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Cohomological Finite Generation and
the Identity Correspondence

Wilberd van der Kallen
CFG Conjecture (2004)

Theorem (Touzé 2010). Let G be a reductive linear algebraic
group defined over a field k. Let G act on a finitely generated
commutative k-algebra A.

Then H*(G, A) is a finitely generated k-algebra.



Corollaries/precursors of CFG
If £ has characteristic zero: Representations of reductive G are
completely reducible.

Hilbert problem 14. H*(G, A) = A% is finitely generated.

If R — A is an equivariant surjection, then RG — AG is
surjective. So it suffices to look at action of G on a polynomial

ring R, respecting its grading. Classical invariant theory does
this.

Theorem (Evens 1961) CFG holds if G is a finite group.
Principle In a spectral sequence of modules, if the starting

page is noetherian, then all pages are noetherian and the
spectral sequence stops (degenerates).



Reductivity in positive characteristic
et k have characteristic p > 0.

FvdK: Call f: A— R power surjective if for every r € R there is
n > 1 with »™ ¢ f(A).

Haboush (1975) has shown that if the equivariant A — R is
power surjective, then so is A¢ — RG.

We call this power reductivity of G. Over our field it is
equivalent to geometric reductivity, which only considers
certain equivariant maps between polynomial rings.



Nagata (1964) had shown that power reductivity implies that
HO9(G, A) = AC is a finitely generated algebra. These results
remain valid for reductive group schemes over a noetherian
base ring.

Setting: affine group schemes flat over affine base.

Power reductivity is preserved by base change. It satisfies
faithfully flat descent and a local global principle.



Infinitesimal group schemes

Let G be an infinitesimal group scheme. Its coordinate ring
k[G] is a local artinian algebra. Note that although G is no
reductive linear algebraic group, it is still power reductive.

Theorem (Friedlander—Suslin 1997) Let G be an
infinitesimal group scheme over k acting on a finitely generated
commutative k-algebra A. Then H*(G, A) is a finitely
generated k-algebra.

Strict polynomial functors

If F'is a functor and a group G acts on X, then it also acts on
FX. If F'is a strict polynomial functor and X is a
representation of an algebraic group G, then so is FX.
Example: FX = S4(X ® k°)



Frobenius kernel

Example. Let G be a reductive linear algebraic group defined

over IFp. Let F': G — G be the Frobenius homomorphism. The
r-th Frobenius kernel G, is the scheme theoretic kernel of FT.
One has an exact sequence in the fppf topology

1—>GT—>GLT>G—>1

It turns out that the cohomology of G (‘global’), is closely
related to that of the G, (‘local’).

For finite dimensional G modules M, N one may compute
Ext@(]\/l, N) = HY(G,Homy (M, N)) as the inverse limit of the
EthGT(M, N).



Costandard modules
Let us fix G, B, T, U, defined over F,. Think G = GL,.

Let £ be an equivariant line bundle on the flag variety G/B. If
(G/B, L) # 0, then we write this indecomposable G-module as
V (M), where X is its highest weight. We call it the costandard
module of highest weight .

One then has Kempf vanishing: H*(G/B, L) vanishes for i > 0
and ‘therefore’ H*(G,V(\)) vanishes for i > 0.

If V()\) is a polynomial representation of GL,, then one also
calls it a Schur module. Then X\ corresponds with a Young
diagram like .




ht

Fix an additive height function ht on the weight lattice that
takes value two on simple roots and value zero on weights of
one dimensional representations of G, like det : GL,, — Gm.

Grosshans filtration
If M is a G-module then Mc; is the largest G-submodule all
whose weights A have height ht(\) at most 3.

We say that M has good filtration if the associated graded
gr(M) of its Grosshans filtration is a direct sum of costandard
modules.

Then H*(G,M) = 0 for i > 0.

Grosshans graded deformation A
Grosshans (1992): If A is a finitely generated commutative
k-algebra then so is gr A and gr A is a flat deformation of A.
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Suppose G = GLp. Let A be a finitely generated k algebra with
good filtration. Let M be a finitely generated A module with
A® M — M equivariant.

Then we have the following corollary/precursor of CFG

Theorem (Srinivas-vdK 2009) There is a finite resolution

O—+M—=Ng—---— Ns—0

by modules N; with good filtration and the H*(G, M) are
finitely generated A¢ modules.



Example: product of Grassmannians.

Our G = GLnp acts on the Grassmannian Gr(s) of s dimensional
subspaces of k™. Let
X =Gr(s1) x---x Gr(sr)
with Cox ring
A= @ (X, L).
LePic(X)
It has a good filtration [Wang Jian-Pan 1981].
If M is an equivariant coherent sheaf on X, consider

M = ) M X, M®L).
ﬁEPiC(X)ZO

Our theorem should apply.
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Resolution of the diagonal
Srinivas: Apply the identity correspondence to M

M=IM
and study M by resolving the sheaf O of the graph A of I.

Compare M. Levine, V. Srinivas, J. Weyman,
K-Theory of twisted Grassmannians (1989)

Say X = Gr(s). We have the tautological vector bundle S on X
with fiber V at V. We have the quotient bundle O with fiber
k™ /W at W. Given s dimensional subspaces V, W we have a
natural map V — k™/W. It vanishes if and only if V. = W. So we
get a description of the diagonal A of X x X as the locus where
a certain morphism of vector bundles pr7 S — pr5 Q vanishes.
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Dualizing one gets an exact sequence

E—>Oxxx >0a —0

where £ = SR QY :=pri S® pr5 QV. The Koszul complex

d
O—>/\g—>"'—>5—>OXXX—>OA—>O

of £ - Ox«x provides a resolution by vector bundles of the
sheaf O. The identity correspondence

I: M pri,(Oa ® pry M)

can therefore also be described in terms of the ALE.

But Akin—Buchsbaum—Weyman (1982) tell us that the A!E can
be filtered with quotients that are exterior tensor products of
Schur functors applied to S and coSchur functors applied to QV.
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Schur functors are associated with Young diagrams.

In our convention the Schur functor associated with H sends V
to VAV and the Schur functor associated with [I 1] sends V to
S3v. (Some papers use the conjugate convention.)

We are happy about the Schur functors because they produce
costandard modules. We are less happy about the coSchur
functors, so we place them at the second factor X where they
get tensored with M. Then prq, integrates this junk out and
leaves a finite dimensional representation. Those we can handle
[Friedlander—Parshall 1986].

pri«((nice X other) ® prs M) = nice @ pry(other @ M)
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Hull
Let A be a finitely generated k-algebra on which G = GLp acts.

Grosshans (1992) studied an embedding of finitely generated
algebras gr A < hull(gr A), where hull(gr A) is a direct sum of
costandard modules and (gr A)Y = (hull(gr A))Y.

Mathieu (1990) observed that there is an » > 1 so that gr A
contains all p"-th powers of elements of hull(gr A). Take such r.

Combining the computations of [Friedlander—Suslin 1997] with
[Srinivas—vdK 2009] one concludes that the Hochschild—Serre
spectral sequence

EY = H'(G/Gy, H(Gr,gr A)) = H'HI(G, gr A)

has a finitely generated abutment H*(G,gr A).
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Touzé classes

To get to CFG for A rather than for gr A, Touzé constructs
cohomology classes that allow to conclude that

res: H*(G,R) — H*(Gr, R)

makes HO(G/G,, H*(Gy, R)) into a noetherian module over
H*(G, R) whenever R is a finitely generated k algebra.

The Touzé classes live in Ext® groups of strict polynomial
bifunctors and have since been instrumental in getting a better
understanding of the effect of Frobenius twist on Ext groups of
strict polynomial functors. Schur functors and coSchur functors
and Frobenius twist are such functors.
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We want to understand the difference between Ext;;(d)(P, Q)

and Ext;(dp)(P(l),Q(l)) for strict polynomial functors P, Q of
degree d.

Put

p—1
E1 = P ko,
i=0

where k; denotes the one dimensional Gm module of weight j.
Theorem (Touzé, Chatupnik, 2013, 2014)

Ext"(P), @)y = P Ext! (P(7),Q(? ® B1)),
1+1=n

where Q(V ® E1)7 is the weight j component for the Gm action.
Example:

S2(V @ ED* = ((Ve k) ® (Ve ks)) ®S*(V ® k)
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Thank You !
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Crash course on Strict polynomial (bi)functors.
Divided power

Let MM := (M®D)%a = (5¢(MV))Y denote the d-th divided
power of a finite dimensional vector space M.
< is a coSchur functor.

Schur algebra

By Schur (1901) a module for the Schur algebra

S(n,d) ;= r*Hom(k"™, k™) gives rise to a polynomial
representation of GLn.

Schur functors and coSchur for Young diagrams with d boxes
provide examples of polynomial representations. (Apply the
functor to the defining representation £" of GLn.)
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Representations of a k-linear category

One thinks of a k-linear category as a multi-object algebra.
Indeed an algebra A is a k-linear category with one object.
An A-module M is a k-linear functor from A to k-Mod.
Rep A is the category of A-modules.

Schur category

The Schur category S(d) of degree d is the k-linear category
whose objects are finite dimensional vector spaces and whose
morphisms are given by

Homgp(V, W) 1= % Homy(V, W).
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Strict polynomial (bi)functors

Strict polynomial functors of degree d are objects of

P(d) .= Rep S(d). They restrict to representations of Schur
algebras S(n,d) = Homs(d)(k”,k”).

One often confuses an element P of Rep S(d) (Pirashvili model
of strict polynomial functor) with the functor that sends a
linear map f to P(f®%) (Friedlander—Suslin model).

Schur functors and coSchur for Young diagrams with d boxes
provide examples of strict polynomial functors of degree d.

Strict polynomial bifunctors are bimodules for S(d).

If n > d, then restriction is an equivalence of categories
P(d) = Rep S(d) — Rep S(n,d) and one has

EXt;;(d)(Pa Q) = EXtELn(P(kn),Q(kn)).
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Frobenius twist

The Frobenius twist V(1) of a representation V of GL,, is
obtained by precomposing with F' : GL,, — GL,.

Its strict polynomial functor analogue is precomposition by the
Frobenius twist functor I(1) := ker(SP — P).

I(1) is another important example of a strict polynomial
functor. It has degree p.

Put P(1) = po (1),
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Example
Let G = G5 be the Lie group C with addition as operation.

Let t € G act on A=C[X,Y,Z]/(XZ) by

X—X, Y—=Y+tX, Z—Z.

Then AG contains X, Z and Y'Z for i > 1, and A is not
finitely generated. This is an awful lot simpler than the famous
Nagata counterexample from 1959. But we have changed the
rules and A is no polynomial ring. Not even a domain.

This also gives the standard example showing that GG = G5 fails
power reductivity: If I is the ideal generated by X in A, then no
power of Y € (A/I)C lifts to AC.
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