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Invariant theory

P. Gordan 1868, J.f.d. reine u. angew. Math., 69,
323—-354.

Beweis dass jede Covariante und Invariante einer
binaren Form eine ganze Function mit numerischen

Coefficienten einer endlichen Anzahl solcher Formen

ISt.



In modern language: G = SL>(C) as algebraic group.
GAV :=C? C[V]=C[X,Y], W,:=C[V],

Wo = {a X2+ bXY + cY?}, C[Ws] =Cla,b,d],

b2 — 4ac € C[W>]C an invariant (= fixed point).

Gordan: C[W,]€ is finitely generated (f.g.) as a
C-algebra.



Hilbert 1890

G = SL,(C) acting algebraically on some finite
dimensional complex vector space V. Here
‘algebraically’ means the action is given by
polynomials: For each v € V there is a polynomial f,
in the matrix entries of g € G with coefficients in V
so that g-v = fy(9g).

Example: The above action of G = SL>(C) on Who.
Then Hilbert shows nonconstructively that C[V]¢ is

finitely generated as a C-algebra.



Examples Consider the action of G = GL,(C) by
conjugation on the vector space V = M,(C) of n x n
matrices. So g € G sends m € V to gmg—!. Then
C[V]G IS generated by the coefficients ¢; of the
characteristic polynomial

det(m — AI) = cg+ 1A+ - 4 cp\™

Next let G be the group of permutations of the n
variables in the polynomial ring C[X4,...,Xn]. Then
C[X1,...,Xn]¢ =C[p1,...,pn], Where

pi=X{+ -+ X




Encouraged by an incorrect claim of Maurer, Hilbert
asked in his fourteenth problem if this finite
generation of invariants is a general fact about

actions of algebraic Lie groups on domains of finite

type over C.

A counterexample of Nagata (1959) showed this was

too optimistic.



By then it was understood that finite generation of
iInvariants does hold for compact connected real Lie
groups like orthogonal groups (cf. Hurwitz 1897).
Hurwitz considers a compact group K with Haar
measure dk and introduces the method of averaging.

KA~V linear. Get linear equivariant retract V — 17228

from

1 kv dk
[k dk



Finite generation also holds for the complexifications
of compact Lie groups, also known as the connected

reductive complex algebraic Lie groups (Weyl 1926).

Finite groups have been treated by Emmy Noether
(1926), so connectedness may be dropped.
(Algebraic Lie groups have finitely many connected

components.) She worked over an arbitrary ground

field.



Mumford (GIT, 1965) needed finite generation of
invariants for reductive algebraic groups over fields
of arbitrary characteristic in order to construct

moduli spaces.

Say k is an infinite field and G = SLy (k) is acting
algebraically on some finite dimensional k-vector

Space V.
Then Mumford needs in particular that k[V]C is

finitely generated as a k-algebra.



In his book Geometric Invariant Theory (1965)
Mumford introduced a condition, often referred to as
geometric reductivity. He conjectured it to be true
for reductive algebraic groups and he conjectured it
implies finite generation of invariants. These
conjectures were confirmed by Haboush (1975) and
Nagata (1964) respectively. Nagata treated any
commutative algebra of finite type over the base
field, not just domains. We adopt this generality. It
rather changes the problem of finite generation of

invariants.
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The proof of Nagata was actually based on a
property that Franjou and the speaker call ‘power
reductivity’ (2010).

We call a map of commutative k-algebras
¢ . A— B power surjective if for every b € B there is
n > 1 so that b" € ¢(A).

We call G power reductive if taking invariants

preserves power surjectivity.
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Thus, if a power reductive G acts algebraically on
commutative k-algebras A, B, and ¢ : A — B is a
power surjective equivariant map, then AG — BG is

also power surjective.

Power reductivity is the superior notion when the
pbase ring is no longer assumed to be a field. It has
better base change properties than geometric
reductivity. If the base ring is noetherian the

argument of Nagata goes through.
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Example
Let G = G, be the Lie group C with addition as
operation.

Let t € G act on A =C[X,Y,Z]/(XZ) by

X—X, Y—=Y+tX, Z—Z.

Then AC contains X, Z and Y*Z for i > 1, and AC is
not finitely generated. This is an awful lot simpler
than the famous Nagata counterexample from 1959.
But we have changed the rules and A is no

polynomial ring. Not even a domain.
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This also gives the standard example showing that
G = G4 fails power reductivity: If I is the ideal
generated by X in A, then no power of Y € (A/I)€C
lifts to AC.

Such failure of lifting is what the cohomology group
Hl(G, I) is about. So we naturally end up studying
cohomology when looking at invariant theory. One
has A = HO(G, A) and the H'(G,—) are the derived

functors of the fixed point functor (—)C.
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Let us say that G satisfies the cohomological finite
generation property (CFG) if, whenever G acts on a
commutative algebra A of finite type over k, the
cohomology algebra H*(G, A) is also finitely

generated over k.

Evens (1961) proved that finite groups have (CFQ)
and this has been the starting point of the theory of

support varieties.
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In this theory one exploits a connection between the
rate of growth of a minimal projective resolution and
the dimension of a ‘support variety’, which is a
subvariety of the spectrum of HVEN(G, k).

People working in representation theory of algebraic
groups were eager to join this activity. Thus they
had to show that the result of Evens extends from
finite groups to finite group schemes. (An algebraic
group scheme G is called finite if its coordinate ring

k[G] is a finite dimensional vector space.)
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This turned out to be surprisingly elusive
(Friedlander Suslin 1997). Eric Friedlander and A.
Suslin had to invent a new representation theory,
the strict polynomial functors, in order to construct
universal cohomology classes that enabled
them to bring some Hochschild—Serre
spectral sequences under control. Their
representation theory uses the algebras S(n,d)
introduced by I. Schur in his 1901 thesis and
named Schur algebras by J. A. Green in 1980.

Andrei



The S(n,d)-modules correspond with polynomial
representations, homogeneous of degree d, of GL,,.
T he setting of Friedlander and Suslin captures
S(n,d) for all n simultaneously. Intuitively one thus

finds the behavior as n — oo.

Now the speaker had noticed that if one could show
that GL, has (CFQG) for large n, then it would follow
that finite group schemes have (CFG). I could soon

prove (2004) that GL» has (CFG), but 2 is not large.
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Then I started to find corollaries to (CFG) that
seemed wrong. So the game became to disprove the
corollaries. This was a big failure. Instead of
disproving them, I started to prove more and more
cases. Thus it became my conjecture that GL,, has
(CFG) (when the base ring is a field).

To follow the strategy of Friedlander and Suslin and
prove my conjecture, more universal cohomology

classes were needed.
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T hese universal cohomology classes were
constructed by Antoine Touzé (2010) in the setting
of strict polynomial bifunctors, invented by Franjou
and Friedlander (2008). This setting models a stable
(i.e. N — o0) version of GLj-cohomology, with
coefficients like Hom(A3(kY), S3(kY)) or I‘m(glg\%)).
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4/ .. van der Kallen/Franjou
Touzé @I\/IFO 2006 (Author: Greuel, Gert-Martin)

One studies Ext groups in the category of strict
polynomial bifunctors. The main problem (£ 2001)
IS to produce a family of cohomology classes that
sufficiently enriches the family constructed by
Friedlander and Suslin, who used functors of one

variable only.
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Back in the GLjy-cohomology setting the lifted

classes c[m] of Antoine Touzé are characterized by
2 (1)y :
o c[1] € H-(GLy,gly’) is nonzero,

e For m > 1 the class ¢[m] € H2™(GLy, rm(gé&)))
lifts

c[llUu---Uc¢[l] € H2m(GLN,®m(g[§\}))).
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Taking his cue from the Cartan Seminar of 1954 /55,
Antoine Touzé starts with the Frobenius twist of a
bar resolution of a bar resolution of a symmetric
algebra functor. Troesch (2005) has invented a
construction of an injective resolution of a Frobenius
twist of a tensor product of symmetric powers.
Antoine Touzé applies the Troesch construction
componentwise to the iterated bar resolution, in the
hope of getting a double complex in which

appropriate cochains can be located.
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A miracle is needed because the Troesch
construction is not functorial, so that it seems a bit

optimistic to expect a double complex.

To perform the miracle Antoine Touzé changes the
rules by inventing a new category that is just rich
enough to contain the iterated bar resolution, but so
special that the Troesch construction is functorial on
it.
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Nowadays he has a different proof based on a
general ‘formality’ theorem for Frobenius twists
(Touzé, Chatupnik), inspired by a paper of
Franjou—Friedlander—Scorichenko—Suslin.
According to Chatupnik one has the marvelous
formula

HB(B(-{V, -5 = @ Hp(B(—1,—2 @ E1)).

i+j=n

Here B is a bifunctor, E4 is the p-dimensional
Gm-module Exth (1), 1(1)) computed by Friedlander

and Suslin, B(---)J is the component of weight j, ...
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Chatupnik shows that the decomposition actually
occurs in a derived category of multifunctors and
that the projectors in the decomposition can be
expressed in terms of the classes of Touzé.

Chatupnik considers the total derived functor K7 of
the right Kan extension of precomposition by
Frobenius twist. Precomposing this K7 with
Frobenius twist [sic!] yields a representable functor,
represented by an object that breaks up
(“formality”).
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