
Los Angeles 2014

Cohomological Finite Generation and Bifunctors
Wilberd van der Kallen

Invariant theory
P. Gordan 1868,

J.f.d. reine u. angew. Math., 69, 323–354.

Beweis dass jede Covariante und Invariante einer binären

Form eine ganze Function mit numerischen Coefficienten einer

endlichen Anzahl solcher Formen ist.
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In modern language: G = SL2(C) as algebraic group.

GyV := C2, C[V ] = C[X,Y ],

Wd := C[V ]d, W2 = {aX2 + bXY + cY 2}, C[W2] = C[a, b, c],

b2 − 4ac ∈ C[W2]G an invariant (= fixed point).

Gordan: C[Wd]
G is finitely generated (f.g.) as a C-algebra.
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Hilbert 1890
G = SLn(C) acting algebraically on some finite dimensional

complex vector space V .

Here ‘algebraically’ means the action is given by polynomials:

For each v ∈ V there is a polynomial fv in the matrix entries of

g ∈ G with coefficients in V so that g · v = fv(g).

Example: The above action of G = SL2(C) on W2.

Then Hilbert shows nonconstructively that C[V ]G is finitely

generated as a C-algebra.
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Examples Consider the action of G = GLn(C) by conjugation on
the vector space V = Mn(C) of n × n matrices. So g ∈ G sends
m ∈ V to gmg−1. Then C[V ]G is generated by the coefficients ci
of the characteristic polynomial det(m−λI) = c0+c1λ+· · ·+cnλn.

Next let G be the group of permutations of the n variables
in the polynomial ring C[X1, . . . , Xn]. Then C[X1, . . . , Xn]G =
C[p1, . . . , pn], where pi = Xi

1 + · · ·+Xi
n.

Encouraged by an incorrect claim of Maurer, Hilbert asked in
his fourteenth problem if this finite generation of invariants is a
general fact about actions of algebraic Lie groups on domains of
finite type over C.

A counterexample of Nagata (1959) showed this was too
optimistic.
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By then it was understood that finite generation of invariants

holds for compact connected real Lie groups like orthogonal

groups (cf. Hurwitz 1897). Hurwitz considers a compact group

K with Haar measure dk and introduces the method of averaging.

KyV linear. Get linear equivariant retract V → V K from

v 7→
∫
K kv dk∫
K dk

.

Finite generation also holds for the complexifications of

compact Lie groups, also known as the connected reductive

complex algebraic Lie groups (Weyl 1926).
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Finite groups have been treated by Emmy Noether (1926), so

connectedness may be dropped. (Algebraic Lie groups have

finitely many connected components.)

She worked over an arbitrary ground field.

Mumford (GIT, 1965) needed finite generation of invariants for

reductive algebraic groups over fields of arbitrary characteristic

in order to construct moduli spaces.

Say k is an infinite field and G = SLn(k) is acting algebraically

on some finite dimensional k-vector space V .

Then Mumford needs in particular that k[V ]G is finitely

generated as a k-algebra.
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In his book Geometric Invariant Theory (1965) Mumford

introduced a condition, often referred to as

geometric reductivity.

He conjectured it to be true for reductive algebraic groups and

he conjectured it implies finite generation of invariants.

These conjectures were confirmed by Haboush (1975) and

Nagata (1964) respectively.

Nagata treated any commutative algebra of finite type over the

base field, not just domains. We adopt this generality. It rather

changes the problem of finite generation of invariants.
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The proof of Nagata was actually based on a property that
Franjou and the speaker call ‘power reductivity’ (2010).

We call a map of commutative k-algebras
φ : A → B power surjective if for every b ∈ B there is n ≥ 1 so
that bn ∈ φ(A).

We call G power reductive if taking invariants preserves power
surjectivity. Thus, if a power reductive G acts algebraically on
commutative k-algebras A, B, and φ : A→ B is a power surjective
equivariant map, then AG → BG is also power surjective.

Power reductivity is the superior notion when the base ring is no
longer assumed to be a field. It has better base change properties
than geometric reductivity. If the base ring is noetherian the
argument of Nagata goes through.
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Example

Let G = Ga be the Lie group C with addition as operation.

Let t ∈ G act on A = C[X,Y, Z]/(XZ) by

X 7→ X, Y 7→ Y + tX, Z 7→ Z.

Then AG contains X, Z and Y iZ for i ≥ 1, and AG is not finitely

generated. This is an awful lot simpler than the famous Nagata

counterexample from 1959. But we have changed the rules and

A is no polynomial ring. Not even a domain.

This also gives the standard example showing that G = Ga fails

power reductivity: If I is the ideal generated by X in A, then no

power of Y ∈ (A/I)G lifts to AG.
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Such failure of lifting is what the cohomology group H1(G, I)

is about. So we naturally end up studying cohomology when

looking at invariant theory. One has AG = H0(G,A) and the

Hi(G,−) are the derived functors of the fixed point functor (−)G.

Let us say that G satisfies the cohomological finite generation

property (CFG) if, whenever G acts on a commutative algebra

A of finite type over k, the cohomology algebra H∗(G,A) is also

finitely generated over k.

Evens (1961) proved that finite groups have (CFG) and this has

been the starting point of the theory of support varieties. In this

theory one exploits a connection between the rate of growth of

a minimal projective resolution and the dimension of a ‘support

variety’, which is a subvariety of the spectrum of Heven(G, k).
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People working in representation theory of algebraic groups were

eager to join this activity. Thus they had to show that the result

of Evens extends from finite groups to finite group schemes.

(An algebraic group scheme G is called finite if its coordinate

ring k[G] is a finite dimensional vector space.) This turned out

to be surprisingly elusive (Friedlander Suslin 1997).

Eric Friedlander and A. Suslin had to invent a new

representation theory, the strict polynomial functors,

in order to construct universal cohomology classes

that enabled them to bring some Hochschild–Serre

spectral sequences under control. Their

representation theory uses the algebras S(n, d) Eric

introduced by I. Schur in his 1901 thesis and named

Schur algebras by J. A. Green in 1980.
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The S(n, d)-modules correspond with polynomial

representations, homogeneous of degree d, of GLn. The setting

of Friedlander and Suslin captures S(n, d) for all n simultaneously.

Intuitively one thus finds the behaviour as n→∞.

Now the speaker had noticed that if one could show that GLn

has (CFG) for large n, then it would follow that finite group

schemes have (CFG). I could soon prove (2004) that GL2 has

(CFG), but 2 is not large. Then I started to find corollaries to

(CFG) that seemed wrong. So the game became to disprove the

corollaries. This was a big failure. Instead of disproving them,

I started to prove more and more cases. Thus it became my

conjecture that GLn has (CFG) (when the base ring is a field).

12



To follow the strategy of Friedlander and Suslin and prove my
conjecture, more universal cohomology classes were needed.

These universal cohomology classes were constructed by
Antoine Touzé (2010) in the setting of strict polynomial
bifunctors, invented by Franjou and Friedlander (2008).
This setting models a stable (i.e. N →∞) version of
GLN-cohomology, with coefficients like Hom(∧3(kN), S3(kN))
or Γm(gl(1)

N ).

Touzé

van der Kallen/Franjou

c©MFO (Author: Greuel, Gert-Martin)
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One studies Ext groups in the category of strict polynomial

bifunctors. The main problem (± 2001) is to produce a family

of cohomology classes that sufficiently enriches the family

constructed by Friedlander and Suslin, who used functors of one

variable only.

Back in the GLN-cohomology setting the lifted classes c[m] of

Antoine Touzé are characterized by

• c[1] ∈ H2(GLN , gl
(1)
N ) is nonzero,

• For m ≥ 1 the class c[m] ∈ H2m(GLN ,Γ
m(gl(1)

N )) lifts

c[1] ∪ · · · ∪ c[1] ∈ H2m(GLN ,
⊗m(gl(1)

N )).
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Taking his cue from the Cartan Seminar of 1954/55, Antoine

Touzé starts with the Frobenius twist of a bar resolution of a bar

resolution of a symmetric algebra functor. Troesch (2005) has

invented a construction of an injective resolution of a Frobenius

twist of a tensor product of symmetric powers. Antoine Touzé

applies the Troesch construction componentwise to the iterated

bar resolution, in the hope of getting a double complex in which

appropriate cochains can be located.

A miracle is needed because the Troesch construction is not

functorial, so that it seems a bit optimistic to expect a double

complex.
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To perform the miracle Antoine Touzé changes the rules by

inventing a new category that is just rich enough to contain the

iterated bar resolution, but so special that the Troesch

construction is functorial on it.
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Nowadays he has a different proof based on a general ‘formality’
theorem for Frobenius twists (Touzé, Cha lupnik), inspired by a
paper of Franjou–Friedlander–Scorichenko–Suslin.
According to Cha lupnik one has the marvelous formula

Hn
P(B(−(1)

1 ,−(1)
2 )) ∼=

⊕
i+j=n

Hi
P(B(−1,−2 ⊗ E1)j)

which I am trying to understand. Here B is a bifunctor, E1
is the p-dimensional Gm-module Ext∗P(I(1), I(1)) computed by
Friedlander and Suslin, B(· · ·)j is the component of weight j,
. . .

At the moment there is no implementation of the ∼=, basically
just an existence proof. That makes we can not even start to
ask if cup products match.
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