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Abstract. For any non-negative integer n, define Rn and Rn(x) by

Rn =
n∑

k=0

(
n + k

2k

)(
2k

k

)
1

2k − 1
and Rn(x) =

n∑
k=0

(
n + k

2k

)(
2k

k

)
xk

2k − 1
,

respectively. We mainly prove that for any positive integer n and odd prime p,

3

n

n−1∑
k=0

Rk(x)2 ∈ Z[x],

3

p−1∑
k=0

R2
k ≡ (11 + 4(−1)

p+1
2 )p (mod p2),

which were originally conjectured by Z.-W. Sun.
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1 Introduction

In combinatorics, the Schröder numbers are given by

Sn =
n∑

k=0

(
n + k

2k

)(
2k

k

)
1

k + 1
,

which describes the number of paths from (0, 0) to (n, n), using only steps (1, 0), (0, 1)
and (1, 1), that do not rise above the line y = x. For more information on these numbers,
one refer to [7,8]. Some arithmetic properties of the Schröder numbers have been studied
by Sun [9, 11], Cao and Pan [1], and the first author [5].

Motivated by Schröder numbers, Z.-W. Sun [10] introduced the following interesting
numbers (see also http://oeis.org/A245769)

Rn =
n∑

k=0

(
n + k

2k

)(
2k

k

)
1

2k − 1
,
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and obtained many amazing arithmetic properties of these numbers. For example, Sun
proved that for any odd prime p,

p−1∑
k=0

Rk ≡ −p− (−1)
p−1
2 (mod p2).

Sun also made the following conjecture [10, Conjecture 5.4]:

Conjecture 1.1 Suppose n is a positive integer and p is an odd prime. Then

n−1∑
k=0

(2k + 1)R2
k ≡ 0 (mod n), (1.1)

p−1∑
k=0

(2k + 1)R2
k ≡ 4p(−1)

p−1
2 − p2 (mod p3), (1.2)

3
n−1∑
k=0

R2
k ≡ 0 (mod n), (1.3)

3

p−1∑
k=0

R2
k ≡ (11 + 4(−1)

p+1
2 )p (mod p2). (1.4)

Recently, Guo and the first author [3] have successfully proved (1.1) and (1.2) by some
combinatorial identities and Zeilberger algorithm.

For any positive integer n, Sun [10, (1.4)] defined the following polynomials:

Rn(x) =
n∑

k=0

(
n + k

2k

)(
2k

k

)
xk

2k − 1
.

The first aim of the paper is to prove Sun’s stronger conjecture of (1.3), see the comments
of http://oeis.org/A268136.

Theorem 1.2 Suppose n is a positive integer. Then

3

n

n−1∑
k=0

Rk(x)2 ∈ Z[x]. (1.5)

Moreover,

3

n

n−1∑
k=0

R2
k ≡ 1 (mod 2). (1.6)

Guo and the first author [3] introduced the following numbers:

Wn =
n∑

k=0

(
n + k

2k

)(
2k

k

)
3

2k − 3
,

and some similar arithmetic properties of these numbers have also been studied. The
second aim of the paper is to show the following two congruences:
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Theorem 1.3 If p is an odd prime, then (1.4) holds and we also have

35

p−1∑
k=0

W 2
k ≡ (−77− 4(−1)

p+1
2 )p (mod p2), for p ≥ 5. (1.7)

In the next section, we first prove some important lemmas. The proof of Theorem 1.2
and 1.3 will be given in Section 3 and 4, respectively.

2 Some lemmas

Lemma 2.1 Suppose m is a non-negative integer. Then

m∑
i=0

m∑
j=0

(
x + j

j

)(
x− 1

j

)(
j

i

)(
m

i

)(
i

m− j

)
3

(2i− 1)(2m− 2i− 1)(2j + 1)
(2.1)

always takes integer values for all x ∈ Z.

Proof. Let Pm(x) denote the polynomial (2.1). For m = 0, 1, it is easy to check that
Pm(x) is integer-valued. Assume m ≥ 2. Since

(
x+j
j

)(
x−1
j

)
=
(−x+j

j

)(−x−1
j

)
, we conclude

that Pm(x) is an even polynomial. Let

Bk(x) =

(
x + k

2k

)
+

(
−x + k

2k

)
.

We can rewrite Pm(x) as

Pm(x) =
m∑
k=0

d(m, k)Bk(x),

with d(m, k) ∈ Q.
Note that

(−1)k
(
x + k

k

)(
x− 1

k

)
− (−1)k−1

(
x + k − 1

k − 1

)(
x− 1

k − 1

)
= (−1)k

(
2k

k

)
Bk(x)/2.

Taking the telescoping sum over k gives

(−1)j
(
x + j

j

)(
x− 1

j

)
=

j∑
k=0

(−1)k
(

2k

k

)
Bk(x)/2. (2.2)

Substituting (2.2) into (2.1), we conclude that

d(m, k) =
m∑
i=0

m∑
j=k

3(−1)k+j
(
2k
k

)(
j
i

)(
m
i

)(
i

m−j

)
2(2i− 1)(2j + 1)(2m− 2i− 1)

.
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It suffices to prove that d(m, k) ∈ Z for m ≥ 2.
We need the following two key results:

4(m− 1)(m + 1)d(m, k) + 4(m + 2k + 2)(m− k + 1)d(m + 1, k)

− (k + 1)(2k −m− 1)d(m + 1, k + 1) = 0, (2.3)

and

(2m + 1)d(m, k)/3 ∈ Z. (2.4)

Before proving the key results, let us draw conclusions from them.
Noting that

(
2k
k

)
/2 =

(
2k−1
k

)
is an integer and (2i− 1)(2j + 1)(2m− 2i− 1) is an odd

integer, we immediately get d(m, k) ∈ Z2, where Zp denotes the set of all p-adic integers
for prime p.

If 3 - 2m + 1, by (2.4), we have d(m, k) ∈ Z3. If m ≡ 1 (mod 9) or m ≡ 7 (mod 9),
then (2m + 1)/3 is coprime to 3. It follows from (2.4) that d(m, k) ∈ Z3. If m ≡ 4
(mod 9), then (m− 1)(m + 1)/3 and 2m + 3 are both coprime to 3. From (2.4), we have
d(m + 1, k)/3 ∈ Z3 for all k, and so d(m, k) ∈ Z3 by (2.3).

Let p ≥ 5 be a prime. If p - 2m + 1, by (2.4), d(m, k) ∈ Zp. If p | 2m + 1, then
p - 2m+ 3, and so d(m+ 1, k) ∈ Zp for all k by (2.4). Noting that 2m+ 1 = 2(m+ 1)− 1
and 2m + 1 = 2(m − 1) + 3, we get p - (m + 1)(m − 1). It follows from (2.3) that
d(m, k) ∈ Zp.

Now we have shown that d(m, k) ∈ Zp for any prime p and m ≥ 2. This implies that
d(m, k) ∈ Z for m ≥ 2. So we still have to prove (2.3) and (2.4).

We first prove that

(2m + 1)d(m, k)

3

=
m∑
i=0

(
2k

k

)(
k

i

)(
m

i

)(
i

m− k

)(
m− k

m(m− 1)
− 2m− 2k − 1

2(2i− 1)(2m− 2i− 1)

)
. (2.5)

Note that

2(2k + 1)(−1)k
(

2k

k

)
+ (k + 1)(−1)k+1

(
2k + 2

k + 1

)
= 0.

Then we have

2(2k + 1)d(m, k) + (k + 1)d(m, k + 1) =
k∑

i=0

3
(
2k
k

)(
k
i

)(
m
i

)(
i

m−k

)
(2i− 1)(2m− 2i− 1)

. (2.6)

Define

S(m, k) = 2m(m− 1)(2m + 1)d(m, k) + (m− 2k)(m− 2k + 1)(2m− 2k − 1)D(m, k)

+ 16(1− 2k)(k −m− 1)(k −m)D(m, k − 1), (2.7)
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where D(m, k) denotes the left-hand side of (2.6). Applying the Zeilberger algorithm [6]
to the right-hand side of (2.6), we get the following recurrence for D(m, k):

2(2k + 3)S(m, k + 1) + (k + 2)S(m, k + 2) = 0. (2.8)

By Zeilberger algorithm, we find that d(m, 0) = 0 for m ≥ 2, and so by (2.6) and (2.7)
we have S(m, 0) = 0 for m ≥ 2. It follows from (2.8) and induction that S(m, k) = 0 for
m ≥ 2 and k ≥ 0, that is

2m(m− 1)(2m + 1)d(m, k) + (m− 2k)(m− 2k + 1)(2m− 2k − 1)D(m, k)

+ 16(1− 2k)(k −m− 1)(k −m)D(m, k − 1) = 0. (2.9)

Substituting (2.6) into the left-hand side of (2.9) and then noting that

3(m− 2k)(m− 2k + 1)(2m− 2k − 1)

(2i− 1)(2m− 2i− 1)

(
2k

k

)(
k

i

)(
m

i

)(
i

m− k

)
+

48(1− 2k)(k −m− 1)(k −m)

(2i− 1)(2m− 2i− 1)

(
2k − 2

k − 1

)(
k − 1

i

)(
m

i

)(
i

m− k + 1

)
=

(
3m(m− 1)(2m− 2k − 1)

(2i− 1)(2m− 2i− 1)
+ 6(k −m)

)(
2k

k

)(
k

i

)(
m

i

)(
i

m− k

)
,

we conclude the proof of (2.5). Substituting (2.5) into the left-hand side of (2.3) and then
applying Zeilberger algorithm again, we can prove (2.3).

In order to prove (2.4), it suffices to prove that every term on the right-hand side of
(2.5) is an integer. Note that (see [3, (2.1)])(

2i

i

)(
2m− 2i

m− i

)∣∣∣∣(2k

k

)(
k

i

)(
m

i

)(
i

m− k

)
,

and 2(2i− 1) |
(
2i
i

)
. It follows that(

2k

k

)(
k

i

)(
m

i

)(
i

m− k

)
2m− 2k − 1

2(2i− 1)(2m− 2i− 1)

is always an integer. We still have to prove(
2k

k

)(
k

i

)(
m

i

)(
i

m− k

)
m− k

m(m− 1)
=

(
2k

k

)(
k

i

)(
m− 1

i− 1

)(
i− 1

m− k − 1

)
1

m− 1

is an integer. For the p-adic order of n!, there is a known formula

ordpn! =
∞∑
j=1

⌊
n

pj

⌋
,
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where bxc denotes the greatest integer less than or equal to a real number x. Applying
this method, it suffices to prove that for any positive integer q ≥ 2⌊

2k

q

⌋
−
⌊
k

q

⌋
−
⌊
k − i

q

⌋
−
⌊
i

q

⌋
+

⌊
m− 2

q

⌋
−
⌊
m− i

q

⌋
−
⌊
m− k − 1

q

⌋
−
⌊
i + k −m

q

⌋
≥ 0. (2.10)

We distinguish two cases to prove (2.10).

If
⌊
m−2
q

⌋
≥
⌊
m−i
q

⌋
+
⌊
m−k−1

q

⌋
+
⌊
i+k−m

q

⌋
, then (2.10) is obviously true.

If
⌊
m−2
q

⌋
=
⌊
m−i
q

⌋
+
⌊
m−k−1

q

⌋
+
⌊
i+k−m

q

⌋
− 1, then there exist integers a1, a2 and a3

such that m− i = a1q, m− k− 1 = a2q and i + k−m = a3q. So we have k = (a1 + a3)q,
i = (a2 + a3)q + 1 and k − i = (a1 − a2)q − 1. It follows that⌊

2k

q

⌋
−
⌊
k

q

⌋
−
⌊
k − i

q

⌋
−
⌊
i

q

⌋
= 1,

which implies that (2.10) is true. �

Lemma 2.2 Let p be an odd prime and m be an integer such that 0 ≤ m ≤ 2p− 2. Then

p−1∑
i=0

p−1∑
j=0

(−1)j
(
j

i

)(
m

i

)(
i

m− j

)
3

(2i− 1)(2m− 2i− 1)(2j + 1)

≡



3 (mod p), if m = 0,

2 (mod p), if m = 1,

6 (mod p), if m = p,

4(−1)
p+1
2 (mod p), if m = 3p−1

2
,

0 (mod p), otherwise.

(2.11)

Proof. Let Sp(m) denote the left-hand side of (2.11). We distinguish three cases to prove
(2.11).
Case 1. m = 0 or 1. It is easy to verify that Sp(0) = 3 and Sp(1) = 2.
Case 2. 2 ≤ m ≤ p− 1. In this event, we have

Sp(m) =
m∑
i=0

(
m

i

)
3

(2i− 1)(2m− 2i− 1)

m∑
j=0

(−1)j
(
j

i

)(
i

m− j

)
1

2j + 1

= (−1)m
m∑
i=0

(
m

i

)2(
2m

2i

)−1
3

(2m + 1)(2i− 1)(2m− 2i− 1)

= 0,
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where we have utilized the following two identities:
m∑
j=0

(−1)j
(
j

i

)(
i

m− j

)
1

2j + 1
=

(−1)m

2m + 1

(
m

i

)(
2m

2i

)−1
, (2.12)

m∑
i=0

(
m

i

)2(
2m

2i

)−1
1

(2i− 1)(2m− 2i− 1)
= 0, for m ≥ 2,

which can be proved by Zeilberger algorithm [4,6].
Case 3. p ≤ m ≤ 2p − 2. If m − i ≤ j ≤ p − 1, then

(
m
i

)
≡ 0 (mod p). Otherwise(

i
m−j

)
= 0. This implies that(

j

i

)(
m

i

)(
i

m− j

)
1

(2i− 1)(2m− 2i− 1)(2j + 1)
≡ 0 (mod p),

unless i = p+1
2
,m− p+1

2
. It follows that

Sp(m) ≡
p−1∑
j=0

(−1)j
(

j
p+1
2

)(
m
p+1
2

)( p+1
2

m− j

)
3

p(2m− p− 2)(2j + 1)

+

p−1∑
j=0

(−1)j
(

j

m− p+1
2

)(
m
p+1
2

)(
m− p+1

2

m− j

)
3

p(2m− p− 2)(2j + 1)

= 2

p−1∑
j=0

(−1)j
(

j
p+1
2

)(
m
p+1
2

)( p+1
2

m− j

)
3

p(2m− p− 2)(2j + 1)

=
6

p(2m− p− 2)

(
m
p+1
2

) p−1∑
j=0

(−1)j
(

j
p+1
2

)( p+1
2

m− j

)
1

2j + 1
(mod p). (2.13)

If 3p+1
2
≤ m ≤ 2p− 2, then

( p+1
2

m−j

)
= 0 for 0 ≤ j ≤ p− 1, and so Sp(m) ≡ 0 (mod p).

If m = 3p−1
2

, then
( p+1

2
m−j

)
= 0 for 0 ≤ j ≤ p− 2, and so

Sp

(
3p− 1

2

)
≡ 2

p

(3p−1
2

p+1
2

)(
p− 1
p+1
2

)
≡ 4(−1)

p+1
2 (mod p).

If m = p or p + 2 ≤ m ≤ 3p−3
2

, then 6
p(2m−p−2)

(
m
p+1
2

)
is a p-adic integer. Noting that( j

p+1
2

)
1

2j+1
≡ 0 (mod p) for p ≤ j ≤ m and applying (2.12), we obtain

p−1∑
j=0

(−1)j
(

j
p+1
2

)( p+1
2

m− j

)
1

2j + 1

=
m∑
j=0

(−1)j
(

j
p+1
2

)( p+1
2

m− j

)
1

2j + 1
−

m∑
j=p

(−1)j
(

j
p+1
2

)( p+1
2

m− j

)
1

2j + 1

≡ (−1)m

2m + 1

(
m
p+1
2

)(
2m

p + 1

)−1
(mod p). (2.14)
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It is easy to see that

(−1)m

2m + 1

(
m
p+1
2

)(
2m

p + 1

)−1
≡

(−1)
p+1
2 (mod p), if m = p,

0 (mod p), if p + 2 ≤ m ≤ 3p−3
2

.
(2.15)

Combining (2.13)-(2.15) and noting that

1

p

(
p

p+1
2

)
=

1

(p + 1)/2

(
p− 1
p−1
2

)
≡ 2(−1)

p−1
2 (mod p), (2.16)

we obtain

Sp(p) ≡ 6 (mod p),

Sp(m) ≡ 0 (mod p), for p + 2 ≤ m ≤ 3p− 3

2
.

If m = p + 1, then

Sp(p + 1)

=
6

p2

(
p + 1
p+1
2

) p−1∑
j=0

(−1)j
(

j
p+1
2

)( p+1
2

p + 1− j

)
1

2j + 1

=
6

p2

(
p + 1
p+1
2

)(p+1∑
j=0

(−1)j
(

j
p+1
2

)( p+1
2

p + 1− j

)
1

2j + 1
+

(
p

p+1
2

)
p + 1

2(2p + 1)
−
(
p + 1
p+1
2

)
1

2p + 3

)

=
6

p2

(
p + 1
p+1
2

)(
1

2p + 3

(
p + 1
p+1
2

)(
2p + 2

p + 1

)−1
+

(
p

p+1
2

)
p + 1

2(2p + 1)
−
(
p + 1
p+1
2

)
1

2p + 3

)

≡ 1

p

(
p + 1
p+1
2

)(
3

p

(
p

p+1
2

)
− 3

2p

(
p + 1
p+1
2

))
(mod p).

Noting that
1

p

(
p + 1
p+1
2

)
=

2

p

(
p

p+1
2

)
≡ 4(−1)

p−1
2 (mod p)

with the help of (2.16), we get Sp(p + 1) ≡ 0 (mod p). This completes the proof. �
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Lemma 2.3 Let p ≥ 11 be a prime and m be an integer such that 0 ≤ m ≤ 2p− 2. Then

35

p−1∑
i=0

p−1∑
j=0

(−1)j
(
j

i

)(
m

i

)(
i

m− j

)
9

(2i− 3)(2j + 1)(2m− 2i− 3)

≡



35,−70, 64 (mod p), if m = 0, 1, 3, respectively,

70,−140,−36 (mod p), if m = p, p + 1, p + 3, respectively,

80(−1)
p+1
2 (mod p), if m = 3p−1

2
,

84(−1)
p−1
2 (mod p), if m = 3p+1

2
,

0 (mod p), otherwise.

(2.17)

Proof. Let Tp(m) denote the left-hand side of (2.17). If m = 0, 1, 2, 3, we can check the
values of Tp(m) directly. If 4 ≤ m ≤ p− 1, we use the following identity

m∑
i=0

(
m

i

)2(
2m

2i

)−1
1

(2i− 3)(2m− 2i− 3)
= 0, for m ≥ 4.

If p ≤ m ≤ 2p− 2, then

Tp(m) ≡35

p−1∑
j=0

(−1)j
(

j
p+3
2

)(
m
p+3
2

)( p+3
2

m− j

)
9

p(2m− p− 6)(2j + 1)

+ 35

p−1∑
j=0

(−1)j
(

j

m− p+3
2

)(
m
p+3
2

)(
m− p+3

2

m− j

)
9

p(2m− p− 6)(2j + 1)

= 70

p−1∑
j=0

(−1)j
(

j
p+3
2

)(
m
p+3
2

)( p+3
2

m− j

)
9

p(2m− p− 6)(2j + 1)
(mod p).

The rest of the proof is similar to that of (2.11), and we omit the details. �

3 Proof of Theorem 1.2

Proof of (1.5). By [2, (2.5)], we have(
k

i

)(
k + i

i

)(
k

j

)(
k + j

j

)
=

i∑
r=0

(
i + j

i

)(
j

i− r

)(
j + r

r

)(
k

j + r

)(
k + j + r

j + r

)

=

i+j∑
s=j

(
i + j

i

)(
j

s− i

)(
s

j

)(
k

s

)(
k + s

s

)
. (3.1)

9



Using (3.1) and the fact that
(
k+i
2i

)(
2i
i

)
=
(
k
i

)(
k+i
i

)
, we get

3
n−1∑
k=0

Rk(x)2

=
n−1∑
k=0

k∑
i=0

k∑
j=0

(
k + i

2i

)(
2i

i

)(
k + j

2j

)(
2j

j

)
3xi+j

(2i− 1)(2j − 1)

=
n−1∑
k=0

k∑
i=0

k∑
j=0

i+j∑
s=j

(
i + j

i

)(
j

s− i

)(
s

j

)(
k

s

)(
k + s

s

)
3xi+j

(2i− 1)(2j − 1)

=
n−1∑
k=0

2k∑
m=0

m∑
s=0

s∑
i=0

(
m

i

)(
m− i

m− s

)(
s

m− i

)(
k

s

)(
k + s

s

)
3xm

(2i− 1)(2m− 2i− 1)

=
2n−2∑
m=0

m∑
s=0

s∑
i=0

n−1∑
k=0

(
m

i

)(
m− i

m− s

)(
s

m− i

)(
k

s

)(
k + s

s

)
3xm

(2i− 1)(2m− 2i− 1)
,

where m = i + j. Applying
(
m−i
m−s

)(
s

m−i

)
=
(
s
i

)(
i

m−s

)
and the following identity

n−1∑
k=0

(
k

s

)(
k + s

s

)
=

(
n + s

s

)(
n− 1

s

)
n

2s + 1
,

which can be easily proved by induction on n, we obtain

3
n−1∑
k=0

Rk(x)2

= n
2n−2∑
m=0

m∑
s=0

m∑
i=0

(
n + s

s

)(
n− 1

s

)(
m

i

)(
s

i

)(
i

m− s

)
3xm

(2s + 1)(2i− 1)(2m− 2i− 1)
.

(3.2)

Then the proof of (1.5) directly follows from Lemma 2.1 and (3.2). �

Proof of (1.6). Letting x = 1 in (3.2), we immediately get

3

n

n−1∑
k=0

R2
k ≡

2n−2∑
m=0

m∑
s=0

m∑
i=0

(
n + s

s

)(
n− 1

s

)(
m

i

)(
s

i

)(
i

m− s

)
(mod 2). (3.3)

Noting that (
s

i

)(
i

m− s

)
=

(
s

m− s

)(
2s−m

s− i

)
,

and then applying the Chu-Vandermonde identity to (3.3) yields

3

n

n−1∑
k=0

R2
k ≡

2n−2∑
m=0

m∑
s=0

(
n + s

s

)(
n− 1

s

)(
s

m− s

)(
2s

s

)
(mod 2). (3.4)
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Since
(
2s
s

)
= 2
(
2s−1
s−1

)
for s ≥ 1, we conclude that every term on the right-hand side of (3.4)

is even except for m = s = 0. It follows that

3

n

n−1∑
k=0

R2
k ≡ 1 (mod 2).

This completes the proof of (1.6). �

4 Proof of Theorem 1.3

Proof of (1.4). Letting n = p and x = 1 in (3.2), and then noting that for 0 ≤ s ≤ p− 1(
p + s

s

)(
p− 1

s

)
≡ (−1)s (mod p2),

and for 0 ≤ s, i ≤ p− 1 and 0 ≤ m ≤ 2p− 2(
m

i

)(
s

i

)(
i

m− s

)
3p

(2s + 1)(2i− 1)(2m− 2i− 1)
∈ Zp,

we obtain

3

p−1∑
k=0

R2
k

≡ p

2p−2∑
m=0

p−1∑
s=0

p−1∑
i=0

(−1)s
(
m

i

)(
s

i

)(
i

m− s

)
3

(2s + 1)(2i− 1)(2m− 2i− 1)
(mod p2).

(4.1)

Combining (2.11) and (4.1), we have

3

p−1∑
k=0

R2
k ≡ (3 + 2 + 6 + 4(−1)

p+1
2 )p

≡ (11 + 4(−1)
p+1
2 )p (mod p2).

This completes the proof of (1.4). �

Proof of (1.7). For p = 5, 7, it is easy to verify that (1.7) holds. For p ≥ 11, we apply
(2.17) and then obtain

35

p−1∑
k=0

W 2
k ≡ (−77− 4(−1)

p+1
2 )p (mod p2).

The proof runs analogously, and we omit the details. �
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ber Theory 168 (2016), 117–127.
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