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Invariant theory
P. Gordan 1868,
J.f.d. reine u. angew. Math., 69, 323–354.
Beweis dass jede Covariante und Invariante einer binären
Form eine ganze Function mit numerischen Coefficienten einer
endlichen Anzahl solcher Formen ist.

In modern language: G = SL2(C) as algebraic group.
GyV := C2, C[V ] = C[X, Y ],
Wd := C[V ]d, W2 = {aX2 + bXY + cY 2}, C[W2] = C[a, b, c],
b2 − 4ac ∈ C[W2]

G an invariant (= fixed point).

Gordan: C[Wd]
G is finitely generated (f.g.) as a C-algebra.
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Hilbert 1890
G = SLn(C) acting algebraically on some finite dimensional

complex vector space V .

Here ‘algebraically’ means the action is given by polynomials:

For each v ∈ V there is a polynomial fv in the matrix entries of

g ∈ G with coefficients in V so that g · v = fv(g).

Example: The above action of G = SL2(C) on W2.

Then Hilbert shows nonconstructively that C[V ]G is finitely

generated as a C-algebra.
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Digression 1, cited from Wikipedia
A famous quote attributed to Gordan about David Hilbert’s proof
of the Hilbert Basis Theorem, a result which vastly generalized
his result on invariants, is

”This is not mathematics; this is theology.”

The proof in question was the (non-constructive) existence of
a finite basis for invariants. It is not clear if Gordan really said
this since the earliest reference to it is 25 years after the events
and after his death, and nor is it clear whether the quote was
intended as criticism, or praise, or a subtle joke.
Gordan himself encouraged Hilbert and used Hilbert’s results and
methods, and the widespread story that he opposed Hilbert’s
work on invariant theory is a myth (though he did correctly point
out in a referee’s report that some of the reasoning in Hilbert’s
paper was incomplete).
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Examples Consider the action of G = GLn(C) by conjugation on
the vector space V = Mn(C) of n × n matrices. So g ∈ G sends
m ∈ V to gmg−1. Then C[V ]G is generated by the coefficients ci

of the characteristic polynomial det(m−λI) = c0+c1λ+· · ·+cnλn.

Next let G be the group of permutations of the n variables
in the polynomial ring C[X1, . . . , Xn]. Then C[X1, . . . , Xn]G =
C[p1, . . . , pn], where pi = Xi

1 + · · ·+ Xi
n.

Encouraged by an incorrect claim of Maurer, Hilbert asked in
his fourteenth problem if this finite generation of invariants is a
general fact about actions of algebraic Lie groups on domains of
finite type over C.

A counterexample of Nagata (1959) showed this was too
optimistic.
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Digression 2, cited from Wikipedia
Nagata’s counterexample

Nagata (1958) gave the following counterexample to Hilbert’s
problem.
The field k is a field containing 48 elements a1i, . . . , a16i, for
i = 1, 2, 3 that are algebraically independent over the prime field.
The ring R is the polynomial ring k[x1, . . . , x16, t1, . . . , t16] in 32
variables. The vector space V is a 13-dimensional vector space
over k consisting of all vectors (b1, ..., b16) in k16 orthogonal to
each of the three vectors (a1i, . . . , a16i) for i = 1, 2, 3. The vector
space V is a 13-dimensional commutative unipotent algebraic
group under addition, and its elements act on R by fixing all
elements tj and taking xj to xj + bjtj. Then the ring of elements
of R invariant under the action of the group V is not a finitely
generated k-algebra.
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By then it was understood that finite generation of invariants

holds for compact connected real Lie groups like orthogonal

groups (cf. Hurwitz 1897). Hurwitz considers a compact group

K with Haar measure dk and introduces the method of averaging.

KyV linear. Get linear equivariant retract V → V K from

v 7→
∫
K kv dk∫

K dk
.

Finite generation also holds for the complexifications of

compact Lie groups, also known as the connected reductive

complex algebraic Lie groups (Weyl 1926).
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Finite groups have been treated by Emmy Noether (1926), so

connectedness may be dropped. (Algebraic Lie groups have

finitely many connected components.)

She worked over an arbitrary ground field.

Mumford (GIT, 1965) needed finite generation of invariants for

reductive algebraic groups over fields of arbitrary characteristic

in order to construct moduli spaces.

Say k is an infinite field and G = SLn(k) is acting algebraically

on some finite dimensional k-vector space V .

Then Mumford needs in particular that k[V ]G is finitely

generated as a k-algebra.
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In his book Geometric Invariant Theory (1965) Mumford

introduced a condition, often referred to as

geometric reductivity.

He conjectured it to be true for reductive algebraic groups and

he conjectured it implies finite generation of invariants.

These conjectures were confirmed by Haboush (1975) and

Nagata (1964) respectively.

Nagata treated any algebra of finite type over the base field, not

just domains. We adopt this generality. It rather changes the

problem of finite generation of invariants.
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The proof of Nagata was actually based on a property that
Franjou and the speaker call ‘power reductivity’.

We call a map of commutative k-algebras φ : A → B power
surjective if for every b ∈ B there is n ≥ 1 so that bn ∈ φ(A).

We call G power reductive if taking invariants preserves power
surjectivity. Thus, if a power reductive G acts algebraically on
commutative k-algebras A, B, and φ : A → B is a power surjective
equivariant map, then AG → BG is also power surjective.

Actually Mumford published his book after the work of Nagata
on the Mumford conjecture, and the formulation in the book
amounts to conjecturing power reductivity for the relevant G,
not geometric reductivity, which is a dual notion. As long as
the base ring is a field, power reductivity is easily equivalent to
geometric reductivity. (If dim V < ∞, then V ∨∨ ∼= V .)
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The standard story has the Mumford conjecture stated in terms
of geometric reductivity.
We have followed that custom here, even though we know that
over more general base ring power reductivity is the superior
notion.
It is more informative and has better base change properties.

Let us say that G satisfies property (FG) if, whenever G acts on a
commutative algebra of A finite type over k, the ring of invariants
AG is also finitely generated over k. So then the theorem of
Haboush and Nagata says that connected reductive algebraic
groups like SLn over a field have property (FG). Of course the
action of G on A should be consistent with the nature of G and
A respectively. Thus if G is an algebraic group, then the action
should be algebraic and the multiplication map A⊗kA → A should
be equivariant.

10



It turns out that (FG) is equivalent to power reductivity, and this

equivalence continues to hold if our base field k is replaced with

an arbitrary commutative noetherian base ring. (The correct

formulation now involves group schemes, not groups.)

Here it is essential that we changed the rules by allowing any

algebra of finite type over the base ring, not just domains.

Certainly not just polynomial rings with their grading.

This equivalence may be used to prove that connected reductive

group schemes like SLm have property (FG) over an arbitrary

commutative noetherian base ring R.
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Example
Let R = Z, G = SL2 acting in its adjoint representation M with
basis

X =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 1
0 0

)
.

So g ∈ G sends a matrix m to gmg−1. The class of H in M/2M

is invariant. It is no surprise that this modular invariant does not
lift to an invariant in characteristic zero.
But when we embed M into an algebra, we can apply Power
Reductivity. It tells that actually some power of
H mod 2M ∈ (S∗(M/2M))G must lift to (S∗M)G.
Indeed H2 + 4XY ∈ (S2M)G is a lift.

This link between characteristics requires power reductivity with
nonfree modules.
Geometric reductivity cannot deal with nonfree modules.
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The equivalence of (FG) with power reductivity leads to easy

counterexamples to (FG). For instance, let G = Ga be the Lie

group C with addition as operation.

Let t ∈ G act on A = C[X, Y, Z]/(XZ) by

X 7→ X, Y 7→ Y + tX, Z 7→ Z.

Then AG contains X, Z and Y iZ for i ≥ 1, and AG is not finitely

generated. This is an awful lot simpler than the famous Nagata

counterexample from 1959. But we have changed the rules and

A is no polynomial ring. Not even a domain.

This also gives the standard example showing that G = Ga fails

power reductivity: If I is the ideal generated by X in A, then no

power of Y ∈ (A/I)G lifts to AG.
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Such failure of lifting is what the cohomology group H1(G, I)

is about. So we naturally end up studying cohomology when

looking at invariant theory. One has AG = H0(G, A) and the

Hi(G,−) are the derived functors of the fixed point functor (−)G.

Let us say that G satisfies the cohomological finite generation

property (CFG) if, whenever G acts on a commutative algebra

A of finite type over k, the cohomology algebra H∗(G, A) is also

finitely generated over k.

Evens (1961) proved that finite groups have (CFG) and this has

been the starting point of the theory of support varieties. In this

theory one exploits a connection between the rate of growth of

a minimal projective resolution and the dimension of a ‘support

variety’, which is a subvariety of the spectrum of Heven(G, k).
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People working in representation theory of algebraic groups were

eager to join this activity. Thus they had to show that the result

of Evens extends from finite groups to finite group schemes.

(An algebraic group scheme G is called finite if its coordinate

ring k[G] is a finite dimensional vector space.) This turned out

to be surprisingly elusive (Friedlander Suslin 1997).

Friedlander and Suslin had to invent a new representation theory,

the strict polynomial functors, in order to construct

universal cohomology classes that enabled them to bring some

Hochschild–Serre spectral sequences under control.

Their representation theory uses the algebras S(n, d)

introduced by I. Schur in his 1901 thesis and named

Schur algebras by J. A. Green in 1980.
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The S(n, d)-modules correspond with polynomial

representations, homogeneous of degree d, of GLn. The setting

of Friedlander and Suslin captures S(n, d) for all n simultaneously.

Intuitively one thus finds the behaviour as n →∞.

Now the speaker had noticed that if one could show that GLn

has (CFG) for large n, then it would follow that finite group

schemes have (CFG). I could soon prove (2004) that GL2 has

(CFG), but 2 is not large. Then I started to find corollaries to

(CFG) that seemed wrong. So the game became to disprove the

corollaries. This was a big failure. Instead of disproving them,

I started to prove more and more cases. Thus it became my

conjecture that GLn has (CFG) (when the base ring is a field).
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To follow the strategy of Friedlander and Suslin and prove my
conjecture, more universal cohomology classes were needed.

This required a two variable variant of strict polynomial
functors, the strict polynomial bifunctors of
Franjou and Friedlander (2008), and some miraculous arguments
of Touzé (Duke Journal 2010).

One now wonders if (CFG) still holds for GLn when the base
ring is just a commutative noetherian ring R. It is so for n = 2
and also if R contains a field.

As H>0(G, k) vanishes for reductive G, there is no obvious theory
of support varieties for reductive G.
We are not aware of striking applications of the general (CFG)
theorem, but investigating the (CFG) conjecture has led to new
insights.
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