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Antoine Touzé

Let £ be a field.

Let G be a reductive group over k
acting on a finitely generated
commutative k-algebra A.

The (CFG) Theorem (Duke Journal 2010)
H*(G,A) is a finitely generated k-algebra.
[van der Kallen conjecture + 2003]



. Leonard Evens

Let £ be a commutative noetherian ring.
Let G be a finite group

acting on a finitely generated
commutative k-algebra A.

The (CFG) Theorem of Evens (TAMS 1961)
H*(G,A) is a finitely generated k-algebra.



. Eric Friedlander and Andrei Suslin

Let G be a finite group scheme over the field k.

Let C' be a commutative noetherian k-algebra on which G acts
trivially.

Let G act on a finitely generated commutative C-algebra A.

Their (CFG) Theorem (Inventiones 1997)
Say G is infinitesimal. H*(G, A) is a finitely generated C-algebra,
noetherian as a module over an explicit algebra A® ®r S(...).
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The Setting

k is the base ring. It is commutative and often noetherian.

G is flat affine algebraic group scheme over k.

Its coordinate ring k[G] is a Hopf algebra.

A G-module is a comodule for the Hopf algebra k[G].

It is also called a representation. Thus a representation is a k-
module V together with a comultiplication A : V — V ® k[G]
which makes G(R) act R-linearly on V ®; R, functorially in R.

It is essential that GG be flat, but V need not be flat or finitely
generated. The representations form an abelian category with
enough injectives.

The subspace V& of invariants in V corresponds with Hom(k, V).
Put HY(G,V) = Ext'(k,V). Cohomology can be computed by
means of the Hochschild complex C*(V) = (V ®; C*(k[G]))C.
There is a DGA structure on C*(k[G]) = k[G]®(‘+1k3.



Say A is a commutative k-algebra on which G acts by algebra
automorphisms. Then A, A — A is a G-module map. Similarly,
if M is an A-module on which G acts compatibly then AQ, M —
M is a G-module map.

Any (CFG) theorem implies one for noetherian A-modules M
by considering the symmetric algebra S4(M). For instance, the
(CFG) theorem of Evens also tells that H*(G, M) is a noetherian
H*(G, A)-module.

As H*(G, A) is graded commutative one often restricts attention
to H®VeN(G, A). It turns out that when A = k is a field, G a
finite group, the support of the module H*(G, M ®; M") in (the
spectrum of) HVeN(G, k) gives information on the complexity of
M. The complexity measures the rate of growth of a minimal
projective resolution. The theory of support varieties has been
very successful.



Elusive

It was desirable to imitate the theory of support varieties for finite
group schemes instead of finite groups. But extending the CFG
theorem of Evens in that direction proved ‘surprisingly elusive’.

The way finite group schemes arise in the representation theory
of reductive groups in characteristic p is as follows. Say k =),
and G is a reductive group over k. The Frobenius map raises
elements of k[G] to the p-th power. It defines a morphism of
group schemes F' : G — G. The scheme theoretic kernel Gy
of F" is known as the r-th Frobenius kernel. The G, serve as
analogue of the Lie algebra of a connected Lie group. If V, W are
finite dimensional G-modules, then Ethé(V, W) is the projective
limit for r — oo of the Exty (V,W).



While Friedlander and Suslin were working on their (CFQG) theo-
rem, I noticed a Lemma. Something like this.

Lemma

Let G be an algebraic group (smooth) over a field and let H be
a geometrically reductive subgroup scheme.
If G satisfies (CFG), so does H.

This made one wonder if (CFG) holds for GLy over a field, in
particular for large N. In that case (CFG) holds both for finite
group schemes and for reductive groups (geometrically reductive
by Haboush 1975). It turns out that GL» is much easier. In fact
I can now do (CFQG) for GL, over any noetherian base ring k.

And of course over a field of characteristic zero one has
H>9(GLy, A) = 0, so that (CFG) is just invariant theory.



Geometric reductivity

Let us call a k-module M geometric if it is finitely generated
projective. In that case the functor R — M ®;. R is representable
by an affine scheme, the spectrum of the coordinate ring Si(M").

For a reductive group G over a field of positive characteristic p
Mumford (1965) conjectured the following:

Let M — kg — O be exact, where M is geometric and kg denotes
the representation defined by the character £ : G — Gy, = GL1.
Then thereis n > 1 so that S"M — S”kg splits. This property is
called geometric reductivity and was proved by Haboush (1975).

Now if k is not a field, there is a much superior notion, obtained
by not requiring that M be geometric.
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We call G power reductive if, whenever M — kg — 0 is exact,
there is n > 1 so that S"M — S”kg splits.

If k£ is noetherian then power reductivity implies finite genera-
tion of invariants (FG): If A is finitely generated then so is AC.
This was proved by Nagata (1964) over fields. The proof goes
through here, as is clear from the exposition by Springer (1977)
of Nagata's proof. 10



Power reductivity is preserved by change of base ring.

Descent. If £ — R is faithfully flat and Gg is power reductive,
then so is G. A similar statement holds for (CFG).

If N is normal subgroup so that N and G/N are power reductive,
then so is G.

If G is power reductive and I is an invariant ideal in A, then for
every b € (A/I)C there is an n > 1 so that b" lifts to AC.

Chevalley groups

Chevalley groups are power reductive: Say Gy is a connected
split reductive algebraic Z-group . Then it is power reductive.
[Easy! Go local on Spec(Z), then use Nakayama Lemma and
Universal Coefficient Theorem to lift the Cline-Parshall-Scott
proof of Haboush's Theorem, based on Kempf vanishing and
Steinberg modules.]
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Example. If Gy = SL) acts on a flat Z-algebra A, then one may
take a prime number p and put I = pA. Thus 'modular invariants
lift up to a power’.

Also note that (A4/pA)Cz = (A/pA)GZ/PZ. More generally, ifk — R
IS @ map of commutative rings, and M is a Gr-module, then it
may also be viewed as G-module via M ®p R[G] = M ®; k[G] and
HY(Gp, M) = H' (G, M).

If G is not power reductive, for instance G = G, over a field,
take a counter example M — k — O with M finitely generated.
Then Sg(S(k)) is finitely generated, but (Sg(yn(S(k)))Y is
not (Exercise). So power reductivity is equivalent to (FG) over
a noetherian base ring k.

Problem 14 of Hilbert is about domains. That is much harder.
The example SS(M)(S(k)) iS no domain.

12



The upshot is that over a field (FG) is equivalent to (CFQG).

Over other noetherian base ring we know much less about
(CFQG). Say k is noetherian and G = G} with G5 a Chevalley
group scheme as above.

Assume as always that the commutative algebra A is finitely
generated over k, with rational action on A of G. Further, let M
be a noetherian A-module again with compatible G-action.

An abelian group L has bounded torsion if there is an n > 1 with
nLiors = 0.

e Every H™(G, M) is a noetherian AS-module.
o If H*(G, A) is a finitely generated k-algebra, then H*(G, M) is
a noetherian H*(G, A)-module.
e H*(G, A) is a finitely generated k-algebra iff
it has bounded torsion.
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And if you know about the Grosshans
graded deformation gr A of A, you may add
e H*(G,gr A) is a finitely generated k-algebra.

Notice that H1(G,,Fp) is not finite dimensional.

That is why we restricted to Chevalley groups.
Maybe power reductivity would do.
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Why conjecture (CFG)?

Now why did (CFG) become a conjecture? Not just because it
holds for GL, and would be nice in general. It took me several
years.

The work of Friedlander and Suslin seems to prepare for more
than what they use it for. They construct cohomology classes
for GL and then only use them infinitesimally.

Another reason to start believing (CFG) is that (CFG) has im-
plications that happen to pan out, despite them looking unrea-
sonable to me (initially).
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Here is a recent one, based on joint work with Srinivas

Let k£ be noetherian, G = SL,. Recall that one
has Schur modules or costandard modules V(\) = IF'(G/B, L))
with highest weight . Say a representation V has good
Grosshans filtration if H'(G,V ®; V(X)) vanishes for ¢ > 0 and \
dominant.
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Assume again that the commutative algebra A is finitely gener-
ated over k, with rational action on A of G. Further, let M be a
noetherian A-module with compatible G-action.

T heorem

Recall G = SLy. If A has a good Grosshans filtration, then M has
a finite resolution 0 - M — Ng — --- — Ny — 0 by noetherian
A-modules with good Grosshans filtration.

If one drops ‘noetherian’ then this is a corollary of the fact that
(CFGQG) holds in the bounded torsion case.
So without ‘noetherian’ it also holds for other Dynkin types.

The proof of the Theorem uses ‘Characteristic free resolution of
the ideal of the diagonal’, which is a method borrowed from a
computation of equivariant K-groups of Grassmannians.
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Strands

The proof of (CFG) for GL ) over a field depends on many ingre-
dients. One needs the results of Friedlander and Suslin in explicit
form, Grosshans graded deformation, an inseparabilty lemma of
Mathieu (which is where it becomes very nonconstructive), the
characteristic free ‘resolutions of the diagonal’ for products of
Grassmannians, and the all important new ingredient: the uni-
versal cohomology classes of Touzé. See the paper in the Duke
Journal, which has expository parts.

T he universal cohomology classes are constructed in the setting
of strict polynomial bifunctors, invented by Franjou and Fried-
lander. This setting models a stable (i.,.e. N — oo) version of
G L -cohomology.
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One studies Ext groups in the category of strict polynomial bi-
functors. The main problem (£ 2001) is to produce a family
of cohomology classes that sufficiently enriches the family con-
structed by Friedlander and Suslin, who used functors of one
variable only.

Back in the GLj-cohomology setting the lifted classes c[m] of
Antoine Touzé are characterized by

o c[1] € HQ(GLN,g[](\})) iS nonzero,

e For m > 1 the class ¢[m] € H2™(GLy, I‘m(g[](\}))) lifts
c[1]U---Uc[l] € H2™(GLy, @™ (al\M)).
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Taking his cue from the Cartan Seminar of 1954/55, Antoine
Touzé starts with the Frobenius twist of a bar resolution of a
bar resolution of a symmetric algebra functor. Troesch has in-
vented a construction of an injective resolution of a Frobenius
twist of a tensor product of symmetric powers. Antoine Touzé
applies the Troesch construction componentwise to the iterated
bar resolution, in the hope of getting a double complex in which
appropriate cochains can be located.

A miracle is needed because the Troesch construction is not

functorial, so that it seems a bit optimistic to expect a double
complex.
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To perform the miracle Antoine Touzé changes the rules by in-
venting a new category that is just rich enough to contain the

iterated bar resolution, but so special that the Troesch construc-
tion is functorial on it.

Nowadays he has a different proof based on a general formality
theorem for Frobenius twists.

21



Bibliography

e K. Akin, D. Buchsbaum, J. Weyman, Schur functors and
Schur complexes, Adv. in Math. 44 (1982), 207—278.

e Nicolas Bourbaki, Eléments de mathématique. (French)
Algebre. Chapitre 10. Algebre homologique. Masson, Paris,
1980. vii4+216 pp.

e L. Evens, The cohomology ring of a finite group, Trans.
Amer. Math. Soc. 101 (1961), 224—23.

e E. M. Friedlander, A. A. Suslin, Cohomology of finite group
schemes over a field, Invent. Math. 127 (1997), 209—270.

22



Vincent Franjou and Wilberd van der Kallen, Power reductiv-
ity over an arbitrary base, Documenta Mathematica, Extra
Volume Suslin (2010), pp. 171-195.

F. D. Grosshans, Contractions of the actions of reductive
algebraic groups in arbitrary characteristic, Invent. Math. 107
(1992), 127—-133.

J.-C. Jantzen, Representations of Algebraic Groups, Math-
ematical Surveys and Monographs vol. 107, Amer. Math.
Soc., Providence, 2003.

M. Levine, V. Srinivas, J. Weyman, K-Theory of twisted
Grassmannians, K-Theory 3 (1989), 99-121.

23



e M. Nagata, Invariants of a group in an affine ring, J. Math.
Kyoto Univ. 3 (1963/1964), 369-377.

e . A. Springer, Invariant theory. Lecture Notes in Mathe-
matics, 585. Springer-Verlag, Berlin-New York, 1977.

e V. Srinivas, W. van der Kallen, Finite Schur filtration di-
mension for modules over an algebra with Schur filtration,
Transformation Groups, Vol. 14, No. 3, 2009, pp. 695-711.
DOI: 10.1007/500031-009-9054-0

24



e A. Touzé, Universal classes for algebraic groups, Duke Math-
ematical Journal, VVol. 151, No. 2, 2010, pp. 219-249. DOI:
10.1215/00127094-2009-064

e Antoine Touzé and Wilberd van der Kallen, Bifunctor co-
homology and Cohomological finite generation for reductive
groups, Duke Mathematical Journal, Vol. 151, No. 2, 2010,
pp. 251-278. DOI: 10.1215/00127094-2009-065

e VW. van der Kallen, Cohomology with Grosshans graded co-
efficients, In: Invariant Theory in All Characteristics, Edited
by: H. E. A. Eddy Campbell and David L. Wehlau, CRM Pro-
ceedings and Lecture Notes, Volume 35 (2004), 127-138.

25



