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Abstract
Let G be a reductive linear algebraic group over a field k. Let A be a finitely generated
commutative k-algebra on which G acts rationally by k-algebra automorphisms.
Invariant theory states that the ring of invariants AG = H 0(G, A) is finitely generated.
We show that in fact the full cohomology ring H ∗(G, A) is finitely generated. The proof
is based on the strict polynomial bifunctor cohomology classes constructed in [22].
We also continue the study of bifunctor cohomology of �∗(gl

(1)).

1. Introduction
Consider a linear algebraic group G, or a linear algebraic group scheme G, defined
over a field k. So G is an affine group scheme whose coordinate algebra k[G] is finitely
generated as a k-algebra. We say that G has the cohomological finite generation (CFG)
property if the following holds. Let A be a finitely generated commutative k-algebra
on which G acts rationally by k-algebra automorphisms. (So G acts from the right on
Spec(A).) Then the cohomology ring H ∗(G, A) is finitely generated as a k-algebra.

Here, as in [12, Part I, Section 4], we use the cohomology introduced by
Hochschild, also known as rational cohomology.

Our main result confirms a conjecture of the second author, as follows.

THEOREM 1.1
Any reductive linear algebraic group over k has the CFG property.

The proof is based on the first author’s “lifted” universal classes (see [22]), which
were constructed for this purpose. Originally [22] was the end of the proof, but for the
purpose of exposition we have changed the order.
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If the field k has characteristic zero, then the theorem just reiterates a standard fact
in invariant theory. Indeed, the reductive group is then linearly reductive, and rational
cohomology vanishes in higher degrees for any linearly reductive group.

So we further assume that k has positive characteristic p. In this introduction,
we also take k algebraically closed. (One easily reduces to this case; cf. [24, Lemma
2.3], [12, Part I, Section 4.13], [25].) We say that G acts on the algebra A if G acts
rationally by k-algebra automorphisms.

Let us say that G has the finite generation (FG) property, or is a positive solution
to Hilbert’s 14th problem, if the following holds. If G acts on a finitely generated
commutative k-algebra A, then the ring of invariants AG = H 0(G, A) is finitely
generated as a k-algebra. Observe that, unlike Hilbert, we do not require that A be a
domain.

It is obvious that CFG implies FG. We see that our main result can also be
formulated as follows.

THEOREM 1.2
A linear algebraic group scheme G over k has the CFG property if and only if it has
the FG property.

Let us give some examples. The first example is a finite group G, viewed as a discrete
algebraic group over k. It is well known to have the FG property (see [24, Lemma
2.4]), and the proof goes back to Noether’s 1926 proof [17]. Thus, we recover the FG
theorem of Evens, at least over our field k.

THEOREM 1.3 (Evens [6, Theorem 8.1])
A finite group has the CFG property over k.

As our proof of Theorem 1.2 does not rely on Theorem 1.3, we get a new proof of
the latter, albeit much longer than the original proof. Note that the setting of Evens is
more general: instead of a field, he allows an arbitrary Noetherian base. This suggests
a direction for further work.

If G is a linear algebraic group over k, we write Gr for its rth Frobenius kernel,
the scheme theoretic kernel of the rth iterate F r : G → G(r) of the Frobenius
homomorphism (see [12, Part I, Chapter 9]). It is easy to see that Gr has the FG
property. More generally, it is easy to see (cf. [24, Lemma 2.4]) that any finite group
scheme over k has the FG property. (A group scheme is finite if its coordinate ring is
a finite-dimensional vector space.) Indeed, one has [24, Theorem 3.5].

THEOREM 1.4 (Friedlander and Suslin [9])
A finite group scheme has the CFG property.
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But we do not get a new proof of this theorem, as our proof of the main result
relies heavily on the specific information in [9, Section 1]. Recall that the theorem of
Friedlander and Suslin was motivated by a desire to get a theory of support varieties
for infinitesimal group schemes. Our problem has the same origin. Then it started to
get a life of its own and became a conjecture.

It is a theorem of Nagata [16, Main Theorem], [19, Chapter 2] that geometrically
reductive groups (or group schemes; see [3]) have the FG property. (Springer [19]
deletes “geometrically” in the terminology.) Conversely, it is elementary (see [24,
Theorem 2.2]) that the FG property implies geometric reductivity. (Here it is essential
that, in the FG propery, one allows any finitely generated commutative k-algebra
on which G acts.) So our main result states that the CFG property is equivalent to
geometric reductivity.

Now, Haboush has shown in [12, Part II, Section 10.7] that reductive groups are
geometrically reductive, and Popov [18] has shown that a linear algebraic group with
the FG property is reductive. (Popov allows only reduced algebras, so his result is
even stronger.) Waterhouse [25] has completed the classification by showing that a
linear algebraic group scheme G (he calls it an “algebraic affine group scheme”) is
geometrically reductive exactly when the connected component Go

red of its reduced
subgroup Gred is reductive. So this is also a characterization of the G with the CFG
property.

Let us now give a consequence of CFG. We say that G acts on an A-module M

when it acts rationally on M such that the structure map A ⊗ M → M is a G-module
map.

THEOREM 1.5
Let G have the CFG property. Let G act on the finitely generated commutative k-
algebra A and on the Noetherian A-module M . Then H ∗(G, M) is a Noetherian
H ∗(G, A)-module. In particular, if G is reductive and A has a good filtration, then
H ∗(G, M) is a Noetherian AG-module, Hi(G, M) vanishes for large i, and M has
finite good filtration dimension.

Proof
See [24, Lemma 3.3, proof of Corollary 4.7]. One puts an algebra structure on A⊕M

and uses the fact that A ⊗ k[G/U ] also has a good filtration. �

As a special case, we mention the following.

THEOREM 1.6
Let G = GLn, n ≥ 1. Let G act on the finitely generated commutative k-algebra
A and on the Noetherian A-module M . If A has a good filtration, then H ∗(G, M)
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is a Noetherian AG-module, Hi(G, M) vanishes for large i, and M has finite good
filtration dimension.

This theorem is proved directly in [20, Theorem 1.1], with functorial resolution of the
ideal of the diagonal in a product of Grassmannians; we use it in our proof of the main
theorems.

Now let us start discussing the proof of the main result. First of all, one has the
following variation on the ancient transfer principle (see [11, Chapter 2]).

LEMMA 1.7 ([24, Lemma 3.7])
Let G be a linear algebraic group over k with the CFG property. Then any geometri-
cally reductive subgroup scheme H of G also has the CFG property.

As every geometrically reductive linear algebraic group scheme is a subgroup scheme
of GLn for n sufficiently large, we only have to look at the GLn to prove the main
theorems, Theorem 1.1 and Theorem 1.2. Therefore, we further assume that G = GLn

with n > 1 (or with n ≥ p, if you wish.) (In [23], we used SLn instead of G = GLn,
but we also explained that it hardly makes any difference.)

We have G act on A, and we wish to show that H ∗(G, A) is finitely generated.
If A has a good filtration (see [12]), then there is no higher cohomology and invariant
theory (Haboush) does the job. A general A has been related by Grosshans [10] to
one with a good filtration. He defines a filtration A≤0 ⊆ A≤1 · · · on A and embeds
the associated graded gr A into an algebra with a good filtration hull∇ gr A. He shows
that gr A and hull∇ gr A are also finitely generated and that there is a flat family
parametrized by the affine line with special fiber gr A and general fiber A. We write
A for the coordinate ring of the family. It is a graded algebra, and one has natural
homomorphisms A → gr A, A → A. Mathieu has shown in [15] (cf. [23, Lemma
2.3]) that there is an r > 0 so that xpr ∈ gr A for every x ∈ hull∇ gr A. We have
no bound on r , which is the main reason that our results are only qualitative. One
sees that gr A is a Noetherian module over the rth Frobenius twist (hull∇ gr A)(r) of
hull∇ gr A. So we do not quite have the situation of Theorem 1.6, but it is close. We
have to untwist. Untwisting involves G(r) = G/Gr , and we end up looking at the
Hochschild-Serre spectral sequence

E
ij

2 = Hi
(
G/Gr, H

j (Gr, gr A)
) ⇒ Hi+j (G, gr A).

One may write Hi(G/Gr, H
j (Gr, gr A)) also as Hi(G, Hj (Gr, gr A)(−r)). By Fried-

lander and Suslin, H ∗(Gr, gr A)(−r) is a Noetherian module over the graded alge-
bra

⊗r

i=1 S∗((gln)#(2pi−1)) ⊗ hull∇ gr A. Here the # sign refers to taking a dual,
S∗ refers to a symmetric algebra over k, and the (2pi−1) indicates in what de-
gree one puts a copy of the dual of the adjoint representation gln. By the fun-
damental work of Akin, Buchsbaum, and Weyman [1], which is also of essential
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importance in [20], one knows that
⊗r

i=1 S∗((gln)#(2pi−1)) ⊗ hull∇ gr A has a good
filtration. So H ∗(Gr, gr A)(−r) has finite good filtration dimension and page 2 of our
Hochschild-Serre spectral sequence is Noetherian over its first column E0∗

2 . By Fried-
lander and Suslin, H ∗(Gr, gr A)(−r) is a finitely generated algebra and, by invariant
theory, E0∗

2 is thus finitely generated, so E∗∗
2 is finitely generated. The spectral se-

quence is one of graded commutative differential graded algebras in characteristic p,
so the pth power of an even cochain in a page passes to the next page. It easily follows
that all pages are finitely generated. As page 2 has only finitely many columns by
Theorem 1.6 (see [20, Definition 2.3]), this explains why the abutment H ∗(G, gr A)
is finitely generated. We are getting closer to H ∗(G, A).

The filtration A≤0 ⊆ A≤1 · · · induces a filtration of the Hochschild complex [12,
Part I, Section 4.14], whence comes a spectral sequence

E(A) : E
ij

1 = Hi+j (G, gr−i A) ⇒ Hi+j (G, A).

It lives in the second quadrant, but as E∗∗
1 is a finitely generated k-algebra, this causes

no difficulty with convergence: given m, there are only finitely many nonzero E
m−i,i
1

(cf. [23, Section 4.11]; note that in [23], the E1 page is mistaken for an E2 page).
All pages are again finitely generated, so we would like the spectral sequence to stop,
meaning that E∗∗

s = E∗∗
∞ for some finite s. There is a standard method to achieve

this (see [6], [9]). One must find a “ring of operators” acting on the spectral sequence
and show that some page is a Noetherian module for the chosen ring of operators.
As the ring of operators, we take H ∗(G, A). Indeed, E(A) is acted on by the trivial
spectral sequence E(A), whose pages equal H ∗(G, A) (see [23, Section 4.11]). And
H ∗(G, A) also acts on our Hochschild-Serre spectral sequence through its abutment.
If we can show that one of the pages of the Hochschild-Serre spectral sequence is
a Noetherian module over H ∗(G, A), then that does the trick, as then the abutment
H ∗(G, gr A) is Noetherian by [9, Lemma 1.6]. And this abutment is the first page of
E(A).

Now we are in a situation similar to the one encountered by Friedlander and
Suslin. Their problem was “surprisingly elusive.” To make their breakthrough, they
had to invent strict polynomial functors. Studying the homological algebra of strict
polynomial functors, they found universal cohomology classes er ∈ H 2pr−1

(G, gl
(r)
n )

with nontrivial restriction to G1. That was enough to get through. We faced a similar
bottleneck. We know from invariant theory and from [9] that page 2 of our Hochschild-
Serre spectral sequence is Noetherian over H 0

(
G, (

⊗r

i=1 S∗((gln)#(2pi−1)) ⊗ A)(r)
)
.

But we want it to be Noetherian over H ∗(G, A). So if we could factor the ho-
momorphism H 0

(
G, (

⊗r

i=1 S∗((gln)#(2pi−1)) ⊗ A)(r)
) → E0∗

2 through H ∗(G, A),
then that would do it. The universal classes ej provide such a factorization on
some summands, but they do not seem to help on the rest. One would like to have
universal classes in more degrees so that one can map every summand of the form
H 0

(
G, (

⊗r

i=1 Smi ((gln)#(2pi−1)) ⊗ A)(r)
)

into the appropriate H 2m(G, A), or even
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into H 2m(G, AGr ). The dual of Smi ((gln)#)(r) is �mi (gl
(r)
n ). Thus, one seeks nontrivial

classes in H 2mpi−1
(G, �m(gl

(r)
n )) to take cup product with. It turns out that r = i = 1

is the crucial case and we seek nontrivial classes c[m] ∈ H 2m(G, �m(gl
(1)
n )). The

construction of such classes c[m] has been a sticking point at least since 2001. In [23],
they were constructed for GL2, but one needs them for GLn with n large. The strict
polynomial functors of Friedlander and Suslin do not provide a natural home for this
problem, but the strict polynomial bifunctors of Franjou and Friedlander [8] do.

When the first author [22] found a construction of nontrivial “lifted” classes
c[m], this finished a proof of the conjecture. We present two proofs. The first proof
continues the investigation of bifunctor cohomology in [22] and establishes properties
of the c[m] analogous to those employed in [23]. Then the result follows as in the
proof in [23] for GL2. As a byproduct, one also obtains extra bifunctor cohomology
classes and relations between them. The second proof needs no more properties of the
classes c[m] than those established in [22]. Indeed, [22] stops exactly where the two
arguments start to diverge. The second proof does not quite factor the homomorphism
H 0

(
G, (

⊗r

i=1 S∗((gln)#(2pi−1)) ⊗ A)(r)
) → E0∗

2 through H ∗(G, A), but argues by
induction on r , returning to [9, Section 1] with the new classes in hand. It is not hard
to guess which author contributes which proof. The first author goes first.

Part I. The first proof

3. Main theorem and CFG
We work over a field k of positive characteristic p. We keep the notation of [22].
In particular, Pk(1, 1) denotes the category of strict polynomial bifunctors of [8].
The main result of part I is Theorem 3.1, which states the existence of classes in the
cohomology of the bifunctor �∗(gl(1)). By [22, Theorem 1.3], the cohomology of a
bifunctor B is related to the cohomology of GLn,k with coefficients in the rational
representation B(kn, kn) by a map φB,n : H ∗

P(B) → H ∗(GLn,k, B(kn, kn)) (natural
in B and compatible with cup products). So our main result yields classes in the
cohomology of GLn,k , actually more classes (and more relations between them) than
originally needed (see [23, Section 4.3]) for the proof of the CFG conjecture.

THEOREM 3.1
Let k be a field of characteristic p > 0. There are maps ψ� : ��H ∗

P(gl(1)) →
H ∗

P(��(gl(1))), � ≥ 1, such that the following hold.
(1) The map ψ1 is the identity map.
(2) For all � ≥ 1 and for all n ≥ p, the composite

��H ∗
P(gl(1))

ψ�−→ H ∗
P
(
��(gl(1))

) φ
�� (gl(1)),n−−−−→ H ∗(GLn,k, �

�(gl
(1)
n )

)

is injective. In particular, for all � ≥ 1, ψ� is injective.
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(3) For all positive integers �, m, there are commutative diagrams

H ∗
P
(
��+m(gl(1))

) ��,m ∗
�� H ∗

P
(
��(gl(1)) ⊗ �m(gl(1))

)

��+mH ∗
P(gl(1)) � �

��,m

��

ψ�+m

��

��H ∗
P(gl(1)) ⊗ �mH ∗

P(gl(1))

ψ�∪ψm

��

and

H ∗
P
(
��(gl(1)) ⊗ �m(gl(1))

) m�,m ∗
�� H ∗

P
(
��+m(gl(1))

)

��H ∗
P(gl(1)) ⊗ �mH ∗

P(gl(1))

ψ�∪ψm

��

m�,m

�� ��+mH ∗
P(gl(1))

ψ�+m

��

where m�,m and ��,m denote the maps induced by the multiplication ��⊗�m →
��+m and the diagonal ��+m → �� ⊗ �m.

As a consequence, we obtain that [23, Theorem 4.4] is valid for any value of n.

COROLLARY 3.2
Let k be a field of positive characteristic. For all n > 1, there are classes c[m] ∈
H 2m(GLn,k, �

m(gl
(1)
n )) such that

(1) c[1] is the Witt vector class e1;
(2) �i,j ∗(c[i + j ]) = c[i] ∪ c[j ] for i, j ≥ 1.

Proof
Arguing as in [22, Lemma 1.5], we notice that it suffices to prove the statement when
n ≥ p. By [22, Theorem 1.3], we have morphisms

φ�m(gl(1)),n : H ∗
P
(
�m(gl(1))

) → H ∗(GLn,k, �
m(gl

(1)
n )

)

compatible with the cup products, and for m = 1, the map φ�m(gl(1)),n is an isomorphism.
Let b[1] be the preimage of the Witt vector class by φ�1(gl(1)),n. We define c[m] :=
(φ�m(gl(1)),n ◦ ψm)(b[1]⊗m). Then c[1] is the Witt vector class since ψ1 is the identity,
and by Theorem 3.1(3), the classes c[i] satisfy condition (2). �

COROLLARY 3.3
The CFG conjecture (Theorem 1.1) holds.
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Proof
Let G be a reductive linear algebraic group acting on a finitely generated commutative
k-algebra A. We want to prove that H ∗(G, A) is finitely generated. To do this, it
suffices to follow [23], and this is exactly what we do below. We keep the notation of
the introduction.

By Lemma 1.7, the case G = GLn,k suffices. As recalled in the introduction,
there exists a positive integer r such that the Hochschild-Serre spectral sequence

E
ij

2 = Hi
(
G/Gr, H

j (Gr, gr A)
) ⇒ Hi+j (G, gr A)

stops for a finite good filtration dimension reason. Moreover, it is a sequence of finitely
generated algebras, and its second page is Noetherian over its subalgebra E0∗

2 (all this
was first proved in [23, Proposition 3.8] under some restrictions on the characteristic
which were removed in [20]).

The composite AGr ↪→ A � gr A makes gr A into a Noetherian module over
AGr . Hence, by [9, Theorem 1.5] (with “C” = AGr ) and by invariant theory (see [11,
Theorem 16.9]), E0∗

2 = H 0(G/Gr, H
∗(Gr, gr A)) (hence E∗∗

2 ) is Noetherian over
H 0

(
G/Gr,

⊗r

i=1 S∗((gl
(r)
n )#(2pi−1)) ⊗ AGr

)
.

Now we use the classes of Corollary 3.2 as in Section 4.5 and as in the
proof of [23, Corollary 4.8]. In this way, we factor the morphism H 0

(
G/Gr,

⊗r

i=1

S∗((gl
(r)
n )#(2pi−1)) ⊗ AGr

) → E0∗
2 through the map H even(G, A) → H 0(G/Gr,

H even(Gr, A)) = E0 even
2 . (The latter map is induced by restricting the cohomology

from G to Gr .) So E∗∗
2 is Noetherian over H even(G, A). By [9, Lemma 1.6] (with

“A” = H even(G, A) and “B” = k), we conclude that the map H even(G, A) →
H ∗(G, gr A) (induced by A → gr A) makes H ∗(G, gr A) into a Noetherian module
over H even(G, A).

The proof finishes as described in the introduction (or in [23, Section 4.11]): the
second spectral sequence

E(A) : E
ij

1 = Hi+j (G, gr−i A) ⇒ Hi+j (G, A)

is a sequence of finitely generated algebras. It is acted on by the trivial spectral
sequence E(A) whose pages equal H ∗(G, A). But we have proved that E∗∗

1 is
Noetherian over H ∗(G, A), so by the usual trick (see [6], [9], or [24, Lemma
3.9]), the spectral sequence E(A) stops, which proves that H ∗(G, A) is finitely
generated. �

4. Proof of Theorem 3.1
By [22, Proposition 3.21], the divided powers �� admit a twist-compatible coresolution
J�. So by [22, Proposition 3.18], we have a bicomplex A(J�) whose totalization yields
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an H ∗
P-acyclic coresolution of ��(gl(1)). In particular, the homology of the totalization

of H 0
P(A(J�)) computes H ∗

P(��(gl(1))).
The plan of the proof of Theorem 3.1 is the following. First, we build the maps

ψ�. To be more specific, we build maps ϑ� which send each element of degree
d of ��(H ∗

P(gl(1))) to a homogeneous cocycle of bidegree (0, d) in the bicomplex
H 0

P(A(J�)). Our maps ψ� can then be induced by the ϑ�.
Second, we show the relations between the classes on the cochain level. In this step,

we encounter the following problem: the cup product of two classes is represented by
a cocycle in the bicomplex H 0

P(A(J�) ⊗ A(Jm)), while we want to have it represented
by a cocycle in H 0

P(A(J� ⊗ Jm)). So we have to investigate further the compatibility
of the functor A with cup products.

Finally, we prove Theorem 3.1(2) by reducing to one-parameter subgroups.

Notation and sign conventions 4.1
If A is an additive category, we denote by Ch≥0(A) (resp., p-Ch≥0(A); resp.,
bi-Ch≥0(A)) the category of nonnegative cochain complexes (resp., p-complexes;
resp., bicomplexes) in A.

If A is equipped with a tensor product, then Ch≥0(A) inherits a tensor product.
The differential of the tensor product C ⊗ D involves a Koszul sign: the restriction
of dC⊗D to Ci ⊗ Dj equals dC ⊗ Id + (−1)iId ⊗ dD . The category p-Ch≥0(A) also
inherits a tensor product, but the p-differential of C ⊗ D does not involve any sign:
dC⊗D = dC ⊗ Id + Id ⊗ dD .

Now we turn to bicomplexes. First, we may view a complex C• whose terms
Cj are chain complexes as a bicomplex C•,• whose object Ci,j is the ith object of
the complex Cj (i.e., the complexes Cj are the rows of C•,•). Thus, we obtain an
identification:

Ch≥0
(
Ch≥0(A)

) = bi-Ch≥0(A).

Being a category of cochain complexes, the term on the left-hand side has a tensor
product. If C is a bicomplex, let us denote by d

i,j

C : Ci,j → Ci+1,j its first differential,
and by ∂

i,j

C : Ci,j → Ci,j+1 its second one. Then one checks that the tensor product on
bicomplexes induced by the identification is such that the restriction of dC⊗D (resp.,
∂C⊗D) to Ci1,j1 ⊗Di2,j2 equals dC ⊗Id+(−1)i1 Id⊗dD (resp., ∂C ⊗Id+(−1)j1 Id⊗∂D).

We define the totalization Tot(C) of a bicomplex C with the Koszul sign conven-
tion: the restriction of dTot(C) to Ci,j equals dC +(−1)i∂C . If C, D are two bicomplexes,
there is a canonical isomorphism of complexes, Tot(C) ⊗ Tot(D) � Tot(C ⊗ D),
which sends an element x ⊗ y ∈ Ci1,j1 ⊗ Di2,j2 to (−1)j1i2x ⊗ y.
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4.1. Construction of the ψ�, � ≥ 1
Let � be a positive integer. By [22, Propositions 3.18, 3.21], we have a bi-
complex H 0

P(A(J�)) whose homology computes the cohomology of the bifunctor
��(gl(1)). We now recall the description of the first two columns of this bicomplex.
As in [22, Section 4], we denote by A1 the p-coresolution of gl(1) obtained by pre-
composing the p-complex T (S1) by the bifunctor gl. The symmetric group S� acts on
the p-complex A⊗�

1 by permuting the factors of the tensor product. (Unlike the case of
ordinary complexes, the action of S� does not involve a Koszul sign since the tensor
product of p-complexes does not involve any sign.) Contracting the p-complex A⊗�

1

and applying H 0
P, we obtain an action of S� on the ordinary complex H 0

P((A⊗�
1 )[1]). By

[22, Lemma 4.2], the first two columns H ∗
P(A(J�)0,•) → H ∗

P(A(J�)1,•) of H 0
P(A(J�))

equal

H 0
P

(
(A⊗�

1 )[1]

)
︸ ︷︷ ︸
column of index 0

∏
(1−τi )−−−−→

�−2⊕
i=0

H 0
P

(
(A⊗�

1 )[1]

)
︸ ︷︷ ︸

column of index 1

,

where τi ∈ S� is the transposition which exchanges i + 1 and i + 2 (and with the
convention that the second column is null if � = 1). Thus we have the following.

LEMMA 4.2
Let Zeven

� be the set of homogeneous cocycles of bidegree (0, d), d even, in the
bicomplex H 0

P(A(J�)). Then Zeven
� identifies as the set of even-degree cocycles of the

complex H 0
P((A⊗�

1 )[1]), which are invariant under the action of S�.

Now we turn to building a map ϑ� : ��(H ∗
P(gl(1))) → Zeven

� . In view of Lemma 4.2,
it suffices to build a S�-equivariant map ϑ� : H ∗

P(gl(1))⊗� → H 0
P((A⊗�

1 )[1]).
Let us first recall what we know about H ∗

P(gl(1)). By [8, Theorem 1.5] and
[9, Theorem 4.5], the graded vector space H ∗

P(gl(1)) is concentrated in degrees 2i,
0 ≤ i < p, and is one-dimensional in these degrees. Following [21], we denote
by e1(i) a generator of degree 2i of this graded vector space. The homology of the
complex H 0

P(A1[1]) computes the cohomology of the bifunctor gl(1). Thus we may
choose for each integer i, 0 ≤ i < p, a cycle zi representing the cohomology class
e1(i) in this complex. The cycles zi determine a graded map H ∗

P(gl(1)) → H 0
P(A1[1]).

By [22, Proposition 3.3], we may take cup products on the cochain level to obtain for
each � ≥ 1 a map

H ∗
P(gl(1))⊗� → H 0

P(A1[1])
⊗� ∪−→ H 0

P
(
(A1[1])

⊗�
)
.
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Moreover, we define chain maps h� : (A1[1])⊗� → (A⊗�
1 )[1] by iterated use of [22,

Proposition 2.7]. More specifically, h1 is the identity, and h� = hA⊗�−1
1 ,A1

◦ (h�−1 ⊗h1).

LEMMA 4.3
Let � be a positive integer, and let ϑ� be the composite

ϑ� := H ∗
P(gl(1))⊗� → H 0

P
(
(A1[1])

⊗�
) H 0

P(h�)−−−−→ H 0
P
(
(A⊗�

1 )[1]

)
.

Then ϑ� satisfies the following two properties.
(1) The image of ϑ� is contained in the set of even-degree cocycles of H 0

P((A⊗�
1 )[1]).

(2) The map ϑ� is S�-equivariant.

Proof
The first property is straightforward from the definition of ϑ�. We prove the second
one. The map H ∗

P(gl(1))⊗� → H 0
P((A1[1])⊗�) is defined using cup products; hence it is

S�-equivariant. Thus, to prove the lemma, we have to study the map h� : (A1[1])⊗� →
(A⊗�

1 )[1].
Recall that h� is built by iterated uses of [22, Proposition 2.7]. Thus, if we

define the graded object p(A1, . . . , A1) = ⊕
i1,...,i�

⊗�

s=1 A
isp

1 with the component⊗�

s=1 A
isp

1 in degree 2(
∑

is), we have well-defined inclusions of p(A1, . . . , A1) into
the complexes (A1[1])⊗� and (A⊗�

1 )[1]. Moreover, h� fits into a commutative diagram:

(A1[1])⊗�
h�

�� (A⊗�
1 )[1]

p(A1, . . . , A1)
��

(a)

��

p(A1, . . . , A1)
��

(b)

��

Let S� act on p(A1, . . . , A1) by permuting the factors of the tensor product, let it act
on (A1[1])⊗� by permuting the factors of the tensor product with a Koszul sign, and let it
act on (A⊗�

1 )[1] by permuting the factors of the tensor product A⊗�
1 (without sign). Then

the map (b) is equivariant, and the map (a) is also equivariant since p(A1, . . . , A1) is
concentrated in even degrees. The map h� is not equivariant. However, by definition the
equivariant map H ∗

P(gl(1))⊗� → H 0
P((A1[1])⊗�) factors through H 0

P(p(A1, . . . , A1))
so that postcomposition of this map by H 0

P(h�) (i.e., the map ϑ�) is in fact
equivariant. �
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Notation 4.4
By Lemmas 4.2 and 4.3, for all � ≥ 1, the map ϑ� induces a map ��(H ∗

P(gl(1))) →
Zeven

� . We denote by ψ� the composite

ψ� := ��
(
H ∗

P(gl(1))
) → Zeven

� → H ∗
P
(
��(gl(1))

)
.

LEMMA 4.5
The map ψ1 equals the identity map.

Proof
For � = 1, ϑ1 is just the map H ∗

P(gl(1)) → Hom(�p(gl), A1[1]) which sends the
generator e1(i) of H 2i

P (gl(1)) to the cycle zi representing this generator. Moreover, by
definition of zi , the map Zeven

1 � H ∗
P(gl(1)) sends zi to e1(i). Thus, for all i, ψ1 sends

e1(i) to itself. �

4.2. Proof of Theorem 3.1(3)
Let Pk be the strict polynomial functor category, and let TPk be the twist-compatible
subcategory (see [22, Definition 3.9]). Before proving Theorem 3.1(3), we need to
study further properties of the functor A : Ch≥0(TPk) → bi-Ch≥0(Pk(1, 1)) (see
[22, Definition 3.17]). Recall that A is defined as the composite of the following three
functors:
(1) the Troesch coresolution functor (see [22, Proposition 3.13])

T : Ch≥0(TPk) → p-Ch≥0
(
Ch≥0(Pk)

)
;

(2) the contraction functor

−[1] : p-Ch≥0
(
Ch≥0(Pk)

) → Ch≥0
(
Ch≥0(Pk)

)
;

(3) precomposition by the bifunctor gl

− ◦ gl : Ch≥0
(
Ch≥0(Pk)

) → Ch≥0
(
Ch≥0(Pk(1, 1))

) = bi-Ch≥0
(
Pk(1, 1)

)
.

All the categories coming into play in the definition of A are equipped with tensor
products (see Notation and sign conventions 4.1). The functors T and −◦gl commute
with tensor products, but −[1] does not. As a result, if F, G are homogeneous strict
polynomial functors of respective degree f, g and with respective twist-compatible
coresolutions JF , JG, we have two (in general nonisomorphic) H ∗

P-acyclic coresolu-
tions of the tensor product F ⊗ G at our disposal:

Tot
(
A(JF )

) ⊗ Tot
(
A(JG)

)
and Tot

(
A(JF ⊗ JG)

)
.
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Now the problem is the following. On the one hand, cycles representing cup
products of classes in the cohomology of F and G are easily identified using the first
complex. Indeed, by [22, Proposition 3.3], the cup product

H ∗
P
(
F (gl(1))

) ⊗ H ∗
P
(
G(gl(1))

) → H ∗
P
(
F (gl(1)) ⊗ G(gl(1))

)

is defined at the cochain level by sending cocycles x and y, respectively, in
Hom

(
�pf (gl), Tot(A(JF ))

)
and Hom

(
�pg(gl), Tot(A(JG))

)
to the cocycle

x ∪ y := (x ⊗ y) ◦ �pf,pg ∈ Hom
(
�p(f +g)(gl), Tot(A(JF )) ⊗ Tot(A(JG))

)
,

where �pf,pg is the diagonal map �p(f +g)(gl) → �pf (gl) ⊗ �pg(gl). But on the other
hand, by functoriality of A, if E ∈ Pk , then the effect of a morphism E → F ⊗ G

is easily computed in H 0
P
(
Tot(A(JF ⊗ JG))

)
. So we want to be able to identify cup

products in H 0
P
(
Tot(A(JF ⊗JG))

)
rather than in H 0

P
(
Tot(A(JF ))⊗Tot(A(JG))

)
. This

is the purpose of Lemma 4.6.

LEMMA 4.6
Let F, G be homogeneous strict polynomial functors of degree f , g which admit twist-
compatible coresolutions JF and JG. Let i, j, �, m be nonnegative integers, and let

xi,2j ∈ HomPpf

pf

(
�pf (gl), A(JF )

)
, y�,2m ∈ HomPpg

pg

(
�pg(gl), A(JG)

)

be homogeneous cocycles of respective bidegrees (i, 2j ) and (�, 2m).
(1) The object A(JF )i,2j ⊗A(JG)�,2m appears once and only once in the bicomplex

A(JF ⊗JG). It appears in bidegree (i +�, 2j +2m). In particular, the formula

(xi,2j ⊗ y�,2m) ◦ �pf,pg ∈ Hom
(
�p(f +g)(gl), A(JF )i,2j ⊗ A(JG)�,2m

)

defines a homogeneous element of bidegree (i + �, 2j + 2m) in the bicomplex
H 0

P(A(JF ⊗ JG)).
(2) The element (xi,2j ⊗ y�,2m) ◦ �pf,pg is actually a cocycle and represents the

cup product [xi,2j ] ∪ [y�,2m] in H 0
P
(
Tot(A(JF ⊗ JG))

)
.

Proof
Since T commutes with tensor products (see [22, Proposition 3.13]), the bicomplex
A(JF ⊗ JG) is naturally isomorphic to the precomposition by gl of the bicomplex
(T (JF ) ⊗ T (JG))[1], while A(JF ) ⊗ A(JG) equals the precomposition by gl of the bi-
complex T (JF )[1]⊗T (JG)[1]. Recall that in the identification of Ch≥0

(
Ch≥0(Pk(1, 1))

)
and bi-Ch≥0(Pk(1, 1)), the j th object of a complex of complexes C• corresponds to
the j th row of the bicomplex C•,• (i.e., the elements of bidegree (∗, j )). So the first
statement simply follows from [22, Lemma 2.2]. Furthermore, by [22, Proposition
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2.4] there is a map of bicomplexes

A(JF ) ⊗ A(JG) → A(JF ⊗ JG)

which is the identity on A(JF )i,2j ⊗ A(JG)�,2m. Applying the functor Tot, we obtain
a map of H ∗

P-acyclic coresolutions

θ : Tot
(
A(JF )

) ⊗ Tot
(
A(JG)

) � Tot
(
A(JF ) ⊗ A(JG)

) → Tot
(
A(JF ⊗ JG)

)

over the identity map of F (gl(1)) ⊗ G(gl(1)), and whose restriction to A(JF )i,2j ⊗
A(JG)�,2m equals the identity. (More specifically, this equality holds up to a (−1)2j� =
1 sign coming from the sign in the formula Tot(C ⊗ D) � Tot(C) ⊗ Tot(D).)

By definition of the cup product, (xi,2j ⊗ y�,2m) ◦ �pf,pg is a cocycle representing
[xi,2j ]∪ [y�,2m] in H 0

P
(
Tot(A(JF ))⊗Tot(A(JG))

)
. Applying θ , we obtain that (xi,2j ⊗

y�,2m) ◦ �pf,pg is a cocycle in H 0
P
(
Tot(A(JF ⊗ JG))

)
, representing the same cup

product. �

We now turn to the specific situation of Theorem 3.1(3), that is, F = �� and G = �m.
We first determine explicit maps between the bicomplexes A(J� ⊗ Jm) and A(J�+m),
which lift the multiplication ��(gl(1)) ⊗ �m(gl(1)) → ��+m(gl(1)) and the diagonal
��+m(gl(1)) → ��(gl(1)) ⊗ �m(gl(1)). To do this, we first need new information about
the twist-compatible coresolutions J� from [22, Proposition 3.21].

LEMMA 4.7
Let �, m be positive integers.
(1) The multiplication �� ⊗ �m → ��+m lifts to a twist-compatible chain map

J� ⊗ Jm → J�+m. This chain map is given in degree zero by the shuffle product
(
⊗�) ⊗ (

⊗m) = J 0
� ⊗ J 0

m → J 0
�+m = ⊗�+m, which sends a tensor

⊗m+�

i=1 xi

to the sum
∑

σ∈Sh(�,m) ⊗m+�
i=1 xσ−1(i).

(2) The diagonal ��+m → �� ⊗�m lifts to a twist-compatible chain map J�+m →
J� ⊗ Jm. This chain map equals the identity map in degree zero.

Proof
The reduced bar construction yields a functor from the category of commutative
differential graded augmented algebras over k to the category of commutative differ-
ential graded bialgebras over k (see [13] (resp., [7]) for the algebra (resp., coalgebra)
structure). (This bialgebra structure is actually a Hopf algebra structure, but we do not
need this fact.)

The category of strict polynomial functors splits as a direct sum of subcategories of
homogeneous functors. Taking the (m+�) polynomial degree part of the multiplication
(resp., comultiplication) of B

(
B(S∗(−))

)
, we obtain chain maps

⊕
J •

i ⊗ J •
j → J •

�+m
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and J •
�+m → ⊕

J •
i ⊗ J •

j . (The sums are taken over all nonnegative integers i, j such

that i + j = � + m.) The bialgebra structure of B
(
B(S∗(−))

)
is defined using only

the algebra structure of S∗. But the multiplication of S∗ is a twist-compatible map,
and the twist-compatible category is additive and stable under tensor products (see
[22, Lemmas 3.8, 3.10]). So the chain maps are twist-compatible.

Next, we identify the chain maps in degree zero. We begin with the map J 0
� ⊗J 0

m →
J 0

�+m induced by the multiplication of the bar construction. By [22, Lemma 3.18],

for all i ≥ 1 we have J 0
i = B1(S∗(−))

⊗
i = ⊗i . The product B

(
B(S∗(−))

)⊗2 →
B

(
B(S∗(−))

)
is given by the shuffle product formula in [13, page 313]; more precisely,

it sends the tensor
⊗m+�

i=1 xi to the sum
∑

σ∈Sh(�,m) ⊗m+�
i=1 xσ−1(i). The signs in this shuffle

product are all positive since the xi are elements of degree 1 + 1 = 2 in the chain
complex B•

(
B(S∗(−))

)
. The identification of the map J 0

m+� → J 0
m ⊗ J 0

� induced by
the diagonal is simpler. The coproduct in B

(
B(S∗(−))

)
is given by the deconcatenation

formula [7, page 268]: �[x1| · · · |x�+m] = ∑m+�

i=0 [x1| · · · |xi]⊗[xi+1| · · · |xm+�]. Thus,
the map J 0

m+� → J 0
m ⊗ J 0

� sends the tensor product
⊗m+�

i=1 xi to itself.
Finally, with the description of the chain maps in degree zero, one easily checks

that J� ⊗ Jm → J�+m (resp., J�+m → J� ⊗ Jm) lifts the multiplication �� ⊗ �m →
��+m (resp., the comultiplication ��+m → �� ⊗ �m). (In fact, this actually proves
that the quasi isomorphism �∗ → B

(
B(S∗(−))

)
is a Hopf algebra morphism.) �

Applying the functor A, we obtain the following.

LEMMA 4.8
Let �, m be positive integers.
(1) The multiplication ��(gl(1))⊗�m(gl(1)) → ��+m(gl(1)) lifts to a map of bicom-

plexes A(J� ⊗ Jm) → A(J�+m). The restriction of this map to the columns of
index zero equals

A(J� ⊗ Jm)0,• = (A⊗�+m
1 )[1]

sh[1]−−→ (A⊗�+m
1 )[1] = A(J�+m)0,•,

where sh is the unsigned shuffle map, which sends a tensor
⊗m+�

i=1 xi to the sum∑
σ∈Sh(�,m) ⊗m+�

i=1 xσ−1(i).
(2) The diagonal ��+m(gl(1)) → ��(gl(1)) ⊗ �m(gl(1)) lifts to a twist-compatible

chain map A(J�+m) → A(J� ⊗ Jm). The restriction of this map to the columns
of index zero equals the identity map of (A⊗�+m

1 )[1].

Next, we identify cycles representing the cup products ψ�(x)∪ψm(y) in the bicomplex
H 0

P(A(J� ⊗ Jm)).
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LEMMA 4.9
Let x ∈ ��H ∗

P(gl(1)) and y ∈ �mH ∗
P(gl(1)) be classes of homogeneous degrees 2d and

2e. Then ϑ�+m(x⊗y) is a cocycle of bidegree (0, 2d) in the bicomplex H 0
P(A(J�⊗Jm)).

Moreover, it represents the cup product ψ�(x) ∪ ψm(y) ∈ H ∗
P(��(gl(1)) ⊗ �m(gl(1))).

Proof
By definition, ψ�(x) is represented by the homogeneous cocycle ϑ�(x) of bidegree
(0, 2d) in the bicomplex Hom(�p�(gl), A(J�)) (and similarily for ψm(y)). Then, by
Lemma 4.6, ψ�(x) ∪ ψm(y) is represented by the cocycle (ϑ�(x) ⊗ ϑm(y)) ◦ ��p,mp

in the bicomplex Hom(�p(�+m)(gl), A(J� ⊗ Jm)). Now, if x = ⊗�

s=1(e(is)) and y =⊗m

s=�+1(e(is)), we compute that ϑ�+m(x ⊗ y) and (ϑ�(x) ⊗ ϑm(y)) ◦ ��p,mp both
equal the element (

⊗�+m

i=1 zi) ◦ �p,...,p, where �p,...,p is the diagonal �p(�+m)(gl) →
�p(gl)⊗�+m. �

We are now ready to prove Theorem 3.1(3). We begin with the commutativity of the
diagram involving the multiplication. Let x ∈ ��H ∗

P(gl(1)) and y ∈ �mH ∗
P(gl(1)) be

homogeneous elements of respective degrees 2d and 2e. By Lemmas 4.8 and 4.9,
m�,m ∗(ψ�(x) ∪ ψm(y)) is represented by the cocycle

∑
σ∈Sh(�,m)

σ.ϑ�+m(x ⊗ y)

of bidegree (0, 2d + 2e) in the bicomplex H 0
P(A(J�+m)). By definition of ψ�+m,

ψ�+m(m�,m(x ⊗ y)) is represented by the cocycle

ϑ�+m

(∑
σ∈Sh(�,m)

σ.(x ⊗ y)
)

in the same bicomplex. Since ϑ�+m is equivariant (see Lemma 4.3), these two
cocycles are equal. Hence, the diagram involving the multiplication is commuta-
tive. The diagram involving the comultiplication commutes for a similar reason: if
x ∈ ��+mH ∗

P(gl(1)), the cohomology classes (ψ� ∪ψm)(��,m(x)) and ��,m ∗(ψ�+m(x))
are both represented by the cycle ϑ�+m(x). This concludes the proof of Theorem
3.1(3).

4.3. Proof of Theorem 3.1(2)
To prove Theorem 3.1(2), it suffices to prove, for all n ≥ p, the injectivity of the
composite

��H ∗
P(gl(1))

ψ�−→ H ∗
P
(
��(gl(1))

) φ
�� (gl(1)),n−−−−→H ∗(GLn,k, �

�(gl
(1)
n )

)
�1,...,1 ∗−−−→ H ∗(GLn,k, gl

(1) ⊗�
n ).
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By naturality of the maps φ��(gl(1)),n (see [22, Theorem 1.3]) and by the compatibility
of the φi with diagonals and cup products given in Theorem 3.1(3), this composite
equals the composite

��H ∗
P(gl(1)) ↪→ H ∗

P(gl(1))⊗� → H ∗(GLn,k, gl
(1)
n )⊗� ∪−→ H ∗(GLn,k, gl

(1) ⊗�
n ).

Thus, the proof of Theorem 3.1(2) follows from the following.

LEMMA 4.10
Let k be a field of characteristic p > 0, and let j ≥ 1 be an integer. For all n ≥ p,
the following map is injective:

⋃j

i=1 φgl(1),n : H ∗
P(gl(1))⊗j → H ∗(GLn,k, (gl

(1)
n )⊗j )⊗j

i=1 ci �→ ⋃j

i=1 φgl(1),n(ci)

Proof
We prove this lemma by reducing our cohomology classes to an infinitesimal one-
parameter subgroup Ga1 of GLn,k , as is done in [21]. Since n ≥ p, we can find
a p-nilpotent matrix α ∈ gln. Using this matrix, we define an embedding Ga1 →
Ga

expα−−→ GLn,k . For all �, this embedding makes the GLn,k-module gl
(1)⊗�
n into a trivial

Ga1-module. Thus, there is an isomorphism H ∗(Ga1, gl
(1)⊗�
n ) � H ∗(Ga1, k)⊗gl

(1)⊗�
n .

The algebra H ∗(Ga1, k) is computed in [5]. In particular, H even(Ga1, k) = k[x1] is a
polynomial algebra on one generator x1 of degree 2. Let us thrash out the compatibility
of this isomorphism with the cup product. If x�

1 ⊗ β� and xm
1 ⊗ βm are classes in

H ∗(Ga1, k) ⊗ gl
(1)⊗�
n (resp., H ∗(Ga1, k) ⊗ gl

(1)⊗m
n ), their cup product is the class

x�+m
1 ⊗ (β� ⊗ βm) in H ∗(Ga1, k) ⊗ gl

(1)⊗�+m
n .

We recall that H ∗
P(gl(1)) is a graded module with basis the classes e1(i) of degree

2i for 0 ≤ i < p. By [21, Theorem 4.9], the composite

H ∗
P(gl(1))

φgl(1) ,n−−−→
�

H ∗(GLn,k, gl
(1)
n ) → H ∗(Ga1, gl

(1)
n ) � H ∗(Ga1, k) ⊗ gl

(1)
n

sends e1(i) to the class xi
1 ⊗ (α(1))i ∈ H ∗(Ga1, k) ⊗ gl

(1)
n . Since restriction to Ga1 is

compatible with cup products, the composite

H ∗
P(gl(1))⊗j → H ∗(GLn,k, gl

(1)⊗j
n ) → H ∗(Ga1, k) ⊗ gl

(1)⊗j
n

sends the tensor product
⊗j

�=1 e(i�) to the class x
∑j

�=1 i�
1 ⊗ (

⊗j

�=1(α(1))i�). As a result,
this composite sends the basis

(⊗j

i=� e(i�)
)

(i1,...,i�)
into the linearly independent family(

xm
1 ⊗ (

⊗j

�=1(α(1))i�)
)

(m,i1,...,i�)
. Hence the map

⋃j

i=1 φgl(1),n is injective. �
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Part II. The second proof

5. The starting point
Most notation is the same as in [23]. We work over a field k of positive characteristic
p. Fix an integer n with n > 1. The important case is when n is large. So if one finds
this convenient, one may take n ≥ p. We wish to draw conclusions from the following
result.

THEOREM 5.1 (Lifted universal cohomology classes; see [22])
There are cohomology classes c[m] so that
(1) c[1] ∈ H 2(GLn,k, gl

(1)
n ) is nonzero;

(2) for m ≥ 1, the class c[m] ∈ H 2m(GLn,k, �
m(gl

(1)
n )) lifts c[1] ∪ · · · ∪ c[1] ∈

H 2m(GLn,k,
⊗m(gl

(1)
n )).

Remark 5.2
What we really have in mind is that c[1] is the Witt vector class of [23, Section
4], which is certainly nonzero. The computation of H 2(GLn,k, gl

(1)
n ) is easy, using

[5, Corollary (3.2)]. One finds that H 2(GLn,k, gl
(1)
n ) is one-dimensional. Thus, any

nonzero c[1] is up to scaling equal to the Witt vector class.

6. Using the classes
We write G for GLn,k , the algebraic group GLn over k. Sometimes it is instructive to
restrict to SLn or other reductive subgroups of GLn. We leave this to the reader.

6.1. Other universal classes
We recall some constructions from [23]. If M is a finite-dimensional vector space
over k and r ≥ 1, we have a natural homomorphism between symmetric algebras
S∗(M#(r)) → S∗(M#(1)) induced by the map M#(r) → Spr−1

(M#(1)) which raises an
element to the power pr−1. It is a map of bialgebras. Dually, we have the bialgebra
map πr−1 : �∗(M (1)) → �∗(M (r)), whose kernel is the ideal generated by �1(M (1))
through �pr−1−1(M (1)). So πr−1 maps �pr−1a(M (1)) onto �a(M (r)).

6.1.1. Notation
We now introduce analogues of the classes er and e(j )

r of Friedlander and Suslin [9,
Theorem 1.2, Remark 1.2.2]. We write πr−1

∗ (c[apr−1]) ∈ H 2apr−1
(G, �a(gl

(r)
n )) as

cr [a]. Next we get cr [a](j ) ∈ H 2apr−1
(G, �a(gl

(r+j )
n )) by Frobenius twist. As in [9],

a notation like S∗(M(i)) means the symmetric algebra S∗(M), but graded, with M

placed in degree i.

Here is the analogue of [23, Lemma 4.7].
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LEMMA 6.2
The ci[a](r−i) enjoy the following properties (r ≥ i ≥ 1).
(1) There is a homomorphism of graded algebras S∗(gl

#(r)
n (2pi−1)) →

H 2pi−1∗(Gr, k) given on gl
#(r)
n (2pi−1) = H 0(Gr, gl

#(r)
n ) by cup product with

the restriction of ci[1](r−i) to Gr . If i = 1, then it is given on Sa(gl
#(r)
n (2)) =

H 0(Gr, S
a(gl

#(r)
n )) by cup product with the restriction of c[a](r−1) to Gr .

(2) For r ≥ 1, the restriction of cr [1] to H 2pr−1
(G1, gl

(r)
n ) is nontrivial, so that

cr [1] may serve as the universal class er in [9, Theorem 1.2].

Proof
When M is a G-module, one has a commutative diagram

�mM ⊗
m⊗

M# →
m⊗

M ⊗
m⊗

M#

↓ ↓
�mM ⊗ SmM# → k

Take M = gl
(1)
n . There is a homomorphism of algebras

⊗∗(gl
#(1)
n ) → H 2∗(G1, k)

given on gl
#(1)
n by cup product with c[1]. (We do not mention obvious restrictions

to subgroups like G1 anymore.) On
⊗m(gl

#(1)
n ), it is given by cup product with

c[1] ∪ · · · ∪ c[1], so by Theorem 5.1 it is also given by cup product with c[m], using
the pairing �mM ⊗⊗m

M# → k. As this pairing factors through �mM ⊗ SmM#, we
get that the induced algebra map S∗(gl

#(1)
n ) → H 2∗(G1, k) is given by cup product with

c[m] on Sm(gl
#(1)
n ). If we compose with the algebra map S∗(gl

#(i)
n ) → Spi−1∗(gl

#(1)
n ),

we get an algebra map ψ : S∗(gl
#(i)
n ) → H 2pi−1∗(G1, k) given on gl

#(i)
n by cup product

with c[pi−1], using the pairing gl
#(i)
n ⊗�pi−1

(gl
(1)
n ) → k. This pairing factors through

id ⊗πi−1 : gl
#(i)
n ⊗�pi−1

(gl
(1)
n ) → gl

#(i)
n ⊗ gl

(i)
n , so the homomorphism ψ is given on

gl
#(i)
n by cup product with πi−1

∗ c[pi−1] = ci[1]. We can lift it to an algebra map
S∗(gl

#(i)
n ) → H 2pi−1∗(Gi, k) simply by still using the cup product with ci[1] on gl

#(i)
n .

Pull back along the (r − i)th Frobenius homomorphism Gr → Gi and you get an
algebra map ψ (r−i) : S∗(gl

#(r)
n ) → H 2pi−1∗(Gr, k), given on gl

#(r)
n by cup product

with ci[1](r−i). If i = 1, pull back the cup product with c[m] on Sm(gl
#(1)
n ) to a cup

product with c[m](r−1) on Sm(gl
#(r)
n (2)). This then describes the homomorphism ψ (r−1)

degree-wise.
In fact, if we restrict cr [1] as in [23, Remark 4.1] to H 2pr−1

(Ga1, (gl
(r)
n )prα) =

H 2pr−1
(Ga1, k) ⊗ (gl

(r)
n )prα , then even that restriction is nontrivial. That is because the

Witt vector class generates the polynomial ring H even(Ga1, k) (see [12, Part I, Section
4.26]). And at this level �m ↪→ ⊗m gives an isomorphism, showing that c[m] restricts
to the mth power of the polynomial generator. �
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6.2. Noetherian homomorphisms
Let A be a commutative k-algebra. The cohomology algebra H ∗(G, A) is then graded
commutative, so we must also consider graded commutative algebras.

Definition 6.3
If f : A → B is a homomorphism of graded commutative k-algebras, we call f

Noetherian if f makes B into a Noetherian left A module.

Remark 6.4
In algebraic geometry, a Noetherian homomorphism between finitely generated com-
mutative k-algebras is called a finite morphism. With our terminology, we wish to
stress the importance of chain conditions in our arguments.

LEMMA 6.5
The composite of Noetherian homomorphisms is Noetherian.

Proof
If A → B and B → C are Noetherian, view C as a quotient of the module Br for
some r . �

LEMMA 6.6
If the composite of A → B and B → C is Noetherian, so is B → C.

Proof
View B-submodules of C as A-modules. �

Remark 6.7
In Lemma 6.6, A → C and B → C must be homomorphisms, but A → B could be
just a map.

LEMMA 6.8
Suppose that B is finitely generated as a graded commutative k-algebra. Then f :
A → B is Noetherian if and only if Beven is integral over f (Aeven).

Proof
The map Beven → B is Noetherian. So if Beven is integral over f (Aeven), then f is
Noetherian. Conversely, if f is Noetherian and b ∈ Beven, then for some r one must
have br ∈ ∑

i<r f (A)bi . But then in fact br ∈ ∑
i<r f (Aeven)bi . �

In particular, one has the following.
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LEMMA 6.9
Suppose that B is a finitely generated commutative k-algebra. Let n > 1, and let A

be a subalgebra of B containing xn for every x ∈ B. Then A ↪→ B is Noetherian,
and A is also finitely generated.

Proof
We follow Noether [17]. Indeed, B is integral over A. Take finitely many generators
bi of B, and let C be the subalgebra generated by the bn

j . Then A is a C-submodule
of B and hence finitely generated. �

Let us recall a result of invariant theory.

LEMMA 6.10 ([11, Theorem 16.9])
Let f : A → B be a Noetherian homomorphism of finitely generated
graded commutative k-algebras with rational G-action. Then AG → BG is
Noetherian. �

LEMMA 6.11
Let f : A → B be a Noetherian homomorphism of finitely generated graded com-
mutative k-algebras with rational Gr -action. Then H ∗(Gr, A) → H ∗(Gr, B) is
Noetherian.

Proof
Take C = H 0(Gr, A

even) or its subalgebra generated by the pr th powers in Aeven.
Then apply [9, Theorem 1.5, Remark 1.5.1]. �

We need a minor variation on a theorem of Friedlander and Suslin.

THEOREM 6.12 ([9, Theorem 1.5])
Let r ≥ 1. Let S ⊂ Gr be an infinitesimal group scheme over k of height at most
r . Further, let C be a finitely generated commutative k-algebra (considered as a
trivial S-module), and let M be a Noetherian C-module on which S acts by C-
linear transformations. Then H ∗(S, M) is a Noetherian module over the algebra⊗r

i=1 S∗((gl
(r)
n )#(2pi−1)) ⊗ C, with the map given as suggested by Lemma 6.2.

COROLLARY 6.13
The restriction map H ∗(Gr, C) → H ∗(Gr−1, C) is Noetherian.
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Proof
Take S = Gr−1, and note that the map

⊗r

i=1 S∗((gl
(r)
n )#(2pi−1))⊗C → H ∗(Gr−1, C)

factors through H ∗(Gr, C). �

Proof of Theorem 6.12
The key difference with [9, Theorem 1.5, Remark 1.5.1] is that we do not require the
height of S to be r . (As S ⊂ Gr , the fact that its height is at most r is automatic.)
Thus, to start their inductive argument, we must also check the obvious case where
r = 1 and S is the trivial group. The rest of the proof goes through without change. �

Remark 6.14
If S has height s, then the map (gl

(r)
n )#(2pi−1) → H 2pi−1

(S, k) is trivial for r − i ≥ s.

6.3. Cup products on the cochain level
As we need a differential graded algebra structure on Hochschild-Serre spectral se-
quences, we now expand the discussion of the Hochschild complex in [12, Part I,
Section 5.14]. Let L be an affine algebraic group scheme over the field k, let N be
a normal subgroup scheme, and let R be a commutative k-algebra on which L acts
rationally by algebra automorphisms. We have a Hochschild complex C∗(L, R) with
R⊗k[L]⊗i in degree i. Define a cup product on C∗(L, R) as follows. If u ∈ Cr (L, R)
and v ∈ Cs(L, R), then u ∪ v is defined in simplified notation by

(u ∪ v)(g1, . . . , gr+s) = u(g1, . . . , gr )
g1···gr v(gr+1, . . . , gr+s),

where gr denotes the image of r ∈ R under the action of g. The following lemma is
easy to check.

LEMMA 6.15
With this cup product, C∗(L, R) is a differential graded algebra.

In particular, taking for R the algebra k[L] with L acting by right translation, we get
the differential graded algebra C∗(L, k[L]), quasi-isomorphic to k. And the action
by left translation on k[L] is by L-module isomorphisms, so this makes C∗(L, k[L])
into a differential graded algebra with L-action. It consists of injective L-modules in
every degree. We write C∗(L) for this differential graded algebra with L-action. One
has Ci(L) = k[L]⊗i+1, and this is our elaboration of [12, Part I, Section 4.15(1)].

The Hochschild-Serre spectral sequence

Ers
2 = Hr

(
L/N, Hs(N, R)

) ⇒ Hr+s(L, R)

can now be based on the double complex
(
C∗(L/N )⊗ (C∗(L)⊗R)N

)L/N
. The tensor

product over k of two differential graded algebras is again a differential graded algebra,
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and the spectral sequence inherits differential graded algebra structures [2, Section
3.9] from such structures on C∗(L) ⊗ R, (C∗(L) ⊗ R)N , C∗(L/N) ⊗ (C∗(L) ⊗ R)N .

6.4. Hitting invariant classes
We now come to the main result of this section, which is the counterpart of [23,
Corollary 4.8]. It does not seem to follow from the CFG conjecture, but we show that
it implies the conjecture.

THEOREM 6.16
Let r ≥ 1. Further, let A be a finitely generated commutative k-algebra with G-action.
Then H even(G, A) → H 0(G, H ∗(Gr, A)) is Noetherian.

Remark 6.17
Recall that H 0(G, H ∗(Gr, A)) is finitely generated as a k-algebra, by [9] and invariant
theory.

Proof of Theorem 6.16

Step 1. If M is a G-module on which Gr acts trivially, then H 0(G, M) and
H 0(G/Gr, M) denote the same subspace of M . We may thus switch between these
variants.

Step 2. We argue by induction on r . Put C = H 0(Gr, A). Then C contains the
elements of A raised to the power pr , so C is also a finitely generated algebra and A

is a Noetherian module over it.

Step 3. Let r = 1. This case is the same as in [23]. By [9, Theorem 1.5], H ∗(G1, A)
is a Noetherian module over the finitely generated algebra

R = S∗((gl
(1)
n )#(2)

) ⊗ C.

Then, by invariant theory (see [11, Theorem 16.9]), H 0(G, H ∗(G1, A)) is a Noetherian
module over the finitely generated algebra H 0(G, R). By Lemma 6.2, we may take
the algebra homomorphism R → H ∗(G1, A) of [9] to be based on cup product
with our c[a] = c[a](0) on the summand Sa((gl

(1)
n )#(2)) ⊗ C. But then the map

H 0(G, R) → H ∗(G1, A) factors, as a linear map, through H even(G, A). This settles
the case r = 1 by Remark 6.7.

Step 4. Now let the level r be greater than one. We follow the analysis in [9, Section
1] to peel off one level at a time. Heuristically, in the tensor product of Theorem 6.12,
we treat one factor at a time. That is the main difference with the argument in [23].
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Thus, consider the Hochschild-Serre spectral sequence E
ij

2 (C) = Hi(Gr/

Gr−1, H
j (Gr−1, C)) ⇒ Hi+j (Gr, C). We first wish to argue that this spectral se-

quence stops, meaning that E∗∗
s (C) = E∗∗

∞ (C) for some finite s. This is proved in [9,
Section 1] for a very similar spectral sequence. So we imitate the argument. We need
to apply [9, Lemma 1.6] and its proof; we use H even(Gr, C) for the A of that lemma
and S∗((gl

(r)
n )#(2)) for its B. We map H even(Gr, C) in the obvious way to the abutment

H ∗(Gr, C), and for B → E∗0
2 (k) = H ∗(Gr/Gr−1, k) = H ∗(G1, k)(r−1) we use the

(r − 1)st Frobenius twist of the map S∗((gl
(1)
n )#(2)) → H ∗(G1, k) of Lemma 6.2.

So we use the class c[a](r−1) on Sa((gl
(r)
n )#(2)). By Corollary 6.13 and Lemma 6.8,

the restriction map H even(Gr, C) → H ∗(Gr−1, C) is Noetherian, and by Theorem
6.12 (cf. [9, Corollary 1.8]), it follows that the H even(Gr, C) ⊗ S∗((gl

(r)
n )#(2)) module

E∗∗
2 (C) = H ∗(G1, H

∗(Gr−1, C)(1−r))(r−1) is Noetherian, so the spectral sequence
stops, say, at E∗∗

s (C). Note also that the image of H even(Gr, C) ⊗ S∗((gl
(r)
n )#(2)) in

E∗∗
2 (C) consists of permanent cycles.

Step 5. As the spectral sequence is one of graded commutative differential graded
algebras, the pth power of an even cochain in a page passes to the next page. As the
spectral sequence stops at page s, one finds that, for an x ∈ E

even,even
2 (C), the power

xps

is a permanent cycle. Let P be the algebra generated by permanent cycles in
E

even,even
2 (C). Then P → E

ij
t (C) is Noetherian for 2 ≤ t ≤ ∞. So P G → (E∗∗

∞ (C))G

is Noetherian by Lemma 6.10.

Step 6. By the inductive assumption, H 0
(
G, H ∗(Gr−1, C ⊗ S∗((gl

(r)
n )#(2)))

)
is Noetherian over H even

(
G, C ⊗ S∗((gl

(r)
n )#(2))

)
. By step 1, we may

rewrite H 0
(
G, Hj (Gr−1, C ⊗ Si((gl

(r)
n )#(2)))

)
as H 0

(
G/Gr−1, H

j (Gr−1, C ⊗
Si((gl

(r)
n )#(2)))

)
. The latter description will be needed in the sequel.

We may map H 0
(
G/Gr−1, H

j (Gr−1, C ⊗ Si((gl
(r)
n )#(2)))

)
by restriction

to H 0
(
Gr/Gr−1, H

j (Gr−1, C) ⊗ Si((gl
(r)
n )#(2))

)
and then to E

2i,j

2 (C) =
H 2i(Gr/Gr−1, H

j (Gr−1, C)) by cup product with c[i](r−1). So we now have a map
from H even

(
G, C ⊗ S∗((gl

(r)
n )#(2))

)
to E∗∗

2 (C). We factor it further.

Step 7. One checks that the map from H even
(
G, C ⊗ S∗((gl

(r)
n )#(2))

)
to

H 0
(
Gr/Gr−1, H

∗(Gr−1, C) ⊗ S∗((gl
(r)
n )#(2))

)
of step 6 factors naturally through

the algebra H even(Gr, C) ⊗ S∗((gl
(r)
n )#(2)) of step 4. Moreover, as the algebra

H even(Gr, C) ⊗ S∗((gl
(r)
n )#(2)) acts on the full spectral sequence, we may make

H even
(
G, C ⊗S∗((gl

(r)
n )#(2))

)
act on the full spectral sequence by way of that algebra.

Step 8. The Noetherian map H even(Gr, C)⊗S∗((gl
(r)
n )#(2)) → E∗∗

2 (C) factors through
H 0

(
Gr/Gr−1, H

∗(Gr−1, C ⊗ S∗((gl
(r)
n )#(2)))

)
. But then H 0

(
Gr/Gr−1, H

∗(Gr−1,

C ⊗S∗((gl
(r)
n )#(2)))

) → E∗∗
2 (C) is Noetherian by Lemma 6.6. So by Lemma 6.10, the
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map H 0
(
G/Gr−1, H

∗(Gr−1, C⊗S∗((gl
(r)
n )#(2)))

) → (E∗∗
2 (C))G is Noetherian. Com-

bining with the inductive hypothesis, we learn that H even
(
G, C ⊗ S∗((gl

(r)
n )#(2))

) →
(E∗∗

2 (C))G is Noetherian. It lands in P G because the map in step 4 lands in P . We
conclude that H even

(
G, C ⊗ S∗((gl

(r)
n )#(2))

) → (E∗∗
∞ (C))G is Noetherian.

Step 9. We filter H even
(
G, C⊗S∗((gl

(r)
n )#(2))

)
by putting H even

(
G, C⊗St ((gl

(r)
n )#(2))

)
in H even

(
G, C ⊗ S∗((gl

(r)
n )#(2))

)≥j
for t ≥ j . As in [9, Section 1], the filtered

algebra may be identified with its associated graded, and the map H even
(
G, C ⊗

S∗((gl
(r)
n )#(2))

) → H ∗(Gr, C) respects filtrations. Now we care about H ∗(Gr, C)G

as a module for H even
(
G, C ⊗ S∗((gl

(r)
n )#(2))

)
. To see that it is Noetherian, we may

pass as in [9, Section 1] to the associated graded, where one puts (H ∗(Gr, C)G)≥j =
(H ∗(Gr, C)G) ∩ H ∗(Gr, C)≥j . This associated graded of H ∗(Gr, C)G is a sub-
module of (E∗∗

∞ (C))G, containing the image of H even
(
G, C ⊗ S∗((gl

(r)
n )#(2))

)
.

So it is indeed Noetherian. We conclude that H ∗(Gr, C)G is Noetherian over
H even

(
G, C ⊗ S∗((gl

(r)
n )#(2))

)
.

Step 10. As in the case r = 1, the map H even
(
G, C ⊗S∗((gl

(r)
n )#(2))

) → H ∗(Gr, C)G

factors, as a linear map, through H even(G, C), so H even(G, C) → H ∗(Gr, C)G is
Noetherian by Remark 6.7. As H ∗(Gr, C)G → H ∗(Gr, A)G is Noetherian, the result
follows. �

6.5. Cohomological finite generation (CFG)
Now let A be a finitely generated commutative k-algebra with G-action. We wish to
show that H ∗(G, A) is finitely generated, following the same path as in [23] but using
improvements from [20]. As in [23], we denote by A the coordinate ring of a flat
family with general fiber A and special fiber gr A (see [10, Theorem 13]). Choosing
r as in [23, Proposition 3.8], we have the spectral sequence

E
ij

2 = Hi
(
G/Gr, H

j (Gr, gr A)
) ⇒ Hi+j (G, gr A),

and R = H ∗(Gr, gr A)(−r) is a finite module over the algebra

r⊗
a=1

S∗((gln)#(2pa−1)
) ⊗ hull∇(gr A).

This algebra has a good filtration, and by the main result of [20], the ring R

has finite good filtration dimension. In particular, there are only finitely many
nonzero Hi(G, R). Thus, the same main result says that E0∗

2 → E∗∗
2 is Noethe-

rian. Now H 0(G/Gr, H
∗(Gr, A)) → H 0(G/Gr, H

∗(Gr, gr A)) is Noetherian by
[9] and Lemma 6.10. And H ∗(G, A) → H 0(G/Gr, H

∗(Gr, A)) is Noetherian by
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Theorem 6.16, so another application of [9, Lemma 1.6] (with B = k) shows that
H ∗(G, A) → H ∗(G, gr A) is Noetherian.

There is a map of spectral sequences from a totally degenerate spectral sequence

E(A) : E
ij

1 (A) = Hi+j (G, gr−i A) ⇒ Hi+j (G, A),

with pages H ∗(G, A), to the spectral sequence

E(A) : E
ij

1 (A) = Hi+j (G, gr−i A) ⇒ Hi+j (G, A).

This makes H ∗(G, A) act on E(A), and the Noetherian homomorphism
H ∗(G, A) → H ∗(G, gr A) is used in standard fashion (see [24, Slogan 3.9]) to
make the spectral sequence E(A) stop. It follows easily that H ∗(G, A) is finitely
generated. So far G was GLn,k . As explained in some detail in [24], this case implies
our CFG conjecture (over fields.)

Remark 6.18
The spectral sequence E(A) is based on filtering the Hochschild complex of A. As it
lives in the second quadrant, the exposition of multiplicative structure in [2, Section
3.9] does not apply as stated. (In order to avoid convergence issues, [2] uses a filtration
that reaches a maximum.) But [4, Chapter XV, Example 2] is sufficiently general to
cover our case (or see [14]).

Acknowledgments. The second author thanks MATPYL (Mathématiques des Pays
de Loire) for supporting a visit to Nantes during most of January 2008. There he
stressed that any construction of nonzero c[m] regardless of their properties should be
useful—and this has indeed turned out to be the case.
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France; touze@math.univ-paris13.fr

van der Kallen
Mathematisch Instituut, Universiteit Utrecht, 3508 TA Utrecht, The Netherlands;
W.vanderKallen@uu.nl

http://www.ams.org/mathscinet-getitem?mr=2348898
http://www.ams.org/mathscinet-getitem?mr=1264700
file:touze@math.univ-paris13.fr
file:W.vanderKallen@uu.nl

	Introduction
	The first proof
	Main theorem and CFG
	Proof of Theorem 3.1

	The second proof
	The starting point
	Using the classes
	References


