Proof of Sun’s conjectures on Schroder-like numbers
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Abstract. For any non-negative integer n, define R,, and R, (x) by
" n+k\ [(2k 1 " n4k\ 2k aF
= — and Ry(x) = S
R ;(%)(k)%—l and - () kz()(%)(k)%—l

respectively. We mainly prove that for any positive integer n and odd prime p,

> S Ry(w) € 2],

p—1

32]%% = (11 + 4(—1)%)]0 (mod p?),

k=0
which were originally conjectured by Z.-W. Sun.
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1 Introduction

In combinatorics, the Schroder numbers are given by

“~ (m+k\ 2K\ 1
S”_Z( 2k )(k)k:—H
k=0
which describes the number of paths from (0,0) to (n,n), using only steps (1,0), (0, 1)
and (1,1), that do not rise above the line y = x. For more information on these numbers,
one refer to [7,8]. Some arithmetic properties of the Schréder numbers have been studied
by Sun [9,11], Cao and Pan [1], and the first author [5].

Motivated by Schréoder numbers, Z.-W. Sun [10] introduced the following interesting

numbers (see also http://oeis.org/A245769)

" n+k\ [2k 1
R"_Z( 2k )(k)%—l’

k=0



and obtained many amazing arithmetic properties of these numbers. For example, Sun
proved that for any odd prime p,

Ry=-p—(-1)"T (mod p?).

Sun also made the following conjecture [10, Conjecture 5.4]:

Conjecture 1.1 Suppose n is a positive integer and p is an odd prime. Then

nf(% +1DRy=0 (mod n), (1.1)
k=0

:z:;(?k + 1R =4p(-1)"= —p* (mod p?), (1.2)
3§ Ry =0 (mod n), (1.3)
ngi = (11+4(-=1)"2 )p (mod p?). (1.4)

Recently, Guo and the first author [3] have successfully proved (1.1) and (1.2) by some
combinatorial identities and Zeilberger algorithm.
For any positive integer n, Sun [10, (1.4)] defined the following polynomials:

Ro(x) 2”: (n 2+/<; k) (2:) %xi .

k=0

The first aim of the paper is to prove Sun’s stronger conjecture of (1.3), see the comments
of http://oeis.org/A268136.

Theorem 1.2 Suppose n is a positive integer. Then

n—1
%Z Re(@)? € Zfa]. (1.5)
k=0
Moreover,
3 n—1
- Y Ri=1 (mod?2). (1.6)
k=0

Guo and the first author [3] introduced the following numbers:

" n+k\ 2k 3
W, = —_—
(") (4w s
k=0
and some similar arithmetic properties of these numbers have also been studied. The
second aim of the paper is to show the following two congruences:
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Theorem 1.3 Ifp is an odd prime, then (1.4) holds and we also have

+

352W (=77 —4(=1)"2 )p (mod p®), forp>5. (1.7)

In the next section, we first prove some important lemmas. The proof of Theorem 1.2
and 1.3 will be given in Section 3 and 4, respectively.

2 Some lemmas

Lemma 2.1 Suppose m is a non-negative integer. Then

ég (x +J) (x j— 1) (Z> (T) (ml_) e _322. mey oy ECEY

always takes integer values for all x € Z.

Proof. Let P, (r) denote the polynomial (2.1). For m = 0,1, it is easy to check that
Py (2) is integer-valued. Assume m > 2. Since (") (" = (") (771, we conclude

J J J
that P,,(x) is an even polynomial. Let

o= (4) ()

We can rewrite P,,(z) as

with d(m, k) € Q.
Note that

) (T - e

Taking the telescoping sum over k gives

(1) (“’ j j) (“7 ; 1) _ Zj:(_nk (2]5) Bu(z)/2. (2.2)

k=0

Substituting (2.2) into (2.1), we conclude that

o 3EDE)O ) GL)
ZZ2 2@—1 (2 +1)(2m —2i — 1)

=0 j=



It suffices to prove that d(m, k) € Z for m > 2.
We need the following two key results:

4(m —1)(m + 1)d(m, k) +4(m + 2k +2)(m — k + 1)d(m + 1, k)
—(k+1)2k—m—1)d(m+1,k+1) =0, (2.3)

and
(2m + 1)d(m, k)/3 € Z. (2.4)

Before proving the key results, let us draw conclusions from them.

Noting that (%)/2 = (**~') is an integer and (2i — 1)(2j + 1)(2m — 2i — 1) is an odd
integer, we immediately get d(m, k) € Zy, where Z, denotes the set of all p-adic integers
for prime p.

If 342m+ 1, by (2.4), we have d(m,k) € Z3. If m =1 (mod 9) or m = 7 (mod 9),
then (2m + 1)/3 is coprime to 3. It follows from (2.4) that d(m,k) € Zs. If m = 4
(mod 9), then (m — 1)(m + 1)/3 and 2m + 3 are both coprime to 3. From (2.4), we have
d(m + 1,k)/3 € Z3 for all k, and so d(m, k) € Z3 by (2.3).

Let p > 5 be a prime. If p f 2m + 1, by (2.4), d(m,k) € Z,. If p | 2m + 1, then
pt2m+3, and so d(m+1,k) € Z, for all k by (2.4). Noting that 2m+1=2(m+1) —1
and 2m + 1 = 2(m — 1) + 3, we get p ¥ (m + 1)(m — 1). It follows from (2.3) that
d(m, k) € Z,.

Now we have shown that d(m, k) € Z, for any prime p and m > 2. This implies that
d(m, k) € Z for m > 2. So we still have to prove (2.3) and (2.4).

We first prove that

(2m + 1)d(m, k)

3
5 <2:) (f) <T) <m Z— k) (me_—kl) - 2(2 —27711)(_273?—_21@ — 1)) - @8
Note that
220400+ e () =

Then we have

=~ 30O 6

22k + Dd(m, k) + (k+ Dd(m,k+1) = G- Dem—2-1)

(2.6)

i=0
Define

S(m, k) =2m(m — 1)(2m + 1)d(m, k) + (m — 2k)(m — 2k + 1)(2m — 2k — 1)D(m, k)
+16(1 — 2k)(k —m — 1)(k — m)D(m, k — 1), (2.7)



where D(m, k) denotes the left-hand side of (2.6). Applying the Zeilberger algorithm [6]
to the right-hand side of (2.6), we get the following recurrence for D(m, k):

2(2k + 3)S(m, k + 1) + (k + 2)S(m, k +2) = 0. (2.8)

By Zeilberger algorithm, we find that d(m,0) = 0 for m > 2, and so by (2.6) and (2.7)
we have S(m,0) = 0 for m > 2. It follows from (2.8) and induction that S(m,k) = 0 for
m > 2 and k > 0, that is

2m(m — 1)(2m + 1)d(m, k) + (m — 2k)(m — 2k + 1)(2m — 2k — 1)D(m, k)
+16(1 — 2k)(k —m —1)(k—m)D(m,k —1) = 0. (2.9)

Substituting (2.6) into the left-hand side of (2.9) and then noting that
3(m —2k)(m —2k+1)(2m — 2k — 1) (2k\ (k\ (m i
(2i—1)(2m—2i — 1) k)i )\ J\m—k
+48(1—2k)(k—m—1)(k:—m) 2k =2\ (k =1\ (m i
(2i — 1)(2m — 2i — 1) k-1 i i)\m—k+1
3m(m —1)(2m — 2k — 1) 2k\ (k\ (m i
< i—nem—2i—1 k=m0 )G ) i — k)
we conclude the proof of (2.5). Substituting (2.5) into the left-hand side of (2.3) and then
applying Zeilberger algorithm again, we can prove (2.3).

In order to prove (2.4), it suffices to prove that every term on the right-hand side of
(2.5) is an integer. Note that (see [3, (2.1)])

CICDIEI O )
and 2(2i — 1) | (¥). It follows that
()G s
is always an integer. We still have to prove
RO[GIANE R 0IGHARES

is an integer. For the p-adic order of n!, there is a known formula

ord,n! = i {%J ,

J=1




where |x| denotes the greatest integer less than or equal to a real number z. Applying
this method, it suffices to prove that for any positive integer ¢ > 2

ORINERT
P P e

We distinguish two cases to prove (2.10).
If {mTﬁJ > {MJ + mequ + V*’“q’mJ, then (2.10) is obviously true.

q q

If LmT_QJ = L%J + Lm_T’HJ + LW"’T_’”J — 1, then there exist integers a;,as and as
such that m —i = a1q, m —k — 1 = asq and ¢ + k — m = azq. So we have k = (a1 + a3)q,

i=(ag+as)g+1and k —i= (a; —az)qg — 1. It follows that

-1 -4 -

which implies that (2.10) is true. O

Lemma 2.2 Let p be an odd prime and m be an integer such that 0 < m < 2p—2. Then

::Ji O ( ) (mi—j) (2i — 1)(2m —321- e+ )

3 (mod p), if m =0,
2 (mod p), ifm=1,
=16 (mod p), if m=p, (2.11)
A1) (modp), ifm= L,
L0 (mod p), otherwise.

Proof. Let S,(m) denote the left-hand side of (2.11). We distinguish three cases to prove
(2.11).

Case 1. m =0 or 1. It is easy to verify that S,(0) =3 and S,(1) =

Case 2. 2 <m < p— 1. In this event, we have

=% (Va2 () ()

Jj=0

= (—1)mi (?)2<22”Z> 1(2m +1)(2i — il)))(Qm —2i—1)




where we have utilized the following two identities:

g}(_l)j (Z) <m Z_ j) 2 ir 1 2(7;14):11 (T) (227?)_17 (2.12)

L m\ 2 2m)\ 7! 1

. . . : =0, form > 2,
, i 2i (20 —1)(2m —2i — 1)
1=0

which can be proved by Zeilberger algorithm [4,6].
Case 8. p<m <2p—2. If m—1i<j < p-—1, then (T) = 0 (mod p). Otherwise
( : ) = 0. This implies that

(]

m—j
J\ (m l 1
=0 d
(Z)(Z)(m—j) (20 —1)(2m —2i — 1)(25 + 1) (mod p),
unless i = 2L m — EL T follows that

+ pi(—l)j <m jp+1> (%) (W;;_’?) p(2m —p —3 2)(25 +1)
- jo(_l)j (’é (%) (m%—lj) p(2m—p - 2)2j+1)

- o _6p 5 (1%1) %1(_1)]- (é) (m%_lj) 2j£r - (modp).  (2.13)

If 2 <m < 2p—2, then (,7) =0for 0<j <p—1,and so S,(m) =0 (mod p).
0

_ 3p-1 Y
If m = %=, then (m{j) =0 for

3p—1 2 (AN p—1 pt1
Sy =- pil pr1 | =4(=1)7  (mod p).
2 p\ 5 5

Ifm=porp+2<mc< 3p—2_3, then m(,ﬁfl) is a p-adic integer. Noting that
(é) 2j1+1 =0 (mod p) for p < j < m and applying (2.12), we obtain

—1 .
Y () (7)a
= L) \m—j)2j+1
m ] ptl 1 m g pt+l 1
— —1)/ 2 _ —1y 2
jz_;< ) %)(mﬂ')?jﬂ JZ_;( ) el ) \m—j)2j+1
—1)™ ('m om \
= d p). 2.14
2m+1<%1)<p+1) (mod p) (2.14)

~J



It is easy to see that

(—=1)m (m ) ( om )‘1 (=1)=  (mod p), if m=p, o5
_ 15
p+1
2m+1\5 p+1 0 (mod p), ifp+2§m§%.
Combining (2.13)-(2.15) and noting that
1/ p ) 1 (p — 1) p—1
- =—|(" _ =2(—1)2 mod p), 2.16
H(h) =g’ =20 modn 210

we obtain

3p—3

Sp(m) =0 (mod p), forp+2<m<
If m=p+1, then

Sp(p+1)

L6 (pF1) = il pil 1
T2\ ptl Z(_) ptl 1—4i)92i+1
p 2 i=0 2 P+ J ]+
p+1 %(—1)3' j pil Lo (p ptl  (pt1) 1
et : HLI\p+1—j/)2j+1 \&2)2(2p+1) el J2p+3

1 (p+1\/2p+2 ‘1+ p\ p+1  (p+1\ 1
2p+3\ 5 J\p+1 2l 2(2p+ 1) el J2p+3

Noting that

with the help of (2.16), we get S,(p+ 1) =0 (mod p). This completes the proof. O



Lemma 2.3 Let p > 11 be a prime and m be an integer such that 0 < m < 2p—2. Then

Y )T () BN M

=

p

35

™

~
o

)

35,—70,64 (mod p), if m=0,1,3, respectively,

70,—140,—-36 (mod p), if m=p,p+ 1,p+ 3, respectively,

= 80(—1)%1 (mod p), if m =221, (2.17)
84(—1)"7 (modp),  ifm=fL
0 (mod p), otherwise.

Proof. Let T,(m) denote the left-hand side of (2.17). If m = 0,1,2,3, we can check the
values of T),(m) directly. If 4 <m < p — 1, we use the following identity

i (?)2(2;?)_1(%_3)(2;_22._3> =0, form >4.

=0

If p<m <2p—2, then

- mpi(_l)j (’é) (%) (ml%—gj) p(2m —p —9 6)(2j +1) tmod p)

=0

The rest of the proof is similar to that of (2.11), and we omit the details. O

3 Proof of Theorem 1.2

Proof of (1.5). By [2, (2.5)], we have
GO -2 )00
S (OO 0) e



Using (3.1) and the fact that (k“) (%) = (k) (k“) we get

)

s
AR

N
M-
M-

1T
- o
-
Il
o
B
Il
=)

M= 1M~

()

N
Mw

)36 e
S ()OO ) a e
(D660 e

(GO e

where m =i+ j. Applying ("~")(,*,) = (5)(,",) and the following identity

m—1 K3 m—Ss

S (D)) )

which can be easily proved by induction on n, we obtain

1T
HO
<.
Il
o
II

]
Ms

Bl
f
o
i
@ o
-
i
o

o
S
I
S
I

Ms

2

0 s

I
=)

3
Il

1=

—_

il

3nlek(x)2
_n%iii<n+s>(n—1)< )()( i ) ggm
m=0 s=0 i=0 i J\i)\m—s)(2s+1)(20 —1)(2m —2i— 1)
(3.2)
Then the proof of (1.5) directly follows from Lemma 2.1 and (3.2). O

Proof of (1.6). Letting z = 1 in (3.2), we immediately get

S EEE ) e o

m=0 s=0 =0

(62) =)D

and then applying the Chu-Vandermonde identity to (3.3) yields

S EE D)) e

m=0 s=0

Noting that
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Since (2:) = 2(253:11) for s > 1, we conclude that every term on the right-hand side of (3.4)

is even except for m = s = 0. It follows that
3 n—1
—ZR,% =1 (mod 2).
n
k=0
This completes the proof of (1.6). O

4 Proof of Theorem 1.3

Proof of (1.4). Letting n = p and = = 1 in (3.2), and then noting that for 0 < s <p—1

()00 = mart

and for 0 <s,7<p—1land 0<m<2p—2

(T) @ (m i 3> (25 1 1)(2i — ?])9(2m “oio) S

we obtain
3§R§
- p%ff@-lf(T) ()l @rve ey Mot

m=0 s=0 =0
(4.1)

Combining (2.11) and (4.1), we have

1

p—1
3 Rp=(3+2+6+4(-1)" )p
k=0

= (11+ 4(—1)177“)]9 (mod p?).
This completes the proof of (1.4). O

Proof of (1.7). For p = 5,7, it is easy to verify that (1.7) holds. For p > 11, we apply
(2.17) and then obtain

p+1

p—1
35 W7=(-77T—4(-1)"2 )p (mod p?).
k=0
The proof runs analogously, and we omit the details. O
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