim of Maurer, Hilbert asked in
his fourteenth problem if this finite generation of invariants is a
general fact about actions of algebraic Lie groups on domains of
finite type over C.

A counterexample of Nagata (1959) showed this was too
optimistic.



By then it was understood that finite generation of invariants
holds for compact connected real Lie groups like orthogonal
groups (cf. Hurwitz 1897). Hurwitz considers a compact group
K with Haar measure dk and introduces the method of averaging.
KA~V linear. Get linear equivariant retract V — VE from

[ kv dk

Ik dk
Finite generation also holds for the complexifications of
compact Lie groups, also known as the connected reductive

complex algebraic Lie groups (Weyl 1926).
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Finite groups have been treated by Emmy Noether (1926), so
connectedness may be dropped. (Algebraic Lie groups have
finitely many connected components.)

She worked over an arbitrary ground field.

Mumford (GIT, 1965) needed finite generation of invariants for
reductive algebraic groups over fields of arbitrary characteristic
in order to construct moduli spaces.

Say k is an infinite field and G = SL,(k) is acting algebraically
on some finite dimensional k-vector space V.

Then Mumford needs in particular that k[V]C is finitely
generated as a k-algebra.



In his book Geometric Invariant Theory (1965) Mumford
introduced a condition, often referred to as

geometric reductivity.

He conjectured it to be true for reductive algebraic groups and
he conjectured it implies finite generation of invariants.

These conjectures were confirmed by Haboush (1975) and
Nagata (1964) respectively.

Nagata treated any commutative algebra of finite type over the
base field, not just domains. We adopt this generality. It rather
changes the problem of finite generation of invariants.



The proof of Nagata was actually based on a property that
Franjou and the speaker call ‘power reductivity’ (2010).

We call a map of commutative k-algebras
¢ . A — B power surjective if for every b € B thereisn > 1 so
that b € ¢(A).

We call G power reductive if taking invariants preserves power
surjectivity. Thus, if a power reductive G acts algebraically on
commutative k-algebras A, B, and ¢ : A — B is a power surjective
equivariant map, then AG — BG is also power surjective.

Power reductivity is the superior notion when the base ring is no
longer assumed to be a field. It has better base change properties
than geometric reductivity. If the base ring is noetherian the
argument of Nagata goes through.



Example
Let G = G4 be the Lie group C with addition as operation.

Let t € G act on A=C[X,Y,Z]/(XZ) by

X—X, Y—=Y+tX, Z—Z.

Then AG contains X, Z and Y'Z for i > 1, and A® is not finitely
generated. This is an awful lot simpler than the famous Nagata
counterexample from 1959. But we have changed the rules and
A is no polynomial ring. Not even a domain.

This also gives the standard example showing that G = G4 fails
power reductivity: If I is the ideal generated by X in A, then no
power of Y € (A/I)C lifts to AC.



Such failure of lifting is what the cohomology group H(G,I)
is about. So we naturally end up studying cohomology when
looking at invariant theory. One has A¢ = HO9(G, A) and the
H(G, ) are the derived functors of the fixed point functor (=)¢.

Let us say that G satisfies the cohomological finite generation
property (CFQG) if, whenever G acts on a commutative algebra
A of finite type over k, the cohomology algebra H*(G, A) is also
finitely generated over k.

Evens (1961) proved that finite groups have (CFG) and this has
been the starting point of the theory of support varieties. In this
theory one exploits a connection between the rate of growth of
a minimal projective resolution and the dimension of a ‘support
variety’, which is a subvariety of the spectrum of H®Ve"(G, k).
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People working in representation theory of algebraic groups were
eager to join this activity. Thus they had to show that the result
of Evens extends from finite groups to finite group schemes.
(An algebraic group scheme G is called finite if its coordinate
ring k[G] is a finite dimensional vector space.) This turned out
to be surprisingly elusive (Friedlander Suslin 1997).

Eric Friedlander and A. Suslin had to invent a new
representation theory, the strict polynomial functors,
in order to construct universal cohomology classes
that enabled them to bring some Hochschild—Serre
spectral sequences under control. Their
representation theory uses the algebras S(n, d)
introduced by I. Schur in his 1901 thesis and named
Schur algebras by J. A. Green in 1980.
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The S(n,d)-modules correspond with polynomial
representations, homogeneous of degree d, of GL,. The setting
of Friedlander and Suslin captures S(n, d) for all n simultaneously.
Intuitively one thus finds the behaviour as n — oo.

Now the speaker had noticed that if one could show that GL
has (CFG) for large n, then it would follow that finite group
schemes have (CFG). I could soon prove (2004) that GL» has
(CFG), but 2 is not large. Then I started to find corollaries to
(CFG) that seemed wrong. So the game became to disprove the
corollaries. This was a big failure. Instead of disproving them,
I started to prove more and more cases. Thus it became my
conjecture that GL,, has (CFG) (when the base ring is a field).
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To follow the strategy of Friedlander and Suslin and prove my
conjecture, more universal cohomology classes were needed.

These universal cohomology classes were constructed by

Antoine Touzé (2010) in the setting of strict polynomial

bifunctors, invented by Franjou and Friedlander (2008).

This setting models a stable (i.e. N — oo) version of

GLy-cohomology, with coefficients like Hom(A3(kV), S3(kM))
m( (1)

or M (gly 7).

_ 4/ « van der Kallen/Franjou
OMFO (Author: Greuel, Gert-Martin)
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One studies Ext groups in the category of strict polynomial
bifunctors. The main problem (£ 2001) is to produce a family
of cohomology classes that sufficiently enriches the family
constructed by Friedlander and Suslin, who used functors of one
variable only.

Back in the GLj-cohomology setting the lifted classes c[m] of
Antoine Touzé are characterized by

o c[1] € HQ(GLN,g[%)) iS nonzero,

e For m > 1 the class ¢[m] € H2™(GLy, I‘m(glg\}))) lifts
c[1]U---Uc[l] € H2™(GLy, @™ (gl)).
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Taking his cue from the Cartan Seminar of 1954/55, Antoine
Touzé starts with the Frobenius twist of a bar resolution of a bar
resolution of a symmetric algebra functor. Troesch (2005) has
invented a construction of an injective resolution of a Frobenius
twist of a tensor product of symmetric powers. Antoine Touzé
applies the Troesch construction componentwise to the iterated
bar resolution, in the hope of getting a double complex in which
appropriate cochains can be located.

A miracle is needed because the Troesch construction is not
functorial, so that it seems a bit optimistic to expect a double
complex.
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To perform the miracle Antoine Touzé changes the rules by

inventing a new category that is just rich enough to contain the
iterated bar resolution, but so special that the Troesch
construction is functorial on it.
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Nowadays he has a different proof based on a general ‘formality’
theorem for Frobenius twists (Touzé, Chatupnik), inspired by a
paper of Franjou—Friedlander—Scorichenko—Suslin.

According to Chatupnik one has the marvelous formula

HA(B(-D, - =2 @ HL(B(—1,—»® E1)7)
1+7=n

which I am trying to understand. Here B is a bifunctor, E;
is the p-dimensional G;,-module EXxtX (I(l) I(l)) computed by
Friedlander and Suslin, B(---)J is the component of weight 7,

Y

At the moment there is no implementation of the =, basically
just an existence proof. That makes we can not even start to
ask if cup products match.
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