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Invariant theory

P. Gordan 1868, J.f.d. reine u. angew. Math., 69,

323–354.

Beweis dass jede Covariante und Invariante einer

binären Form eine ganze Function mit numerischen

Coefficienten einer endlichen Anzahl solcher Formen

ist.
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In modern language: G = SL2(C) as algebraic group.

GyV := C2, C[V ] = C[X,Y ], Wd := C[V ]d,

W2 = {aX2 + bXY + cY 2}, C[W2] = C[a, b, c],

b2 − 4ac ∈ C[W2]G an invariant (= fixed point).

Gordan: C[Wd]
G is finitely generated (f.g.) as a

C-algebra.
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Hilbert 1890

G = SLn(C) acting algebraically on some finite

dimensional complex vector space V . Here

‘algebraically’ means the action is given by

polynomials: For each v ∈ V there is a polynomial fv

in the matrix entries of g ∈ G with coefficients in V

so that g · v = fv(g).

Example: The above action of G = SL2(C) on W2.

Then Hilbert shows nonconstructively that C[V ]G is

finitely generated as a C-algebra.
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Examples Consider the action of G = GLn(C) by

conjugation on the vector space V = Mn(C) of n× n
matrices. So g ∈ G sends m ∈ V to gmg−1. Then

C[V ]G is generated by the coefficients ci of the

characteristic polynomial

det(m− λI) = c0 + c1λ+ · · ·+ cnλn.

Next let G be the group of permutations of the n

variables in the polynomial ring C[X1, . . . , Xn]. Then

C[X1, . . . , Xn]G = C[p1, . . . , pn], where

pi = Xi
1 + · · ·+Xi

n.
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Encouraged by an incorrect claim of Maurer, Hilbert

asked in his fourteenth problem if this finite

generation of invariants is a general fact about

actions of algebraic Lie groups on domains of finite

type over C.

A counterexample of Nagata (1959) showed this was

too optimistic.
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By then it was understood that finite generation of

invariants does hold for compact connected real Lie

groups like orthogonal groups (cf. Hurwitz 1897).

Hurwitz considers a compact group K with Haar

measure dk and introduces the method of averaging.

KyV linear. Get linear equivariant retract V → V K

from

v 7→
∫
K kv dk∫
K dk

.
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Finite generation also holds for the complexifications

of compact Lie groups, also known as the connected

reductive complex algebraic Lie groups (Weyl 1926).

Finite groups have been treated by Emmy Noether

(1926), so connectedness may be dropped.

(Algebraic Lie groups have finitely many connected

components.) She worked over an arbitrary ground

field.
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Mumford (GIT, 1965) needed finite generation of

invariants for reductive algebraic groups over fields

of arbitrary characteristic in order to construct

moduli spaces.

Say k is an infinite field and G = SLn(k) is acting

algebraically on some finite dimensional k-vector

space V .

Then Mumford needs in particular that k[V ]G is

finitely generated as a k-algebra.
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In his book Geometric Invariant Theory (1965)

Mumford introduced a condition, often referred to as

geometric reductivity. He conjectured it to be true

for reductive algebraic groups and he conjectured it

implies finite generation of invariants. These

conjectures were confirmed by Haboush (1975) and

Nagata (1964) respectively. Nagata treated any

commutative algebra of finite type over the base

field, not just domains. We adopt this generality. It

rather changes the problem of finite generation of

invariants.
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The proof of Nagata was actually based on a

property that Franjou and the speaker call ‘power

reductivity’ (2010).

We call a map of commutative k-algebras

φ : A→ B power surjective if for every b ∈ B there is

n ≥ 1 so that bn ∈ φ(A).

We call G power reductive if taking invariants

preserves power surjectivity.
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Thus, if a power reductive G acts algebraically on

commutative k-algebras A, B, and φ : A→ B is a

power surjective equivariant map, then AG→ BG is

also power surjective.

Power reductivity is the superior notion when the

base ring is no longer assumed to be a field. It has

better base change properties than geometric

reductivity. If the base ring is noetherian the

argument of Nagata goes through.
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Example

Let G = Ga be the Lie group C with addition as

operation.

Let t ∈ G act on A = C[X,Y, Z]/(XZ) by

X 7→ X, Y 7→ Y + tX, Z 7→ Z.

Then AG contains X, Z and Y iZ for i ≥ 1, and AG is

not finitely generated. This is an awful lot simpler

than the famous Nagata counterexample from 1959.

But we have changed the rules and A is no

polynomial ring. Not even a domain.
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This also gives the standard example showing that

G = Ga fails power reductivity: If I is the ideal

generated by X in A, then no power of Y ∈ (A/I)G

lifts to AG.

Such failure of lifting is what the cohomology group

H1(G, I) is about. So we naturally end up studying

cohomology when looking at invariant theory. One

has AG = H0(G,A) and the Hi(G,−) are the derived

functors of the fixed point functor (−)G.

14



Let us say that G satisfies the cohomological finite

generation property (CFG) if, whenever G acts on a

commutative algebra A of finite type over k, the

cohomology algebra H∗(G,A) is also finitely

generated over k.

Evens (1961) proved that finite groups have (CFG)

and this has been the starting point of the theory of

support varieties.
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In this theory one exploits a connection between the

rate of growth of a minimal projective resolution and

the dimension of a ‘support variety’, which is a

subvariety of the spectrum of Heven(G, k).

People working in representation theory of algebraic

groups were eager to join this activity. Thus they

had to show that the result of Evens extends from

finite groups to finite group schemes. (An algebraic

group scheme G is called finite if its coordinate ring

k[G] is a finite dimensional vector space.)
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This turned out to be surprisingly elusive

(Friedlander Suslin 1997). Eric Friedlander and A.

Suslin had to invent a new representation theory,

the strict polynomial functors, in order to construct

universal cohomology classes that enabled

them to bring some Hochschild–Serre

spectral sequences under control. Their
Ericrepresentation theory uses the algebras S(n, d)

introduced by I. Schur in his 1901 thesis and

named Schur algebras by J. A. Green in 1980.

Andrei
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The S(n, d)-modules correspond with polynomial

representations, homogeneous of degree d, of GLn.

The setting of Friedlander and Suslin captures

S(n, d) for all n simultaneously. Intuitively one thus

finds the behavior as n→∞.

Now the speaker had noticed that if one could show

that GLn has (CFG) for large n, then it would follow

that finite group schemes have (CFG). I could soon

prove (2004) that GL2 has (CFG), but 2 is not large.
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Then I started to find corollaries to (CFG) that

seemed wrong. So the game became to disprove the

corollaries. This was a big failure. Instead of

disproving them, I started to prove more and more

cases. Thus it became my conjecture that GLn has

(CFG) (when the base ring is a field).

To follow the strategy of Friedlander and Suslin and

prove my conjecture, more universal cohomology

classes were needed.
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These universal cohomology classes were

constructed by Antoine Touzé (2010) in the setting

of strict polynomial bifunctors, invented by Franjou

and Friedlander (2008). This setting models a stable

(i.e. N →∞) version of GLN-cohomology, with

coefficients like Hom(∧3(kN), S3(kN)) or Γm(gl(1)
N ).
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Touzé

van der Kallen/Franjou

c©MFO 2006 (Author: Greuel, Gert-Martin)

One studies Ext groups in the category of strict

polynomial bifunctors. The main problem (± 2001)

is to produce a family of cohomology classes that

sufficiently enriches the family constructed by

Friedlander and Suslin, who used functors of one

variable only.
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Back in the GLN-cohomology setting the lifted

classes c[m] of Antoine Touzé are characterized by

• c[1] ∈ H2(GLN , gl
(1)
N ) is nonzero,

• For m ≥ 1 the class c[m] ∈ H2m(GLN ,Γ
m(gl(1)

N ))

lifts

c[1] ∪ · · · ∪ c[1] ∈ H2m(GLN ,
⊗m(gl(1)

N )).
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Taking his cue from the Cartan Seminar of 1954/55,

Antoine Touzé starts with the Frobenius twist of a

bar resolution of a bar resolution of a symmetric

algebra functor. Troesch (2005) has invented a

construction of an injective resolution of a Frobenius

twist of a tensor product of symmetric powers.

Antoine Touzé applies the Troesch construction

componentwise to the iterated bar resolution, in the

hope of getting a double complex in which

appropriate cochains can be located.
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A miracle is needed because the Troesch

construction is not functorial, so that it seems a bit

optimistic to expect a double complex.

To perform the miracle Antoine Touzé changes the

rules by inventing a new category that is just rich

enough to contain the iterated bar resolution, but so

special that the Troesch construction is functorial on

it.
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Nowadays he has a different proof based on a

general ‘formality’ theorem for Frobenius twists

(Touzé, Cha lupnik), inspired by a paper of

Franjou–Friedlander–Scorichenko–Suslin.

According to Cha lupnik one has the marvelous

formula

Hn
P(B(−(1)

1 ,−(1)
2 )) ∼=

⊕
i+j=n

Hi
P(B(−1,−2 ⊗ E1)j).

Here B is a bifunctor, E1 is the p-dimensional

Gm-module Ext∗P(I(1), I(1)) computed by Friedlander

and Suslin, B(· · ·)j is the component of weight j, . . .
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Cha lupnik shows that the decomposition actually

occurs in a derived category of multifunctors and

that the projectors in the decomposition can be

expressed in terms of the classes of Touzé.

Cha lupnik considers the total derived functor Kr
1 of

the right Kan extension of precomposition by

Frobenius twist. Precomposing this Kr
1 with

Frobenius twist [sic!] yields a representable functor,

represented by an object that breaks up

(“formality”).
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