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Cohomological Finite Generation and
the Identity Correspondence

Wilberd van der Kallen

CFG Conjecture (2004)

Theorem (Touzé 2010). Let G be a reductive linear algebraic

group defined over a field k. Let G act on a finitely generated

commutative k-algebra A.

Then H∗(G,A) is a finitely generated k-algebra.
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Corollaries/precursors of CFG
If k has characteristic zero: Representations of reductive G are
completely reducible.

Hilbert problem 14. H∗(G,A) = AG is finitely generated.

If R→ A is an equivariant surjection, then RG → AG is
surjective. So it suffices to look at action of G on a polynomial
ring R, respecting its grading. Classical invariant theory does
this.

Theorem (Evens 1961) CFG holds if G is a finite group.

Principle In a spectral sequence of modules, if the starting
page is noetherian, then all pages are noetherian and the
spectral sequence stops (degenerates).
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Reductivity in positive characteristic

Let k have characteristic p > 0.

FvdK: Call f : A→ R power surjective if for every r ∈ R there is

n ≥ 1 with rn ∈ f(A).

Haboush (1975) has shown that if the equivariant A→ R is

power surjective, then so is AG → RG.

We call this power reductivity of G. Over our field it is

equivalent to geometric reductivity, which only considers

certain equivariant maps between polynomial rings.
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Nagata (1964) had shown that power reductivity implies that

H0(G,A) = AG is a finitely generated algebra. These results

remain valid for reductive group schemes over a noetherian

base ring.

Setting: affine group schemes flat over affine base.

Power reductivity is preserved by base change. It satisfies

faithfully flat descent and a local global principle.
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Infinitesimal group schemes

Let G be an infinitesimal group scheme. Its coordinate ring
k[G] is a local artinian algebra. Note that although G is no
reductive linear algebraic group, it is still power reductive.

Theorem (Friedlander–Suslin 1997) Let G be an
infinitesimal group scheme over k acting on a finitely generated
commutative k-algebra A. Then H∗(G,A) is a finitely
generated k-algebra.

Strict polynomial functors
If F is a functor and a group G acts on X, then it also acts on
FX. If F is a strict polynomial functor and X is a
representation of an algebraic group G, then so is FX.
Example: FX = S4(X ⊗ k5)
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Frobenius kernel

Example. Let G be a reductive linear algebraic group defined

over Fp. Let F : G→ G be the Frobenius homomorphism. The

r-th Frobenius kernel Gr is the scheme theoretic kernel of F r.

One has an exact sequence in the fppf topology

1→ Gr −→ G
F r−→ G→ 1

It turns out that the cohomology of G (‘global’), is closely

related to that of the Gr (‘local’).

For finite dimensional G modules M , N one may compute

ExtiG(M,N) = Hi(G,Homk(M,N)) as the inverse limit of the

ExtiGr(M,N).
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Costandard modules

Let us fix G, B, T , U , defined over Fp. Think G = GLn.

Let L be an equivariant line bundle on the flag variety G/B. If

Γ(G/B,L) 6= 0, then we write this indecomposable G-module as

∇(λ), where λ is its highest weight. We call it the costandard

module of highest weight λ.

One then has Kempf vanishing: Hi(G/B,L) vanishes for i > 0

and ‘therefore’ Hi(G,∇(λ)) vanishes for i > 0.

If ∇(λ) is a polynomial representation of GLn then one also

calls it a Schur module. Then λ corresponds with a Young

diagram like ��
�
�

.
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ht
Fix an additive height function ht on the weight lattice that
takes value two on simple roots and value zero on weights of
one dimensional representations of G, like det : GLn → Gm.

Grosshans filtration
If M is a G-module then M≤i is the largest G-submodule all
whose weights λ have height ht(λ) at most i.

We say that M has good filtration if the associated graded
gr(M) of its Grosshans filtration is a direct sum of costandard
modules.
Then Hi(G,M) = 0 for i > 0.

Grosshans graded deformation A
Grosshans (1992): If A is a finitely generated commutative
k-algebra then so is grA and grA is a flat deformation of A.
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Suppose G = GLn. Let A be a finitely generated k algebra with

good filtration. Let M be a finitely generated A module with

A⊗M →M equivariant.

Then we have the following corollary/precursor of CFG

Theorem (Srinivas-vdK 2009) There is a finite resolution

0→M → N0 → · · · → Ns → 0

by modules Nj with good filtration and the Hi(G,M) are

finitely generated AG modules.

9



Example: product of Grassmannians.

Our G = GLn acts on the Grassmannian Gr(s) of s dimensional
subspaces of kn. Let

X = Gr(s1)× · · · ×Gr(sr)

with Cox ring

A =
⊕

L∈Pic(X)

Γ(X,L).

It has a good filtration [Wang Jian-Pan 1981].
If M is an equivariant coherent sheaf on X, consider

M =
⊕

L∈Pic(X)≥0

Γ(X,M⊗L).

Our theorem should apply.
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Resolution of the diagonal

Srinivas: Apply the identity correspondence to M

M = IM

and study M by resolving the sheaf O∆ of the graph ∆ of I.

Compare M. Levine, V. Srinivas, J. Weyman,

K-Theory of twisted Grassmannians (1989)

Say X = Gr(s). We have the tautological vector bundle S on X

with fiber V at V . We have the quotient bundle Q with fiber

kn/W at W . Given s dimensional subspaces V , W we have a

natural map V → kn/W . It vanishes if and only if V = W . So we

get a description of the diagonal ∆ of X ×X as the locus where

a certain morphism of vector bundles pr∗1 S → pr∗2Q vanishes.
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Dualizing one gets an exact sequence

E → OX×X → O∆ → 0

where E = S �Q∨ := pr∗1 S ⊗ pr∗2Q
∨. The Koszul complex

0→
d∧
E → · · · → E → OX×X → O∆ → 0

of E → OX×X provides a resolution by vector bundles of the

sheaf O∆. The identity correspondence

I :M 7→ pr1∗(O∆ ⊗ pr∗2M)

can therefore also be described in terms of the ∧tE.

But Akin–Buchsbaum–Weyman (1982) tell us that the ∧tE can

be filtered with quotients that are exterior tensor products of

Schur functors applied to S and coSchur functors applied to Q∨.
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Schur functors are associated with Young diagrams.

In our convention the Schur functor associated with
�
� sends V

to V ∧ V and the Schur functor associated with ��� sends V to

S3V . (Some papers use the conjugate convention.)

We are happy about the Schur functors because they produce

costandard modules. We are less happy about the coSchur

functors, so we place them at the second factor X where they

get tensored with M. Then pr1∗ integrates this junk out and

leaves a finite dimensional representation. Those we can handle

[Friedlander–Parshall 1986].

pr1∗((nice � other)⊗ pr∗2M) = nice⊗ pr∗(other ⊗M)

�
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Hull

Let A be a finitely generated k-algebra on which G = GLn acts.

Grosshans (1992) studied an embedding of finitely generated

algebras grA ↪→ hull(grA), where hull(grA) is a direct sum of

costandard modules and (grA)U = (hull(grA))U .

Mathieu (1990) observed that there is an r ≥ 1 so that grA

contains all pr-th powers of elements of hull(grA). Take such r.

Combining the computations of [Friedlander–Suslin 1997] with

[Srinivas–vdK 2009] one concludes that the Hochschild–Serre

spectral sequence

E
ij
2 = Hi(G/Gr, H

j(Gr,grA))⇒ Hi+j(G,grA)

has a finitely generated abutment H∗(G,grA).
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Touzé classes

To get to CFG for A rather than for grA, Touzé constructs

cohomology classes that allow to conclude that

res : H∗(G,R)→ H∗(Gr, R)

makes H0(G/Gr, H∗(Gr, R)) into a noetherian module over

H∗(G,R) whenever R is a finitely generated k algebra.

The Touzé classes live in Exti groups of strict polynomial

bifunctors and have since been instrumental in getting a better

understanding of the effect of Frobenius twist on Ext groups of

strict polynomial functors. Schur functors and coSchur functors

and Frobenius twist are such functors.
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We want to understand the difference between Ext∗P(d)(P,Q)

and Ext∗P(dp)(P (1), Q(1)) for strict polynomial functors P , Q of
degree d.
Put

E1 :=
p−1⊕
i=0

k2i,

where kj denotes the one dimensional Gm module of weight j.
Theorem (Touzé, Cha lupnik, 2013, 2014)

Extn(P (1), Q(1)) ∼=
⊕

i+j=n

Exti
(
P (?), Q(?⊗ E1)j

)
,

where Q(V ⊗E1)j is the weight j component for the Gm action.
Example:

S2(V ⊗ E1)4 =
(
(V ⊗ k0)⊗ (V ⊗ k4)

)
⊕ S2(V ⊗ k2)
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Thank You !
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Crash course on Strict polynomial (bi)functors.

Divided power

Let ΓdM := (M⊗d)Sd = (Sd(M∨))∨ denote the d-th divided
power of a finite dimensional vector space M .
Γd is a coSchur functor.

Schur algebra

By Schur (1901) a module for the Schur algebra
S(n, d) := ΓdHom(kn, kn) gives rise to a polynomial
representation of GLn.
Schur functors and coSchur for Young diagrams with d boxes
provide examples of polynomial representations. (Apply the
functor to the defining representation kn of GLn.)
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Representations of a k-linear category

One thinks of a k-linear category as a multi-object algebra.

Indeed an algebra A is a k-linear category with one object.

An A-module M is a k-linear functor from A to k-Mod.

RepA is the category of A-modules.

Schur category

The Schur category S(d) of degree d is the k-linear category

whose objects are finite dimensional vector spaces and whose

morphisms are given by

HomS(d)(V,W ) := ΓdHomk(V,W ).

19



Strict polynomial (bi)functors

Strict polynomial functors of degree d are objects of
P(d) := RepS(d). They restrict to representations of Schur
algebras S(n, d) = HomS(d)(kn, kn).
One often confuses an element P of RepS(d) (Pirashvili model
of strict polynomial functor) with the functor that sends a
linear map f to P (f⊗d) (Friedlander–Suslin model).

Schur functors and coSchur for Young diagrams with d boxes
provide examples of strict polynomial functors of degree d.

Strict polynomial bifunctors are bimodules for S(d).

If n ≥ d, then restriction is an equivalence of categories
P(d) = RepS(d)→ RepS(n, d) and one has
Ext∗P(d)(P,Q) ∼= Ext∗GLn

(P (kn), Q(kn)).
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Frobenius twist

The Frobenius twist V (1) of a representation V of GLn is

obtained by precomposing with F : GLn → GLn.

Its strict polynomial functor analogue is precomposition by the

Frobenius twist functor I(1) := ker(Sp → Γp).

I(1) is another important example of a strict polynomial

functor. It has degree p.

Put P (1) := P ◦ I(1).
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Example

Let G = Ga be the Lie group C with addition as operation.

Let t ∈ G act on A = C[X,Y, Z]/(XZ) by

X 7→ X, Y 7→ Y + tX, Z 7→ Z.

Then AG contains X, Z and Y iZ for i ≥ 1, and AG is not

finitely generated. This is an awful lot simpler than the famous

Nagata counterexample from 1959. But we have changed the

rules and A is no polynomial ring. Not even a domain.

This also gives the standard example showing that G = Ga fails

power reductivity: If I is the ideal generated by X in A, then no

power of Y ∈ (A/I)G lifts to AG.
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