STABILITY FOR K, OF DEDEKIND RINGS OF ARITHMETIC TYPE

Wilberd van der Kallen

§1 Introduction

Dunwoody [5] has shown that when R is a euclidean ring the
map K2(2,R) - Kz(n,R) is surjective for n 2 3. On the other
hand Dennis and Stein [4] have given examples where R is a
ring of integers in a quadratic imaginary number field and
K2(2,R) - K,(3,R) is not surjective. But from the study of
K1 the quadratic imaginary case is known to have particularly

bad stability behaviour. (ef. [2], [10], [11]). To be specific,
recall that SLQ(R) = EQ(R) when R is a Dedekind ring of

arithmetic type with infinitely many units, i.e. when R is the

ring of S-integers in a global field, where S is a finite set

of places, containing all archimedean places, and ls] = 2.(See [13])
(Terminology as in Bass-Milnor-Serre [1]). In contrast, there

are only five quadratic imaginary number fields whose>ring of
integers R satisfies SL2(R) S E,(R). (The five cases are those

with R euclidean.) The main result of this paper is that at the

K2 level the situation ig similar:

THEOREM 1. Let R be a Dedekind ring of arithmetic type with
infinitely many units. Then K2(2,R) - K2(R) is surjective

and Kz(n,R) -+ K,(R) is an isomorphism for n = 3.

From this theorem and its proof one sees that for the rings
in question the group KZ(R) is closely related with E2(R) and

therefore also with such topics as the theory of division
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chains. (ef. [3], [9]1). We hope that a further exploration of
this connecticn will give some useful information on Kz(R).
Theorem 1 is proved by expanding our earlier proof of the

injective stability theorem for K, of finite dimensicnal

2
noetherian rings. ([6]),(For surjectivity see also §5).

This time gereral position arguments are not enough. At a

c¢rucial point we need to know, for certain g,s € R, how the
"relative elementary subgroup" E(R,qR) of SLz(R), introduced

by Vaserstein in connection with the congruence subgroup problem
for SLQ, intersects the congruence subgroup

ker(SL,(R) = SL,(R/sqR)). We get the answer from the explicit
description (by power norm residue svmbols) of the failure of

the congruence subgroup property for SLQ(R), as obtained by
Vaserstein [13]. (For corrections to the proof see Liehl [8]). So
we need some very specific and deep arithmetic information

on the ring R in order to get such a sharp bound for the range

of stability. We do not need such information in the proof of
theorem 2 below (see 2.4). Theorem 2 is a quite general

stability theorem for Ky. It is better than the main results

in [6] and it is also slightly stronger than the version proved
by Suslin and Tulenbayev. (Compare Corollary 2.6). It is no
surprise that we recover the Suslin-Tulenbayev Theorem, as

we borrow from its proof. But our constructions are described

in a different language.
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§2 A General Stability Theorem for K, and K,

Let R be an associative ringwith identity. For n 2 2, q € R,
we define Un(q) = {a € R": the column (1+a1q,a2q,...,anq) is

unimodular}.

REMARK. When not stated otherwise, unimodularity will refer
to columns, not rows. We should use notations like
(bl""’bn)T for a column, but we simply write (bl""’bn)’

as in [ 6]1. To get a clear picture the reader has to draw

+he columns as honest columns anyway.

We define elementaryvoperations on Un(q) as follows.
(Compare also [1] Ch I §2 and [7] §2).

For 2 <i<n, p€R, act Un(q), put

ei(p)(a) (al,...,ai_l,ai+p(1+qa1),ai+1,...,an) and

ei(p)(a) = (a1+pai,a2,...,an).

These elementary operatiocns e (p), ei(p) generate a group

of permutations of Un(q). The orbit of (0,...,0) under the
action of this group is denoted EUn(q). So an element b of
EUn(q) can be reduced to zero by a finite number of elementary
operations. The minimum number that is needed 1is called the
complexity of (b3q), or of b (with respect to gq). For
instance, (0,...,0) has complexity zero and (0,...,0,1) has
complexity one. Several of the.constructions below will depend
on a choice of the reduction to zero of an element of EUn(q).
We will establish useful properties of these constructions

by induction on complexity.

We say that R satisfies SRi when the following holds. For

any pair of unimodular columns (al,...,an), (bl"'°’bn)
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there are t, € R such that both (a1+t A_yee.,a )

1™n

and (b1+t1bn,...,bn_1+tn_1bn) are unimodular.

n-1+tn-1an

THEOREM 2.
Let n # 2 and let R satisfy SRi+1. Assume that EUn(q) equals
Un(q) for all q € R. Then
(1) K;(n~1,R) -+ X, (R) is surjective and
Ki(m,R) - Ki(R) is an isomorphism for m = n.
(ii)Kz(n,R) - K2(R) is surjective and

KQ(m,R) - Kz(R) is an isomorphism for m = n+l.

REMARKS. The surjectivity in part (i) is well known. The
injectivity of Kl(m,R) - Kl(R) is also known for m 2 n+l. For
m = n it can be proved in a traditional fashion, but we will
only give an outrageously complicated proof here. Namely,

we will get the result as an immediate consequence of our
proof of injectivity in part (i1). Surjectivity in part (ii)
will also come as a corollary of our proof of injectivity, so
all efforts are directed at proving this injectivity for K, -
When one only seeks surjectivity for Ké, there is an easier
way, not expounded here. Note that in the situation of Theorem

1 we do describe the easier way. (See section 5).

We will see in the next section that SR, (ef. [6] 2.1) implies
the hypotheses of Theorem 2. Thus we get

COROLLARY (Suslin, Tulenbayev [12]).

Let R satisfy SR> n 2 2. Then K2(n,R) - K2(R) is surjective

and KQ(m,R) - K2(R) is an isomorphism for m = n+1l,

Note that in the same fashion part (i) of Theorem 2 implies the

standard stability theorem for Ky

one sees that Theorem 2 may yield a better range than the theorem

From the following application
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of Suslin and Tulenbayev. First recall that an integral domain
is called totally imaginary if its elements are integral over
7 and its field of fractions is a totally imaginary number

field. (cf. [1] and {15] §16).

COROLLARY. Let R be a 1-dimensional commutative ring, finitely
generated as a 7Z -algebra. Assume that for each minimal prime
ideal P the domain R/P has infinitely many units and is not’
totally imaginary. Then K,(2,R) - X,(3,R) is surjective and

K, (m,R) =+ K,(R) is an isomorphism for m 2 3.

2

PROOF. We will see in the next section that R satisfies SR3.

(Prop. 3.8). Remains to show EUz(q) = U,(q). This equality

is equivalent with the equality E(R,qR) = G(R,qR). (notation
of [13]1). It is instructive to check this. If R is a Dedekind
ring of arithmetic type, the conditions of the corollary make
that Vaserstein's theorem applies, so that in fact E(I,J) =
G(I,J) for any pair of ideals I, J in R. Therefore, in the
general case, one may argue in the fashion of {15] §16, with

the E(R,I) of [15] replaced by the E(R,I) of [13]. (cf. [8]1).

REMARK. This Corollary implies part of Theorem 1. This part

is easier than the remainder of Theorem 1.



3.1

222

§3 More about stable Range Conditions

In this section we collect some technicalities. For

unexplained notation and terminoclogy, see [6].

When (al,...,an) € Un(q) there are bj,...,bn with

n
b1(1+a1q)+b2a2q+..A+bnanq = 1. Put ¢ :-i b;a.. Then
(1—qc)(1+qa1)—j.+E qb:;a. has value zero, so the column

2
(1+qa1,a2,...,an) is unimodular too.
LEMMA. If R satisfies SR, then EUn(q) equals Un(q) for

all q € R.

PROGE. Fix an orbit in U (q). We seek é convenient choice

for a representative (al,...,an) of this orbit. For any
choice the column (1+qa1,a2,...,an) is unimodular, hence

we can modify the choice so that (az,...,an) is unimodular,
next so that a, = 0, finally soc that a = 0. Therefore it must

1
have been the orbit EUn(q) of zero.

, 2
{ =
LEMMA. SR implies SR_,1 (n 2).
. . . + .
PROOF. Given unimodular columns a,b in r" 1 we have to find
n
v € R so that the columns (a1+v1an+1,...,an+vnan+1),

(b1+v1b b +vnb ) are unimeodular. For any

n+1®"***"n n+1

g € E([n] x [n+1]) we may replace the pair a,b by ga,gb. Using
SRn we may thus reduce to the case a, = 1. By [14] Tneorem 1

there is a suitable v with v, =0, in that case.

LEMMA. Let M € GLm(R), m =2 2. Let (al,...,am) be the first

column of M and (by,...,b ) the last column of M~ 1. Then

(al,...,a ) is unimodular if and only if (b2>"'9bn) is

m-1

unimodular.
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PROOF. If (al,...,am_i) is unimodular, reduce to the case
that a_ = 0 by multiplying M from the left with a lower
triangular matrix. If (b,,...,b ) is unimodular, reduce

2 m

to the case that b1 = 0.

LEMMA. Let R satisfy SRi+1, n 2 2. Then R satisfies
3
SR 9 (n+2,n+2).

PROOF. Let M1’M2’M3 € GLn+2(R). By the previous lemma

we will be done if we show that there is g € E([n+2] x {11})
such that in each of the three matrices gM‘i1 the part of

the last column consisting of the bottom n+l entries is

-1 -1 -1
1 oMy My

respectively. We look for v € R such that the column

unimodular. Let a,b,c denote the last column of M
(a2+v2a1,...,an+2+vn+2a1) and its two analogues are
unimodular. For any g € E({1}* x [n+2]) we may replace the

triple a,b,c by ga,gb,gc. Using SR we may therefore

n+1
reduce to the case a, = 1. Then we want to solve our problem
with some v satisfying v, = 0. We may add multiples of
b, to b3""’bn+2 and we may also add multiples of c, to

PR WL SO we may assume (b3,...,bn+2,b1) and

(c3,...,c

n+2’cl) are unimodular. Apply SRi+1.

LEMMA. Let n 2 2. Let R satisfy SRS}+1 and let GL_(R) act
transitively on unimodular columns of length n. Then R

. . 2
satisfies SRn+1 (n+2,n+1).

PROOF. Let A,B be n by n+l matrices, each obtained by
deleting the bottom row of some element of GLn+1(R).
Let v,w € R?. We want to find an x € Rn+1 such that

v+Ax ,w+Bx are unimodular. Clearly we may replace the system
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A,B,v,w by AU,BU,v,w for U € GL (R) and also by

n+1

2
1v,Tzw for Ti € GLn(R). From SRn+1

3.5 it follows that there is U € E([n+1] x {1}) such that

TlA,TQB,T and Lemma

the first columns of AU and BU are unimodular. Therefore

we may assume A,B have first columns of the form (1,0,...,0)
and further that A has first row of the form (1,0,...,0).
But then we can choose x so that the first coordinate of

v+Ax as well as the second coordinate of w+Bx is equal to one.

PROPOSITION. Let R be finitely generated as a module over a
central subring T whose maximal spectrum is noetherian of

dimension d,d < =, Then R satisfies SRi+1 for n 2 max(2,d+1).

PROOF. Recall that R satisfies SR so that GLn 1(R) acts

n+1 +

transitively on unimodular columns of length n+l. Using

Lemma 3.5 once more we see that SRi+1 is now equivalent

with Serl+1 (nt1,n+1). By ([6], Theorem 8, pg. 13u4) it suffices
to consider the case that T.is a field. But then R satisfies

SR and Lemma 3.% applies.

EXERCISE. Give a more direct proof of the Proposition.
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54 Proof of the Theorems

We start modifying the proof of Theorem 4 of [6] in order to get
a proof of Theorems 1 and 2 above. We introduce two sets of hy-

theses.

Situation a: n = 2. The associative ring R satisfies SRi+1 and
EUn(q) equals Un(q) for all q € R.
This corresponds with the hypotheses of Theorem 2.

Situation B: n=2. The ring R is a Dedekind ring of arithmetic

type with infinitely many units.

This corresponds with Theorem 1.

The proofs for si*uation a will mostly be simplified versions of
those for situation B, but complicated versions of the arguments
in [6]. While in [6] the pattern of the proof looks reasonable,
the modifications presented here require more perseverance from
the reader. From now on we assume that a or B applies. As We are
going to use almost all of ([6], sections 2,3,4), we will save
some space and refer the reader repeatedly to [6], telling him
what to read and when. Of course we now replace the standing as-

sumption gﬁg of [6] by the assumption that a or £ holds.

Read in [6]: All of section 1, 2.1 and 2.2, 3.4 through 3.19.
The handwritten L(resp R) of [6] will be denoted by L(resp. R)

in this paper.
LEMMA., En(R) acts transitively on unimodular clumms of length n.

PROOF. In situation a this follows from the equality of E Un(l)
and Un(l). In situation R it follows from SLz(R) = EQ(R), which

is proved in [13], cf. [8].
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Read [6] 3.20. There is a converse to [6] 3.20:

LEMMA. Let (X,v) € C, v € R™". Let L(x_, (v)) (X,?) be defined at
the bottom. Choose T € St(n+1) such that (X,Y) = (T X 42 .1 (*), *.
2
n+1

Then there is w € R , T € R, with (wz,..,w +1) unimodular and

n
xn+2(v)T=Txn+2(wr).

PROOF. Straightforward.

DEFINITION. When in the situation of lemma 4.4 the column v itself
is also unimodular, we say that L(xn+2(v)) (X,Y) is defined firmly

at the bottom. Note that then (wzr,.., r) is unimodular so that

Yn+1
we may replace w by wr and r by 1. Therefore this is the situation

of [6] 3.20.

In the proof of [6] 3.22 it is used that Kl(n,R) - Kl(n+1,R) is
injective. In situation a this property is not yet established

(What is known is that K;(m,R) » K (R) is injective for m Z n+1l.

The case m=n is the subject of part (i) of Theorem 2.) Let us there-
fore give another proof of [6] 3.22. It clearly suffices to show:

LEMMA. Let v € R™1, (x,Y) € C. Let M be the n+l by 2 matrix whose

fiprst column is v and whose second column is obtained from the
first column of mat (X,Y ) by deleting the last entry. Then
L(xn+2(v)> (X,Y ) is defined firmly at.the bottom if and only if M

is completable, by adding columns, to an element of E(n+1,R).

REMARK. Because of lemma 4.3 completability of M is equivalent with

unimodularity, i.e. with the existence of a 2 by n+l1 matrix N such

that NM = id.

PROOF OF LEMMA. Reduce to the case X = x 1(*) and apply lemma

n+2,

4.3,
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4.7 Read [6] 3.23, 3.24, 3.25 and 3.36

LEMMA. Let ¢ € R , v € EU (q). There are X € St({n+1}"x [n]),

* *
Y € St({n+1} x {1,n+1} ) such that x, n+2(v1)...x (vn)x

n,n+2 (q)

. n+2,1

= X Y in St({n+1}* x {n+1}*);

PROOF. By induction on the complexity of (v3;gq). In this proof let

. * *
x{(v) stand for xl’n+2(v1)..xn’n+2(vn) in St({n+1} x {n+1} ).

If w = ei(b)v has lower complexity than v with respect to g, note

that x(v) x (q) = xil(-bq) x{(w) Xil(bq) X

n+2,1 (-b) x (q) =

i,n+2 n+2,1

xil(-bq) x(w) xn+2’1(q) xi,n+2('b)'

If w = e (b)v has lower complexity, note that x(v)‘xn+2 1(q) =
9

xii(~b) x(w) x (q) x ,i(-bq) xli(b)'

n+2,1 n+2

REMARK. This lemma and its proof explain the relevance of EUn(q)

for computing in the chunk. The proof will be needed repeatedly.

L.8 NOTATION. If s € R, v € R™, then x,4,(V,8) stands for

xn+2(v1,a.,vn,s) . (cf. [68] 3.12).

*
DEFINITION Let g, s €R, v € EU_(q), B € St({n+2} x {1} ), T € St(n+1),
+ .
U € Up, w € rR" 1 such that xn+2(w)T = Txn+2(v,s).
Then we say that L(xn+2(w)) (Txn+2,1(q) B,U) is defined and let its
value be L(T) L(xn+1,n+2(5)) (X,Y B U), where X,Y are chosen as in

lemma 4.7. (Note that L(x (s)) (X,Y B U is defined at the

n+l,n+2
bottom.) To see that{(X,Y B U) does not depend on the particular
choice of X,Y we may assume T=1, B=1, U=1, s=0 and then apply the

squeezing principle with i=n+1.

REMARKS. Note that this L(xn+2(w)) differs from those defined in

[6] 3.13, 3.18 in that its argument is in Low x Up rather than C.
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Of course the idea is to show eventually -that L(xn+2(w)) (Txn+2’1(q)B,U)

depends only on w and (Txn+2’1(q) B,U).
Note further that the definition of L(xn+2(w))(*,*) is algorithmic
in nature: Given a reduction to zero of v in EUn(q), the proof of
lemma 4.7 tells us how to construct X and Y. In later proofs we will
often need to consider the steps in the algorithm. This makes these

proofs more tedious than proofs involving only maps defined at the

bottom.

DEFINITION. An element s of R is an irrelevant factor when the fol-

lowing holds. For each q € R, a € R” with as € EUn(q) we have

a € EUn(sq), It is an easy exercise to sﬁow that units are irrelevant
factors. As EUn(O)= Rn, zero is also an irrelevant factor. In situation
a it is clear that any element of R is an irrelevant factor. In situ-
ation B we have the following corollary to the main results of [1], [13],

cf.[8lIntuitively it says that elements in "general position" are

irrelevant factors.

LEMMA. (Situation B). There is a non-zerc ideal I of R such that, if

s € R is such that s maps to a unit in the semi-local ring R/I, then

s 1s an irrelevant factor.

PROOF. If (a,b) € R2, q € R then (a,b) E.EU2(q) if and only if, in

the notations of [8], [13], the column {1+aq) occurs as the first
bq

column of some element of E(R,qR). If q=0, EUz(q)= Rz. If q # 0,

we learn. from [8], [13] that (a,b) € EUQ(q) if and only if the power

norm residue symbol (1%53) vanishes, where r(q) is an integer that
q r(q) .
depends in a certain way on valuations vp (@),..,v_ (q), where
1 m

Pqs++«,P are fixed prime ideals. Now choose for I a non-zero ideal

that is divisible by Pqs-«esbPp. If s is a unit mod I then vp.(sq) =
i
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v_ (q) so that for (as,bs) € EU,(q), q # 0, we have (1+asg) - q
& B5q /r(q)
hence (1;659) - 1, hence (a,b) € EU,(sq).
sq 2
r(sq)

REMARK. In the sequel we will not use the fact that the condition on
s can be satisfied independent of q. It would suffice to know that
for any q there are sufficiently many s that are "irrelevant with

respect to q".

1 n’ q, s € R, T € St(n+1) such that

xn+2(w)T = Txn+2(v,s). Let further A € St([n] x {n+1}),
*
B € St({n+2} x {1} ), U € Up and assume that s is an irrelevant factor.

If L(xn+2(W)) (Tx (q) B, A U) and L(xn+2(W)) (Txn+2,1(q) B A, U)

n+2,1

are both defined (see 4.8), then their values are the same.

PROOF. We may move T out of the way (towards the left) and then con-
sider the case T=1. Note that we change w when removing T. In par-

ticular, we get xn+2(w) = xn+2(v,s). The reader is expected to take
x1,n+1(a1)...x

We have v, v-as € EUn(q).First we want to reduce to the case v=0,

care of such details in the sequel. Say A = (an).

n,n+1

arguing by induction on the complexity of (v3;q). When we replace

-1

B,U by 1, A B A U respectively, the answers don't change. Therefore

assume B=1. If z = e (t) v has lower complexity than v, we use the
proof of lemma 4.7 to express L(xn+2(v,s)) (xn+2,1(q), A U) in

1 . . 1.1
terms of L(x,,(2,8)) (x ., 1(q), A uly with suitable A™,U%.

We find that L(xn+2(v,s)) (xn+2’1(q), AUy) = L(xli(-t)) L(xn+2(z,s))

1,1 1 1 . _
(xn+2’1(q), A“U") where A (tai) A, U = x . (-qt)

: x1,n+1 n+2,1

xn+2,n+1(-q t ai) xli(t) U. By induction hypothesis we may rewrilte

the expression as L(xli(-t)) L(xn+2(z,s)) (xn+2,1(q) A1,U1) and a

straightforward computation shows that this equals L(xn+2(v,s))
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( (@) A,U). Similarly, if z = e.(t)v has lower complexity than

Xn+2,1

v, we use the proof of lemma 4.7 to rewrite L(xn+2(v,s))

( (q),A U) as L(xii(—tq)) L(xn+2(zzs)) (xn*z,l(q), A xi,n+2(-t)U)

xn+2,1

which equals (by induction hypothesis) L(xii(-tq)) L(xn+2(z,s))

(

xn+2’1(q) A xi,n+1(t qay), x (-t q ay) xi,n+2(°t) U). Note that

i,n+1

one has to be careful about what the induction hypothesis tells

exactly. One really has to move A x.

1,n+1(t q al) over the comma, not

just A. With some patience one now finishes the check for this case
too. We may further assume v=0. Then we have —asGﬁEUn(q) and because
s is an irrelevant factor we even have -a € EUn(sq), When a=0 there
is nothing to prove. Therefore let us now argue by induction on the
complexity of (-aj;sq). We have to show that L(A) L(xn+2(—as,s))

( (q), x (q a;) U) equals L(>§n n+1(s)) (x (@), A U.

*n+2,1

If z = e*(t)(-a) has lower complexity than -a, we argue as before,

n+2,n+1 +2, n+2,1

first rewriting L(xn+2(-as,s)) (x (q),*) in terms of z. If

n+2,1

zZ = ei(t)(-a) has lower complexity than -a, the computations are
similar but a little longer. (The i-th co-ordinate of ei(t)(-a) is

-ai+t-tsqa1).

.11 LEMMA. (Additivity, technical form).

Let q,r,s € R, v,w € EU_(q), U € Up, B € St({n+2} x {1}*),
n 5%

n+1

T € St(n+1), a,b € R such that xn+2(a) T =T xn+2(v,r) and

x (b T =T xn+2(w,s). Say L(xn+2(a)) (T x

n+2 (q) B,U) = (P,Q

n+2,1

and assume that L(x (b-a)){P,Q 1is defined at the bottom. In

n+?

situation B assume further that v,=0 and that s=r-rqW, is an irrelevant

1

factor. Then L(x , . (b)) (T x (q) B,U) = L(x_,,(b-a)) L(xn+2(a))

n+2,1

(T X5, 1() B,UD.
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PROOF. As we may move T over to the left and B over to U, we further
assume T=1, B=1. We start with reducing to the case v=0. In situation
a this is done in the same fashion as in the previous proof, using
now also some properties of maps defined at the bottom (cf. [6]

lemma 3.23). In situation B8 we .have v,=0 co that the reduction to

v=0 can be done with steps which do not affect s-r-rqw, . Thus we

may reduce to the case v=0 in any situation. Put y=S-r-rgw,.

What we have to show boils down to the equality of L(xn+2(w,s))

(

xn+2,1(q), U) and L(xn+1,1(rq)) L(xn+2(w,y)) (xn+2,1(q), (r) U

*n+1,n+2

0f course we may assume U=1. As L(xn+2(w,y))(xn+2,1(q), *) is defined

at the bottom, there are di € R such that w,=d.w +..+dnwn+d It

179" n+1¥"
is not difficult to see from this that L(x,, ,(w,y)) (xn+2,1(q)

(d ) (-d ) x

X1 n+1%+17 X1 n+1 %41 (r)) is defined. In fact one can

n+l,n+2

evaluate explicitly in this case and one sees, using [6] lemmas 3.23,
3.24, 3.25, that the result is the same as L(x ,,(w,y)) (xn+2,1(q)

(d ) (-d )

n+172 *1,n+1' 7941 (r)) . But we also know, by the

x1,n+1 xn+1,n+2

previous lemma, that the result equals L(xn+2(w,y)) (xn+2’1(q),

X (r)). Thus it remains to show that L(xn+2(w,s)) (xn+2’1(q), 1) =

n+l,n+2

L(xn+1’1(rq)) L(xn+2(w,y)) (xn+2,1(q), xn+1’n+2(r)).
It is easy to see that if the first member in this equation is
(Xxn+2,1(q) xn+1,1(sq), xn+1,n+2(8) Y) with X € St(n),
*
Y € St({n+1} x {1,n+1}*), then the second member is of the form

¢ (*), x (*) Y x (*)) . Using

xn+1,1(*) X xn+2,1(q) *n+1,1 n+1,n+2 n+1,n+2

the semi-direct product structure of St([n+1] x [n])and St([n+2] x
{1,n+1}*), cf. [6] 3.5, we see that the problem reduces to proving

(*)...x (*)) .

an identity of the form (1,1} =¢( n+1,n+2

*
Xne1,18%70 *ne1,2
But such identities hold precisely when they hold after applying mat.
Now note that at the matrix level the problem has been trivial from

the beginning.
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4.12 We have to generalize lemma 4.11 to a result like [6] Proposition

3.33. Let us first assume that we are in situation a.

LEMMA (Situation a). Let v,w ¢ RP*!

, X € Low, Y € Up.

Let L(xn+2(w)) (X,Y) be defined at the bottom with value (P,Q and
let L(xn+2(v)) (P,Q0 be defined at the bottom.

If further L(xn+2(v+w)) (X,Y) is defined, then its value is

L(x,,,(v)) (P,Q .

PROOF. Say X = T x_,, 1(q) B with T € St(n+1), B € St({n+2} x {17 }).

As usual we move T over to the left and reduce to the case T=1.

2
n+1

(X A, A"1y) and L(x

By SR there is A € St([n] x {n+1}) such that both L(xn+2(v+w))

n+2(w)) (X A, A-lY) are defined. Now L(xn+2(v+w))

-1
(X,Y) equals L(xn+2(v+w)) (X A, A 7Y) by lemma 4.10. Also Lix ,,(w))
(X A, a1y equals L(xn+2(W)) (X A, A-iY) as one sees by applying

lemma 4.11 with v=0, r=0, a=0. Remains to see that L(xn+2(v))

Lxy,,(0)) (X A0, AY) = Lix_,,(v#w)) (X A7%, A ¥). But this is the

situation of lemma u4.11

4.13 DEFINITION. (Situation a). Let v € R™1, X € Low, Y € Up such that

mat(xn+2(v) X ¥Y) € mat(C). By SR there is A € St([n] x {n+1}) such

n+1
that L(x ,,(v)) (X A, A"1Y) is defined. We put L(x ,,(v)) (X,V) =

L(xn+2(v)) (X A, AﬂiY). To see that this depends only on (X,Y) and

n+1

v, we note that there is z € R such that both steps in L(x (-2))

n+2
L(xn+2(v+z)) (X,Y) are defined at the bottom, because of SRi+1(n+2,n+1),
as in [6] 3.32. By lemma 4.12 we have L(xn+2(—z)) L(xn+2(v+z)) (X,Y) =
L(xn+2(v)) (X A,A-iY) and the left hand side is independent of the
choices made in the right hand side. (Similarly the right hand side

is independent of the choices made in the left hand side, so both

sides are independent of choices). It is clear that our present defi-

nition of L(x ,,(Vv)) (X,Y) is compatible with the earlier definitions
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in 4.8, [6] 3.18 and that it is equivalent with [6] 3.31.

PROPOSITION. (Additivity in situation a, cf. [6] 3.33).
Lix, ,,(v)) Lix, 5 (W) (X,Y) = L(xn+2(v+w)) (X,Y) whenever the left

hand side is defined.

PROOF. First assume the L(xn+é(v)) step is defined at the bottom. Use
SR?}+1 to choose a representative (P,Q) of (X,Y) so that both L(xn+2(w))
(P,Q) and L(xn+2(v+w)) (P,Q) are defined. Then lemma 4.11 applies.

In the general case we want to get back to this special case by pertur-
bation, as in the proof of [6] 3.30. So we seek z € Rn+1 such that

in L(xn+2(z))L(xn+2(v)) L(xn+2(w)) (X,¥Y) and L(xn+2(v+z)) L(xn+2(w))
{X,Y) the steps L(xn+2(z)), L(xn+2(v+z)) are defined at the bottom.

This 1s an SR2

e (nt2,n+1) type problem, cf. [6] 3.30, so z exists.

We now have recovered the results of [6] section 3 in the context of
situation a. Therefore we turn to situation f and try to catch up.
Note that n=2, n+2=4. We start with a variation on [6] 3.30. (We will

return to situation a in 4.18).

LEMMA. Let L(xq(v)) (X,Y) be defined at the bottom, with value {P,Q .
Let L(xq(w—v)) ({P,Q and L(xu(w)) (X,Y) be defined firmly at the

bottom (ef. 4.5). Then L(xu(w)) (X, = L(xu<w-v)) L(xq(v)) (X,7.

PROOF. We may assume X = xqi(q), v1=0u First assume 1+qw, #* 0. We
want to modify the situation so that lemma 4.11 applies. To adapt

v,w we Will choose a suitable M € St({2,3} x {2,3}), multiply the
desired equality from the left by L(M) and then move M over to Y.

As L(xu(w)) (X,Y) is defined firmly at the bottom, the column (wz,w3)
is unimodular. Similarly the column (w2'V2°V2q W sWa~Va=Va g wl) is

unimodular. The effect of pushing M through is to transform these
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two unimodular cclumns by an element of EQ(R). It is not difficult
to see, using the Chinese Remainder Theorem, that M can be chosen
such that the new w, has an invertible image in R mod (1+g wl) and
the new wy, wy=vs-v, g W, are irrelevant factors. (cf. 4.9). There-
after we can modify further, using an M of the form x23(*), so that
Ww,=1 becomes a multiple of 1+q w,. It follows from lemma 4.11 with
T=1, a=0, that L(xu(w)) (X,v) = L(xu(w)) (X,Y). Also it is clear
(cf. [6] lemma 3.25) that L(xu(v)) (X,¥) = L(xq(v)) (X,Y). We may
thus finish by lemma 4.11. Remains the case that 1+q wqs 0. We may
assume v2:0. Now if w2=0 the result follows from the squeezing

Principle with i=2. If w, # 0 we can get back to the case 1+g w1¢ 0

2
by pushing through M:x12(1) in the same fashion as above.

LEMMA. Let both steps in L(xq(u~v)) Lx, (v)) (X,Y) and both steps in
L(x, (u-w)) L(xq(w)) (X,Y) be defined firmly at the bottom. Then the

end results agree.

PROOF. First we note that if L(xu(y)) (P, is defined (firmly) at the
bottom, then the same holds for the other step in L(xu(-y)) L(xu(y))
(P,Q . (And the result is (P,Q), of course). As in the proof of [6]
3.30 we look for z € R® such that Lix,(z)) L(x,(u=v)) L(x, (v)) (X,¥) =

L(xu(z+u-v)) L(xu(v)) (X, = L(xq(z+u-v)) L(xq(-z-u+v)) L(xq(z+u))

u

(X,Y) = L(xu(z+u)) (X,Y) =-.. L(xq(z+u—w)) L(xu(w)) (X,V) = L(xq(z))
L(xq(u-w)) L(xq(w)) (X,Y) . By the previous lemma, 4.6, [6] 3.22, and
the remark atove, this means that we want the steps L(xu(z)),
L(xu(z+u—v)), L(xu(z+u-w)) to be defined firmly at the bottom and
the step L(xu(z+u)) defined at the bottom. This amounts to four con-
ditions on z and that is a lot, so we have to analyze closely what
they look like. As usual we may assume X = qu(*). As in {61 3.30

there are three 2 by 3 matrices , say Al’Az’Aa’ each completable to

invertible 3 by 3 matrices, and three vectors 8 58,5585 in R2 such
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that the first three conditions are equivalent to unimodularity of
the a +A, z. To satisfy the fourth condition we need to take z of

the form -u+y r with y € R3, (y2,y3) unimodular, r € R. So there

are four vectors that have to be unimodular: ai~Aiu+Aiyr (i=1,2,3)
and (y2,y3). From the considerations in [6] section 2 (ef. [6] 2.11)
we see that we can satisfy these requirements provided there is r # O
such that for each maximal ideal m the conditions ai-Aiu+Aiyr £ 0 modIERz,
(yz,yB) ¥ 0modm R2 can be met simultaneously. ("Local solvability
implies global solvability"). For a given m the existence of a local
solution for y clearly only depends on the vanishing or non-vanishing
of r mod m. By a count as in [6] 2.9 we see that the m where there is
no solution with non-vanishing r mod m are of a very particular type:
For such m we have R/m = K, and a.-A.u ¥ 0 mod m R%. So at these m
there is a solution with vanishing r mod m. If no such m exists, take
r=1. In the contrary case observe that none of the ai-Aiu vanishes
identically so that there are only finitely many m where One needs to

keep r mod m from vanishing . Therefore r can be chosen suitably.

LEMMA. Let v,w € R%,( X,y) € C such that both mat(x, (w)XY)
and ggi(xu(v+w)XY) are in mat(C). Then there are t,u € R3

such that all steps in L(xq(t))L(xu(v—t)L(xq(u))L(xq(w-u))( X,Y)
and in L(xq(t))L(xu(v+W¢t))( X,Y) are defined firmly at the

bottom. Moreover, the end results agree.

PROOF. By [6] 2.11 condition SR%(H,3) is satisfied. Therefore
existence of t,u follows as in [6] 3.32. Now substitute w-u

for v, w for u, v+w-t for w in Lemma 4.16.

DEFINITION. (Compare [6] 3.31). Let v € RS, ( X,¥) € C

3

such that mat(xq(v)XY) € mat(C). There is z € R° such that



236

both steps in L(xu(-z))L(xu(v+z))( X,Y) are defined firmly

at the bottom. (cf. 4.17). We define L(xu(vﬂ( X,Y) to be
equal to the result. It follows from Lemﬁa 4,16 that this

does not depend on the choice of z. When L(xu(v))( X,Y) is
defined at the bottom, the present definition is consistent
with the one in [6] 3.18 by Lemma 4.15. Further "additivity"
(cf. [6] 3.33) holds by Lemma 4.17. It easily follows that
the present definition is also consistenf with [6] 3.13, 3.15,
3.31. Now read [6] 3.34. By induction on complexity one

easily shows that L(xu(v))< X,Y) equals L(x,(v))(X,Y)

when the latter is defined.

We have recovered the results of [6] section 3 both for
situation a and for situation B. Therefore let us look at
[6] section 4. Read [6] 4.1 through u4.7. Note that the
computation in [6] 4.6 no longer looks horrendous when
compared with the present paper. Our next task is to prove

an analogue of [6] Proposition 4.9. First we consider situation a.

LEMMA. {(Situation a). Let v € Rn+1

, t € Ry, A € sSt({n+2} x [n+2]),
B € St({1} x [n+2]) such that R(x21(t))L(xn+2(v))( A,B) is

defined. Then it equals L(xn+2(V))R(x21(t))( A,B)

PROOF. Note that mat(Aszi(t)) and mat(xniz(v)Aszl(t)) are
in mat(C), so that L(x (vIIR(x, (1)) { A,B) 1s indeed
—_— n+?2 21
defined. Write it as LRp and the other version as RLp.
(So p ={ A,B) ete.) It suffices to show that there are
T € St([n] x {n+1}), U € st({1}* x {n+1}) such that

R(WL(TILRp = R(UIL(TIRLp. Because of SRi+1 we can choose
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T,U in such a way that, by pushing R(U)L(T) over to p,
we are left with a version of the original problem in which
the following holds. Both LiLsz and RLlep are defined,

where L, = L(xn+1’n+2(vn+1)), L, = L(xn+2(v1,...,v

The squeezing principle, with i = n+1l implies that L2Rp = Rsz,

0)).

n?

because 4.8 gives a method to evaluate both sides "away

from line i+1". Remains to show that LIRLQP = RLlep. Using
what we know about the shape of sz and applying inv, we see
that it boils down to the case that, in the original context,

v, vanishes. Write A = xn+2,1(q)xn+2,2(a2)...xn+2,n+1(an+1).

We now wish to argue by induction on the complexity of
(vl’VS""’vn+1) with respect to q. The case v = 0 1is
obvious. When (v1+rvi,v3,...,vn+1) has lower complexity,
simply multiply by L(xli(r)) and push it through. Remains the

case that (vi,v3,...,vi+r(1+qv1),...,v 1) has lower complexity,

n+
3 <£1i < n+1. Then Rlp =

(a.).

n+2,3 73 "Xn+2,n+1(an+1))

RL(xiz(—ra2)xil(—rq))R(xi’n+2(~r)x

L(xn+2(v1,0,v3,...,vi+p(1+qv1),,,,, )

v
n+1

*
( xn+2’1(q)xn+2,2(a2),x12( )"'xl,n+2(*)) . Now R can be

pushed through all the maps in the right hand side. It
-1 _ _
follows that L “Rip = L(xi2(~ra2)xi1( rq))

. ( (q)
R(xi,n+2(-r)xn+2,3(a3)...xn+2’n+1(an+1))L(xl (r))R Xpn+2,1 q

* * . his last expression we
xn+2’2(a2),x12( )"'xl,n+2( )) . In this las P

,nt+2

may move R to the left because L(xi’n+2(r)) and R = R(x21(t))

slide past each other here. (cf. [6] 4.5, 4.6). It easily

1

follows that R~ L‘lRLp equals p.

PROPOSITION. (Situation a). (ef. [ 6] 4.9). Let v = (vi,...,vn+1

w = (wz,...,w ). Then ;(xn+2(v)) ° R(xl(w)) ad

n+?2

R(x (W) © L(x, ,(v)).

),
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PROOF. Let both composites be defined at p =¢ X,Y) . We have to
show that the values agree. When L(xn+2(v)) P is defined at

the bottom we apply inv and get essentially into the situation

2

of Lemma 4.19. In general SRn+1

is z € Rn+1 such that L(xn+2(z)) igs defined at the bottom at

(n+2,n+1) implies that there

R(xi(w))L(xn+2(V))p and L(x (v+z)) is defined at the bottom

n+?2
at p. Writing L1 = L(xn+2(v)), L
-1
2
RLEIR-lRLzLip = RL,p, where in the fourth equality we use

2
L.LRp = LDYRL L,p = RROMLZIRLL D =
2-1P 2 RbotqP 2 “F2t1

L(xn+2(z)), R = R(xl(w))
we get LlRp =L

that L;i is defined at the bottom at RLlep.

We have to prove the analogue of this proposition for situation

B tco. This is more complicated.

NOTATION. (situation B). When X € St(4) let us write matij(X)

for the entry of mat(X) at the intersection of the i-th row
and the j-th column. So matqi(X) denotes the entry in the

lower left hand corner.

LEMMA. (situation B). Let A = qu(q)xu2(r), B = (*)

X130 Xy
v € R3, t € R, Z = inv(xu(v)A), such that the pairs (gq,r)

*),

and (Qgﬁii(Z),mgzzl(Z)) are unimodular. Then
L(x, (vIIR(x,q (£)) ¢ A,B) = R(le(t))L(xu(v>)( A,B).

(Both sides are defined.)

PROOF. To see that R(x,,(t))L(x, (v))¢ A,B) is defined, one
inspects the first column of mat igx(xu(v)ABx21(T)).
Consider the unimodular pair (1+qv1+rv2,v3). When it equals
(0,1) the result follows by applying inv to [6] u.7. Now let

V be the set of unimodular pairs such that the lemma holds
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whenever (1+qv1+rv2,v3) € V. By lemma 4.3 it suffices to show
that V is invariant under EQ(R). Multiplying our problem

from the left by L(xla(a)x23(b)), R(xza(-b)x“3(*)) and pushing
these two maps over to ( A,B) we can replace (VI’VQ) by
(v1+av3,v2+bv3), hence (1+qv1+rv2,v3) by (1+qv1+rv2+(qa+rb)v3,v3),
for any a,b € R. As (q,r) is.unimodular this means that V

is closed under the operation (f,g) = (f+cg,g) for any ¢ € R.
Further, for a € R one has L(xgq(a))R(xlz(t))( A,B) =
R(le(t))L(XBH(a))( A,B) by [6] 4.6. This means that our
problem is equivalent to showing that
R(x12(t))L(Xu(V15V2°V3-a))( P,Q) equals
L(xu(vl,vz,v3—a))R(xlz(t))( P,Q) with ¢( P,Q) = L(x3q(a))( A,B)
But this last problem boils down to one of the original type
with Va replaced by v3-a-aqv1-arv2. So V is also closed under

the operation (f,g) - (f,gt+af).

We say that R(xl(w))( X,Y) is defined (firmly) at the bottom
when L(inv(xl(w») is defined (firmly) at the bottom at

inv { X,¥)

LEMMA. (Situation B). Let v,w,X,Y be as usual and assume
that L(xq(v))( X,Y) is defined, while R(xl(w)) is defined
firmly at the bottom at both ¢ X,Y) and L(xu(v))< X,Y)
Assume also that (Eé£q1(XY)9E§£q1(XYX1(W))) is a unimodular

pair. Then R(xl(w))L(xu(v))< X,Y) = L(xu(v))R(xl(w))( X,Y) .

PROOF. We may assume xi(w) z x21(t), X = Xui(q)XMQ(P)’

q,vr,t € R, Y = (*)x. (*). Note that (q,r) is unimodular

X13 1Y
because matql(XY) = q, matul(XYxl(w)) = q+rt. Applying inv
to Lemma 4.6 we see that all conditions of Lemma 4.21 are

satisfied.
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23 PROPOSITION. (Situation B). (ecf. 4.20). Let v,w,X,Y be as

usual and assume that both L(xq(v))R(xl(w))( X,Y ) and

R(xl(w))L(xq(v))( X,Y? are defined. Thentheir values agree.

PROOE .

CASE 1. X € St({u} x [u]), Y € st({1} x [u]l), w = (t,0,0),
both mat,,(XY) and mat,,(XYx,,(t)) are non-zero and v, is

in the intersection of those maximal ideals m for which

R/m = T, . We claim there 1is z such that
R(xl(Z))L(xu(v))R(le(t))( X,Y) equals

L(x, (v)IR(x (2)IR(x,, (1)) ¢ X,¥) and R(xi(z+w))L(xu(v))( X,Y)
equals L(xu(v))R(xi(z+w))( X,Y) . By Lemma 4.22 this creates
an SR;(H,B) type problem, except that one also needs to
make mat,,(XYx,(z+w)) prime to the product of mat, ,(XY) and
mat, ; (X¥x,,(t)). As before the problem of finding z is
solvable (globally) if it is solvable locally (cf. proof of
4.16 and proof of Theorem 3 in [6] section 2.) Where the
residue field has at least three elements there is an easy

count as in [6] 2.9. At a place with a residue field with

2 elements one can check that there is a solution of the
= i 4.6).

form (22,23,zu) (z2,1,zu). (Apply inv to Lemma )
CASE 2. X,Y,w as in case 1 and both matql(XY) and matul(XYx21(t))
are non-zero. We wish to get back to case 1. We may assume

= = * *). f of Lemma
X = xul(q)xuz(r), Y x13( )xlq( ). From the proo
4.21 we see that we may replace (vl,vz,v3;q,r,t) by
(v1+av3,v2+bv3,v3;q,r,t) for any a,b € R. Therefore we may
assume qv +rv, is contained in each maximal ideal m with
R/m = Eé s Vg ¢ m. But from the same proof we see that we
may replace (vl,v2,v3;q,r,t) by (vi,v2,v3-v3(1+qv1+rv2);q,r,t)-

Therefore we may reduce to case 1 indeed.
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CASE 3. Both matql(XY) and matqi(XYxl(w)) are non-zero. The

proof is similar to the proof of case 1: First one notes that
the special case in which R(xi(w))( X,Y) is defined at the
bottom is essentially the same as case 2. Then one multiplies

by a suitable R(xl(z)) and applies this special case twice.

(To prove the existence of a suitable z pick a maximal ideal m
for which R/m has at least a hundred elements, say, and replace
the requirement Eiiq1(XYx1(W)X1(Z)) #* 0 by the stronger

requirement mat, ; (Xyx, (w)x, (z)) ¥ 0 mod m. Then argue as in

4
case 1.)

CASE 4. L(x,(v)) is defined at the bottom at both{ X,Y) and
R(xi(w))( X,Y) . We may assume that X,Y are as in case 1 and
that v = (0,0,t),t € R. By [6] Lemma 4.7 we have R(xi(l,a,b))
L(xu(v))( X,Y) = L(xu(v))R(xi(l,a,b))( X,Y) for all a,b € R.
Therefore it is easy to reduce to the case that ggqu(XY) is

non-zero, without changing mat,.(XYx,(w)). Similarly one may
& matuq 1

also make matql(XYxi(w)) non-zero so that case 3 applies.

CASE 5. The general case. We choose z such that L(x,(z)) is

defined firmly at the bottom at both R(xl(w))L(xu(v))( X,Y?
and L(x, (v)) (X,¥) , while L(x,(z+v)) is defined firmly at the
bottom at both({ X,Y) and R(xi(w))( X,Y) . To see that this
can be done one argues as usual, noting in this case that when
X is a field one can not fill all of k° with four lines of
which at least two pass through the origin. (ef. [6] 2.9). The

rest is easy. (cf. [6] proof of 4.98).

Now that we have proved the analogue of [6] 4.9 in both
situation a and situation B, nothing prevents us from using the
remainder of {6] section 4. Therefore Kz(n+1,R) - Kz(n+2,R) is

injective. More generally we see that Kz(m,R) =+ K,(R) is injective
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for m 2 n+l. (Recall that enlarging the size only makes things
better, of. 3.3., 3.4). The remainder of Theorems 1 and 7 easily

follows from the following.

LEMMA. Let x € St(n+1) such that the first row and the first
column of mat(x) are trivial. Then there is

g € St({1,n+2}* x {1,n+2}*) which equals x . in St(n+1).

PROOY. Let T be the isomorphism St(n+l) - St({1}* x {1}*) obtained

by substitution of n+2 for the index 1. In St(n+2) we have

-1
n+2,1(1)an+2,1(1)

U € St({1}* x {1}*) it is easy to see that p(U) ( 1,1) = (1,U)

T(x) = w = x.(cf. [6] proof of 3.10). For
(p as in [6] 4.16). So on the one hand 0 (x) ¢ 1,1) =( x,1) and
on the other hand p(x)( 1,1) = p(1(x)) ¢ 1,1) =( 1,7(x)) . This
means that there is g € Med with (1,7(x)) = (xgﬁl,g). Now recall
the semi-direct product structure of Med and apply mat to see

that g comes from St({1,n+2}* x {1,n+2}*).
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§5 A simpler proof of surjectivity in Theorem 1.

In the previous section surjectivity came as a byproduct of our
proof of injectivity. For those readers who are mainly interested
in surjectivity of the map K2(2,R)-*K2(R), we now give a proof
that is considerably simpler.'(R as in Theorem 1).

The idea is to sharpen a proof of ordinary surjective stability
for K, (we use something like the "transpose" of the proof in
[12]1). The sharpening is achieved by means of Vasertein's result

that EU2(q) = U2(q) for suitable q. (ecf. 2.7).

Recall that it sufficesto show that KZ(Z,R)~+K2(3,R) is surjective.
Therefore we try to write elements of St(3,R) in normal form. As
normal form we take the one suggested by 3.5 and [6] 3.36: We say
that X can be written in normal form if there are L1 € image

(Low = St(3)), U € image (Up - St(3)), L, € image (St([31x {1})~St(3))
such that X = L1L1L2. (Notations of [6] 3.4, 3.5, 3.6 with n=1).
Note that if X € St(3) can be written in normal form and L € image
(Low + St(3)), the element LX can also be written in normal form.
Similarly, if X can be written in normal form and L € image
(St({l}* x [3]) - St(3)), then XL can be written in normal form.
Let P(a,b,q,r,s) denote the property: xla(a) X23(b) x31(q) x32(r)
xiB(S) can be written in normal form. Let Q(a,b,q,r,s,t) denote
the property: x13(a) x23(b) xal(q) XBZ(P) xlz(t) x43(s) can be

written in normal form. Note that Q(a,b,q,r,s,0) = Pla,b,q,r,s).

PROPOSITION, Let Y = x13(a) x23(b) xaj(q) x32(r) le(t) x13(5)

with a,b,q,r,s,t, € R. Then Y can be written in normal form.
PROOF. We have to prove Q(a,b,q,r,s,t).

STEP 1 P(a-tb,b,q,r+gqt,s) = Q(a,b,q,r,5,t).
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This one sees by multiplying Y from the left by

L = x,,(-t) € image (Low - St(3)) and making some obvious

12

computations. (It helps to write down the corresponding matrices).
STEP 2. Q(a,b,q,*,*,*) < Q(a+pb,b,q,*,*,*), for any p.
To prove step 2, multiply Y from the left by x12(p). Etcetera.

STEP 3. Q(a,b,q,*,*,*) < Q(a,b+p(1+qal),q,*,*,*), for any p.

To see this, multiply Y from the left by x,,(pq), form the right

by x32(—r) X, (D).

23
STEP u4. Q(a,b,q,r,5,t) holds if (a,b) € EU2(q).
For, by the previous two steps we may assume (a,b) = (0,0).

Then it is obvious. (Compare also 4.7).

NOTATION. In the totally imaginary case (cf. 2.7) let m denote the
order of the group of roocts of unity in R. Otherwise let m be any

non—-zero non-unit in R.

STEP 5. p(a,b,q,*,*) holds if q is prime to m and (1+qa,b) is
unimodular.

Clearly (a,b) € U2(q). As q is prime to m we may apply Vaserstein's
theorem which tells us that U,(q) = EU,(q). (Cf. 2.7, (131, [1D).
STEP 6. P(a,b,q,r,s) ©® P(a,b-pa,q+rp,r,s), for any p.

To see this, multiply Y from the left by le(—p), from the right

by x21(p) x23(ps). (Of course t = 0 now).

STEP 7. P(a,b,q,r,s5,) * P(a-spb,b,q,r+(1+gs)p,s), for any p.

Here we multiplied Y from the left by x12(~sp), from the right

by x32(p).
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STEP 8. P(a,b,q,r,s) * P(a+sr(b+p+pga),b+p+pga,q,-gsr,s—srp)

By step 1 it suffices to prove Q(a,b,q,r,s,0) ¢

Q(a,b+p+pga,q,0,s-srp,~sr). This is done as in step 3.

STEP 9. P(a,b,q,r,s) holds if q,b are prime to m and 1ltqa+rb

is non-zero.

To see this, note that (1+ga+rb,b,ma) is unimodular, with the
first entry non-zero, so that there in y € R such that
(1+qa+rb,b~yma) is unimodular. Then

(1+ga+rb-r(b-yma), b-yma) = (l+qa+ryma, b-yma) is also unimodular

and P(a,b-yma, q+rym,r,s) holds by step 5. Now apply step 6.

STEP 10. P(a,b,q,r,s) holds if q,b are prime to m.

As b is not zero we can use step 7 to reduce to the situation

of step 9.

STEP 11. P(a,b,q,r,s) always holds.

Because of the previous step, we wish to get b,q prime to m.

This is a local problem, therefore not difficult. We apply step

7 toget rprime to g, then step 6 to get q prime to m. Via step

8 we can make s trivial modulo the primes m that divide m but

not r. Repeating step 8 we arrive at the situation that some power
of r is divisible by m. We still have q prime to m. Computing
modulo primes that divide m we easily see that we can get b

prime to m by means of steps 6 and 8, while keeping g prime to m.

Because of step 1 the proposition follows.
PROPOSITION. Any element of St(3) can be written in normal form.

PROOF. Let V be the set of elements that can be written in normal

form. We want to show that V is invariant under left multiplication
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by Steinberg generators. The difficult case is left multiplication
by xii(a), i =1o0r 2. Given X € V we need to prove xli(a) X € V.
Multiplying from the left by elements from St(2), from the right
by elements from St({l}*x [3]1), and using the semi-direct product
structures of Up, Low (ef. [&] 3.5), one easily reduces to the

previous proposition.

Let 1 € K2(3,R). We want to show that Tt comes from KQ(E,R). Write

5 T L;i we reduce to the

case T = L,U. As mat(Li) = maf(Uul) there are a,b € R with

T in normal form LilJLQ. Replacing T by L

mat(L,) = e ,(a) e ,(b). Pushing a factor xlz(a) X,,(b) over from

L1 to U, we get to the situation that L U themselves are in

15
K2(3,R). Because of the semi-direct product structure of Low the
element [, must come for St(2,R) (use mat), hence from K2(2,R).

P * * . . .
Similarly U comes from St({1} x{1} ), hence lies in a conjugate

of the (central) image of K,(2,R), hence comes from K2(2,R).
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