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Antoine Touzé

Let k be a field.

Let G be a reductive group over k

acting on a finitely generated

commutative k-algebra A.

The (CFG) Theorem (Duke Journal 2010)

H∗(G, A) is a finitely generated k-algebra.

[van der Kallen conjecture ± 2003]
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Leonard Evens

Let k be a commutative noetherian ring.

Let G be a finite group

acting on a finitely generated

commutative k-algebra A.

The (CFG) Theorem of Evens (TAMS 1961)

H∗(G, A) is a finitely generated k-algebra.
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Eric Friedlander and Andrei Suslin

Let G be a finite group scheme over the field k.

Let C be a commutative noetherian k-algebra on which G acts

trivially.

Let G act on a finitely generated commutative C-algebra A.

Their (CFG) Theorem (Inventiones 1997)

Say G is infinitesimal. H∗(G, A) is a finitely generated C-algebra,

noetherian as a module over an explicit algebra AG ⊗k S(. . .).
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The Setting

k is the base ring. It is commutative and often noetherian.
G is flat affine algebraic group scheme over k.
Its coordinate ring k[G] is a Hopf algebra.
A G-module is a comodule for the Hopf algebra k[G].
It is also called a representation. Thus a representation is a k-
module V together with a comultiplication ∆ : V → V ⊗k k[G]
which makes G(R) act R-linearly on V ⊗k R, functorially in R.

It is essential that G be flat, but V need not be flat or finitely
generated. The representations form an abelian category with
enough injectives.
The subspace V G of invariants in V corresponds with Hom(k, V ).
Put Hi(G, V ) = Exti(k, V ). Cohomology can be computed by
means of the Hochschild complex C•(V ) = (V ⊗k C•(k[G]))G.
There is a DGA structure on C•(k[G]) = k[G]⊗(•+1).
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Say A is a commutative k-algebra on which G acts by algebra
automorphisms. Then A⊗k A → A is a G-module map. Similarly,
if M is an A-module on which G acts compatibly then A⊗k M →
M is a G-module map.

Any (CFG) theorem implies one for noetherian A-modules M
by considering the symmetric algebra SA(M). For instance, the
(CFG) theorem of Evens also tells that H∗(G, M) is a noetherian
H∗(G, A)-module.

As H∗(G, A) is graded commutative one often restricts attention
to Heven(G, A). It turns out that when A = k is a field, G a
finite group, the support of the module H∗(G, M ⊗k M∨) in (the
spectrum of) Heven(G, k) gives information on the complexity of
M . The complexity measures the rate of growth of a minimal
projective resolution. The theory of support varieties has been
very successful.
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Elusive

It was desirable to imitate the theory of support varieties for finite

group schemes instead of finite groups. But extending the CFG

theorem of Evens in that direction proved ‘surprisingly elusive’.

The way finite group schemes arise in the representation theory

of reductive groups in characteristic p is as follows. Say k = Fp

and G is a reductive group over k. The Frobenius map raises

elements of k[G] to the p-th power. It defines a morphism of

group schemes F : G → G. The scheme theoretic kernel Gr

of F r is known as the r-th Frobenius kernel. The Gr serve as

analogue of the Lie algebra of a connected Lie group. If V , W are

finite dimensional G-modules, then Exti
G(V, W ) is the projective

limit for r →∞ of the Exti
Gr

(V, W ).
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While Friedlander and Suslin were working on their (CFG) theo-
rem, I noticed a Lemma. Something like this.

Lemma

Let G be an algebraic group (smooth) over a field and let H be
a geometrically reductive subgroup scheme.
If G satisfies (CFG), so does H.

This made one wonder if (CFG) holds for GLN over a field, in
particular for large N . In that case (CFG) holds both for finite
group schemes and for reductive groups (geometrically reductive
by Haboush 1975). It turns out that GL2 is much easier. In fact
I can now do (CFG) for GL2 over any noetherian base ring k.

And of course over a field of characteristic zero one has
H>0(GLN , A) = 0, so that (CFG) is just invariant theory.
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Geometric reductivity

Let us call a k-module M geometric if it is finitely generated
projective. In that case the functor R 7→ M ⊗k R is representable
by an affine scheme, the spectrum of the coordinate ring Sk(M

∨).

For a reductive group G over a field of positive characteristic p

Mumford (1965) conjectured the following:

Let M → kξ → 0 be exact, where M is geometric and kξ denotes
the representation defined by the character ξ : G → Gm = GL1.
Then there is n ≥ 1 so that SnM → Snkξ splits. This property is
called geometric reductivity and was proved by Haboush (1975).

Now if k is not a field, there is a much superior notion, obtained
by not requiring that M be geometric.
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with Vincent Franjou at Madrid, 2006,

c©MFO (Author: Greuel, Gert-Martin)

We call G power reductive if, whenever M → kξ → 0 is exact,

there is n ≥ 1 so that SnM → Snkξ splits.

If k is noetherian then power reductivity implies finite genera-

tion of invariants (FG): If A is finitely generated then so is AG.

This was proved by Nagata (1964) over fields. The proof goes

through here, as is clear from the exposition by Springer (1977)

of Nagata’s proof. 10



Power reductivity is preserved by change of base ring.
Descent. If k → R is faithfully flat and GR is power reductive,
then so is Gk. A similar statement holds for (CFG).
If N is normal subgroup so that N and G/N are power reductive,
then so is G.

If G is power reductive and I is an invariant ideal in A, then for
every b ∈ (A/I)G there is an n ≥ 1 so that bn lifts to AG.

Chevalley groups

Chevalley groups are power reductive: Say GZ is a connected
split reductive algebraic Z-group . Then it is power reductive.
[Easy! Go local on Spec(Z), then use Nakayama Lemma and
Universal Coefficient Theorem to lift the Cline-Parshall-Scott
proof of Haboush’s Theorem, based on Kempf vanishing and
Steinberg modules.]
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Example. If GZ = SLN acts on a flat Z-algebra A, then one may
take a prime number p and put I = pA. Thus ’modular invariants
lift up to a power’.

Also note that (A/pA)GZ = (A/pA)GZ/pZ. More generally, if k → R
is a map of commutative rings, and M is a GR-module, then it
may also be viewed as G-module via M ⊗R R[G] = M ⊗k k[G] and
Hi(GR, M) = Hi(G, M).

If G is not power reductive, for instance G = Ga over a field,
take a counter example M → k → 0 with M finitely generated.
Then SS(M)(S(k)) is finitely generated, but (SS(M)(S(k)))G is
not (Exercise). So power reductivity is equivalent to (FG) over
a noetherian base ring k.

Problem 14 of Hilbert is about domains. That is much harder.
The example SS(M)(S(k)) is no domain.

12



The upshot is that over a field (FG) is equivalent to (CFG).

Over other noetherian base ring we know much less about
(CFG). Say k is noetherian and G = Gk with GZ a Chevalley
group scheme as above.

Assume as always that the commutative algebra A is finitely
generated over k, with rational action on A of G. Further, let M
be a noetherian A-module again with compatible G-action.
An abelian group L has bounded torsion if there is an n ≥ 1 with
nLtors = 0.

• Every Hm(G, M) is a noetherian AG-module.
• If H∗(G, A) is a finitely generated k-algebra, then H∗(G, M) is

a noetherian H∗(G, A)-module.
• H∗(G, A) is a finitely generated k-algebra iff

it has bounded torsion.
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And if you know about the Grosshans

graded deformation gr A of A, you may add

• H∗(G,gr A) is a finitely generated k-algebra.

Notice that H1(Ga, Fp) is not finite dimensional.

That is why we restricted to Chevalley groups.

Maybe power reductivity would do.
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Why conjecture (CFG)?

Now why did (CFG) become a conjecture? Not just because it

holds for GL2 and would be nice in general. It took me several

years.

The work of Friedlander and Suslin seems to prepare for more

than what they use it for. They construct cohomology classes

for GLN and then only use them infinitesimally.

Another reason to start believing (CFG) is that (CFG) has im-

plications that happen to pan out, despite them looking unrea-

sonable to me (initially).
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Here is a recent one, based on joint work with Srinivas

Let k be noetherian, G = SLN . Recall that one

has Schur modules or costandard modules ∇(λ) = Γ(G/B,Lλ)

with highest weight λ. Say a representation V has good

Grosshans filtration if Hi(G, V ⊗k ∇(λ)) vanishes for i > 0 and λ

dominant.
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Assume again that the commutative algebra A is finitely gener-
ated over k, with rational action on A of G. Further, let M be a
noetherian A-module with compatible G-action.

Theorem

Recall G = SLN . If A has a good Grosshans filtration, then M has
a finite resolution 0 → M → N0 → · · · → Nd → 0 by noetherian
A-modules with good Grosshans filtration.

If one drops ‘noetherian’ then this is a corollary of the fact that
(CFG) holds in the bounded torsion case.
So without ‘noetherian’ it also holds for other Dynkin types.

The proof of the Theorem uses ‘Characteristic free resolution of
the ideal of the diagonal’, which is a method borrowed from a
computation of equivariant K-groups of Grassmannians.
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Strands

The proof of (CFG) for GLN over a field depends on many ingre-

dients. One needs the results of Friedlander and Suslin in explicit

form, Grosshans graded deformation, an inseparabilty lemma of

Mathieu (which is where it becomes very nonconstructive), the

characteristic free ‘resolutions of the diagonal’ for products of

Grassmannians, and the all important new ingredient: the uni-

versal cohomology classes of Touzé. See the paper in the Duke

Journal, which has expository parts.

The universal cohomology classes are constructed in the setting

of strict polynomial bifunctors, invented by Franjou and Fried-

lander. This setting models a stable (i.e. N → ∞) version of

GLN-cohomology.
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One studies Ext groups in the category of strict polynomial bi-

functors. The main problem (± 2001) is to produce a family

of cohomology classes that sufficiently enriches the family con-

structed by Friedlander and Suslin, who used functors of one

variable only.

Back in the GLN-cohomology setting the lifted classes c[m] of

Antoine Touzé are characterized by

• c[1] ∈ H2(GLN , gl
(1)
N ) is nonzero,

• For m ≥ 1 the class c[m] ∈ H2m(GLN ,Γm(gl
(1)
N )) lifts

c[1] ∪ · · · ∪ c[1] ∈ H2m(GLN ,
⊗m(gl

(1)
N )).
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Taking his cue from the Cartan Seminar of 1954/55, Antoine

Touzé starts with the Frobenius twist of a bar resolution of a

bar resolution of a symmetric algebra functor. Troesch has in-

vented a construction of an injective resolution of a Frobenius

twist of a tensor product of symmetric powers. Antoine Touzé

applies the Troesch construction componentwise to the iterated

bar resolution, in the hope of getting a double complex in which

appropriate cochains can be located.

A miracle is needed because the Troesch construction is not

functorial, so that it seems a bit optimistic to expect a double

complex.
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To perform the miracle Antoine Touzé changes the rules by in-

venting a new category that is just rich enough to contain the

iterated bar resolution, but so special that the Troesch construc-

tion is functorial on it.

Nowadays he has a different proof based on a general formality

theorem for Frobenius twists.
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