Inventiones mathematicae

Absolute stable rank and Witt cancellation for noncommutative rings

B.A. Magurn¹*, W. Van der Kallen², and L.N. Vaserstein³**

¹ Department of Mathematics and Statistics Miami University, Oxford, OH 45056, USA

² Math. Instituut, University of Utrecht, Postbus 80.010, NL-3508 TA, Utrecht,

The Netherlands

³ Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

0. Introduction

Stable range conditions on a ring R were devised by H. Bass in order to determine values of n for which every matrix in $GL_n(R)$ can be row reduced (by addition operations with coefficients from R) to a matrix with the same last row and column as the identity matrix I_n . In order to obtain analogous results for orthogonal groups, M.R. Stein defined "absolute stable range" conditions on a commutative ring R. Because he was working with group schemes, Stein did not consider absolute stable range conditions for noncommutative rings. Here we do so, and take up a corresponding stability question for orthogonal groups, namely cancellation of quadratic forms. For this we use a very general definition of quadratic form, which specializes to all classical examples.

Sections 1, 2 and 3 contain definitions associated with, and computations of, absolute stable rank. Definitions associated with quadratic forms are introduced in Sections 4, 5, 6 and 7; and Section 8 is devoted to Witt cancellation.

1. Definitions and their connections

Suppose A is an associative ring with unit. If S is a subset of A, let J(S) denote the intersection of A and all maximal left ideals of A which contains S. We say a sequence a_0, \ldots, a_n in A can be shortened if there are coefficients t_0, \ldots, t_{n-1} in A for which

$$a_n \in J(a_0 + t_0 a_n, \ldots, a_{n-1} + t_{n-1} a_n).$$

Consider the condition on the ring A:

Condition L(n): Every sequence a_0, \ldots, a_n in A can be shortened.

Lemma 1.1. L(n) implies L(n+1).

Proof. Shorten a sequence a_0, \ldots, a_{n+1} using coefficients $t_0, \ldots, t_{n-1}, 0$.

^{*} Supported by Miami University FRC Summer Research Appointment

^{**} Supported by the National Science Foundation and the Guggenheim Foundation

The absolute stable rank of A is the least n with L(n) true. A sequence a_0, \ldots, a_n in A is called unimodular if $J(a_0, \ldots, a_n) = A$. The stable rank of A is the least n with L(n) true for unimodular sequences. (It is true that L(n) for unimodular sequences implies L(n+1) for unimodular sequences; but this is harder to prove than Lemma 1.1 – see Theorem 1 of [12].) We abbreviate the absolute stable rank and stable rank of A by asr(A) and sr(A), respectively.

Lemma 1.2. For every ring A, $sr(A) \leq asr(A)$.

Proof. If L(n) holds for all sequences, it holds for unimodular sequences. \Box

In many cases, sr(A) = asr(A). To see that they do not always agree, consider the following examples. We learned about the first from R.M. Guralnick, and the second from H.W. Lenstra, Jr.

Example 1. In [8, 5.1] D.R. Estes and R.M. Guralnick construct Dedekind domains A with sr(A) = 1, but with nontorsion class group G. There are elements a_1 , a_2 which generate a maximal ideal M of infinite order in G. If asr(A) = 1, there is some t in A with

$$J(a_1 + t a_2) = J(a_1, a_2) = M.$$

Since A is Dedekind, $A(a_1 + ta_2)$ contains a power of its radical, M; so it equals a power of M, in contradiction to the choice of M.

Example 2. Suppose R is the ring of integers in an algebraic number field with nontrivial class group. Let S denote the smallest multiplicative set containing the generators of the nonzero principal prime ideals of R. Take A to be $S^{-1}R$. Then sr(A) = 1 and asr(A) > 1.

To see this, suppose $a, b \in A$ and Aa + Ab = A. For some α , β in R and s in S, $a = \alpha/s$ and $b = \beta/s$. Then $R\alpha + R\beta$ meets S, hence equals a product of principal primes, Rs'. Then $\alpha = \alpha's'$, $\beta = \beta's'$ and $s' = \gamma\alpha + \delta\beta$ for some α' , β' , γ , δ in R. Thus $1 = \gamma\alpha' + \delta\beta'$. By the theorem of Dirichlet on the distribution of primes (see [7, p. 83]), $\alpha' + R\beta'$ meets S. So for some t in R, the element

$$(\alpha' + t\,\beta')\frac{s'}{s} = a + t\,b$$

is a unit of A, proving sr(A) = 1.

On the other hand, A has a nonprincipal prime ideal M. If d is a nonzero element of M^2 , then A/Ad is a principal ideal ring; so there is some c in M with M = Ac + Ad. Suppose asr(A) = 1. Then for some t in A,

$$J(c+td) = J(c,d) = M.$$

So $A(c+td) = M^n$ for some integer n > 1. In the local ring A_M ,

$$M_M = A_M(c+td) + A_M d$$
$$= M_M^{n-1} M_M + A_M d.$$

So by Nakayama's Lemma, $M_M = A_M d \subseteq M_M^2$, which is impossible in the Dedekind ring A_M . (In Section 3, we show that $asr(A) \leq dim(A) + 1$; so that, actually, asr(A) = 2 in this example.)

The presence, in these two examples, of ideals which require at least two generators is no coincidence.

Theorem 1.3. If A is a left principal ideal ring, then asr(A) = sr(A).

Proof. Suppose sr(A) = n and $a_0, \ldots, a_n \in A$. For some d in A,

$$Aa_0 + \ldots + Aa_n = Ad.$$

Specifically, for some α_i , β_i in A, each $a_i = \alpha_i d$, while

$$\beta_0 a_0 + \ldots + \beta_n a_n = d.$$

Then $\beta_0 \alpha_0 + \ldots + \beta_n \alpha_n - 1$ annihilates d. The left annihilator of d in A is a left ideal $Ad'(d' \in A)$; so $\alpha_0, \ldots, \alpha_n, d'$ is unimodular. Since $\operatorname{sr}(A) = n$, there are elements α'_i in $\alpha_i + Ad'$ for which $\alpha'_0, \ldots, \alpha'_n$ is unimodular. Again, $\operatorname{sr}(A) = n$ implies there are elements c_i , t_i in A with

$$t_0(\alpha'_0 + c_0 a'_n) + \ldots + t_{n-1}(\alpha'_{n-1} + c_{n-1} \alpha'_n) = 1.$$

Multiplying on the right by d, we discover that every left ideal of A which contains

$$\{a_0 + c_0 a_n, \ldots, a_{n-1} + c_{n-1} a_n\}$$

also includes d, and hence a_n . So $asr(A) \le n = sr(A)$. (The reverse inequality is Lemma 1.2.) \Box

2. Semilocal rings

We denote the Jacobson radical of a ring A by rad(A). This radical is especially pertinent to absolute stable rank because rad(A) is the intersection of all maximal left ideals of A. Following Bass (in [5]), we call a ring A semilocal if A/rad(A) is a left artinian ring. Then by Wedderburn's Theorems, A/rad(A) is a direct product of finitely many matrix rings over division rings.

Lemma 2.1. If A is a ring and I is a (two-sided) ideal of A, then $asr(A/I) \leq asr(A)$; equality holds if $I \subseteq rad(A)$.

Proof. If $\operatorname{asr}(A) = n$ any sequence a_0, \ldots, a_n in A can be shortened with some coefficients t_0, \ldots, t_{n-1} in A. Suppose $f: A \to A/I$ is the canonical homomorphism. If M is a maximal left ideal of A/I, then $f^{-1}(M)$ is a maximal left ideal of A, and $ff^{-1}(M) = M$. So $f(a_0), \ldots, f(a_n)$ is shortened by the coefficients $f(t_0), \ldots, f(t_{n-1})$, proving $\operatorname{asr}(A/I) \leq n$.

If $\operatorname{asr}(A/I) = m$ and $a_0, \ldots, a_m \in A$, there are t_0, \ldots, t_{m-1} in A for which $f(a_0), \ldots, f(a_m)$ is shortened by the coefficients $f(t_0), \ldots, f(t_{m-1})$ in A/I. But if $I \subseteq \operatorname{rad}(A)$, then for every maximal left ideal N of A, f(N) is a maximal left ideal of A/I, and $N = f^{-1}f(N)$. In that case, a_0, \ldots, a_m is shortened by t_0, \ldots, t_{m-1} in A. \Box

Lemma 2.2. If $A = \prod_{i=1}^{i} A_i$ is the direct product of finitely many rings A_i , then

$$\operatorname{asr}(A) = \sup_{1 \leq i \leq r} \operatorname{asr}(A_i)$$

Proof. Apply Lemma 2.1 to the projections $\pi_i: A \to A_i$ to see that

$$\operatorname{asr}(A) \geq \sup_{1 \leq i \leq r} \operatorname{asr}(A_i)$$

To prove the reverse inequality, shorten a sequence in A with coefficients whose *i*-coordinates shorten the corresponding sequence of *i*-coordinates in A_i for each *i*. This works because each maximal ideal of A is π_i^{-1} of a maximal left ideal of A_i for some *i*.

Lemma 2.3. If $A = M_n(D)$ is the ring of n-by-n matrices with entries in a division ring D, then asr(A) = 1.

Proof. Suppose a_0 and a_1 belong to A. If the *j*-th row of a_1 is not in the (left) row space of a_0 then some row (say the *i*-th row) of a_0 is in the linear span of the others. Let e_{ij} denote the matrix with 1 in the *ij*-position and 0's elsewhere. Then $a_0 + e_{ij}a_1$ differs from a_0 only in that the *j*-th row of a_1 has been added to the *i*-th row of a_0 . The effect has been to adjoin the *j*-th row of a_1 to the row space of a_0 . Continuing in this way, we arrive at $a_0 + t_0 a_1$ ($t_0 \in A$) whose row space includes all rows of a_1 . So there exists *b* in *A* with $b(a_0 + t_0 a_1) = a_1$. Then $a_1 \in J(a_0 + t_0 a_1)$.

Together, these lemmas prove:

Theorem 2.4. If A is a semilocal ring, then asr(A) = 1.

Remark 2.5. We can improve the statement of this result when rad(A)=0. For any division ring D and positive integer n, there is a lattice isomorphism "row" from the lattice of left ideals of $M_n(D)$ to the lattice of left vector subspaces of D^n : If I is a left ideal, row(I) is the set of rows of its members. Since every subspace of D^n is an intersection of co-dimension one subspaces, it follows that every left ideal of $M_n(D)$ is an intersection of maximal left ideals. Therefore every left ideal I of a semisimple artinian ring S is an intersection of maximal left ideals: J(I)=I. So, in such a ring S, every list a_0, \ldots, a_n of generators of a left ideal I can be shortened to a single generator:

$$a_0 + \sum_{i=1}^n c_i a_i \qquad (c_i \in S).$$

We need the following lemma in Section 3:

Lemma 2.6. If J is a left ideal of a finite dimensional semisimple algebra S over a field k, $p(t) \in J[t]$, and for some x in k, Sp(x) = J, then there are at most finitely many y in k with $Sp(y) \neq J$.

Proof. Each simple component of S is a matrix ring $M_n(D)$ over a finite dimensional division k-algebra D. The projection $\pi: S \to M_n(D)$ is a k-algebra homomorphism. For each simple component of S, fix a left regular representation of D over k, and apply it entrywise to define a k-algebra embedding $\rho: M_n(D) \to M_{ns}(k)$. We may apply the composite $\rho\pi$ to each coefficient to define a ring homomorphism:

$$S[t] \rightarrow M_{ns}(k)[t] \cong M_{ns}(k[t]).$$

Let $p^{\rho \pi}(t)$ denote the image of p(t) under this map.

For any x in k, $Sp(x) \subseteq J$. Suppose $Sp(y) \neq J$ for some y in k. It follows from Remark 2.5 that, for some projection π to a simple component $M_n(D)$, the D-dimension of the row space of $\pi(p(y))$ is less than the D-dimension m of row $(\pi(J))$. Thus the k-dimension of the row space of $\rho\pi(p(y)) = p^{\rho\pi}(y)$ is less than ms, so that every ms-by-ms submatrix of $p^{\rho\pi}(y)$ has determinant zero. These determinants are polynomials over k evaluated at y, and are not all identically zero since Sp(x)=J for some x; so they vanish for at most finitely many y in k. Since there are only finitely many simple components of S, the lemma follows. \Box

3. Absolute stable rank and dimension

Suppose R is a commutative ring. In this section we relate the absolute stable rank of a module-finite R-algebra A to the dimension of R. For strongest results, we work with the dimension of mspec(R), the subspace of the prime spectrum of R consisting of the maximal ideals. (For its properties, we refer the reader to pp. 92–102 of [5].)

Theorem 3.1. If the maximal spectrum of a commutative ring R is noetherian of finite dimension d, then any module-finite R-algebra A has absolute stable rank at most d+1.

If the word "absolute" is deleted, this is a theorem proved by H. Bass in the early development of algebraic K-theory (see [4]). If "absolute" is put back in, but A = R, this theorem was proved by D. Estes and J. Ohm in 1967 (see Theorem 2.3 of [9] and M. Stein's elaboration in Theorem 1.4 of [10]).

Before embarking on the proof of this theorem, we marshall some well known facts about a commutative ring R and a module-finite R-algebra A. For simplicity we state and prove these facts for the case in which R is a central subring of A. The proofs carry over easily to the case in which the map $R \rightarrow A$ $(r \rightarrow r \cdot 1)$ has nonzero kernel.

Lemma 3.2. If M is a maximal left ideal of A and S is a multiplicative subset of R which does not meet M, then $S^{-1}M$ is a maximal left ideal of $S^{-1}A$ whose contraction to A is M.

Proof. Since M does not meet S, $S^{-1}M$ is a proper left ideal of $S^{-1}A$; thus $S^{-1}M \cap A$ is a proper left ideal of A containing, hence equal to M. A larger left ideal of $S^{-1}A$ would contract to a larger left ideal of A.

Lemma 3.3. For any ideal I of R, the canonical map $A \rightarrow A/IA$ induces a bijection between the maximal left ideals of A containing I and the maximal left ideals of A/IA.

Proof. Elementary.

Lemma 3.4. Rad(A) contains rad(R).

Proof. Suppose $r \in rad(R)$. For each a in A, the finitely generated R-modules A/A(1+ra) and A/(1+ra)A vanish by Nakayama's Lemma; so 1+ra is invertible. \Box

Lemma 3.5. If M is a maximal left ideal of A, then $M \cap R$ is a maximal ideal of R.

Proof. Otherwise we may choose $r \notin M$ from a maximal ideal of R containing $M \cap R$. The multiplicative set S = 1 + Rr does not meet M. By Lemmas 3.4 and 3.2,

$$S^{-1}Rr \subseteq \operatorname{rad}(S^{-1}R) \subseteq \operatorname{rad}(S^{-1}A) \subseteq S^{-1}M.$$

By Lemma 3.2, $r \in M$, a contradiction.

Now we standardize some notation. Suppose p is a prime ideal of the commutative ring R. Then R_p denotes the location $(R-p)^{-1}R$, k(p) denotes the residue field of R_p , A_p denotes $A \otimes_R R_p$, and A(p) denotes $A \otimes_R k(p)$. Note that the localization $R \to R_p$ induces an embedding α : $R/p \to k(p)$ of the domain R/pinto its field of fractions k(p). There is a commutative diagram:

where the maps are the standard ones. Note that δ is surjective with kernel pA; so we will identify $A \otimes_{\mathbb{R}} (\mathbb{R}/p)$ with A/pA. Also $\gamma: A/pA \to A(p)$ is a localization at $(\mathbb{R}/p - \{0\})$; so its kernel is the set of elements with $\mathbb{R} - p$ torsion. Although some of these maps need not be injective, we shall simplify notation by referring to elements of \mathbb{R}/p , k(p) or A as if they are in A(p), via these maps.

To prove Theorem 3.1, we resort to an induction on d, and for this purpose it is natural to prove a more technical generalization. If Y is a subset of mspec(R) and A is a module-finite R-algebra, we say that a sequence a_0, \ldots, a_n in A can be Y-shortened if there are coefficients t_0, \ldots, t_{n-1} in A for which a_n belongs to every maximal left ideal of A that contains both

$$\{a_0 + t_0 a_n, \ldots, a_{n-1} + t_{n-1} a_n\}$$

and some member of Y. A certain flexibility is obtained from the following:

Lemma 3.6. If, for some b in A and $i \neq d < n$, the sequence:

$$a_0, \ldots, a_{d-1}, \quad a_d + b a_i, \quad a_{d+1}, \ldots, a_n$$

can be Y-shortened with coefficients t_0, \ldots, t_{n-1} , then the sequence a_0, \ldots, a_n can be Y-shortened with coefficients:

 $t_0, \ldots, t_{d-1}, \quad t'_d, \quad t_{d+1}, \ldots, t_{n-1}.$

Proof. If i = n, use $t'_d = b + t_d$. If $i \neq n$, use $t'_d = t_d - bt_i$. \Box

By Lemma 3.5, $\operatorname{asr}(A) \leq d+1$ means that every sequence of more than d+1 elements of A can be mspec(R)-shortened. So Theorem 3.1 is a corollary to the following:

Theorem 3.7. Suppose R is a commutative ring, A is a module-finite R-algebra, and X_1, \ldots, X_m are finitely many noetherian subspaces of mspec(R), each of dimension at most d. Then every sequence a_0, \ldots, a_n in A with n > d can be $X_1 \cup \ldots \cup X_m$ -shortened with coefficients t_0, \ldots, t_{n-1} with $t_i = 0$ for all i > d.

Proof. Since each X_i is the union of finitely many irreducible components, we can rewrite $X_1 \cup \ldots \cup X_m$ as $Y_1 \cup \ldots \cup Y_r$ where each Y_i is an *irreducible* noetherian subspace of mspec(R) of dimension at most d. Then the intersection of the elements of Y_i is a prime ideal p_i of R.

Step 1. (Putting a_d in general position.)

We begin with an arbitrary sequence $a_0, ..., a_n$ in A with n > d. Taking advantage of Lemma 3.6, we now describe how to modify a_d by a finite sequence of addition operations until it generates the same left ideal as $a_0, ..., a_n$ in each ring $A(p_i)/\text{rad } A(p_i)$.

Suppose p is a prime ideal of R. Since A(p) is a finite dimensional k(p)-algebra, $A(p)/\operatorname{rad} A(p)$ is a semisimple artinian ring. Let J denote the left ideal of $A(p)/\operatorname{rad} A(p)$ generated by a_0, \ldots, a_n . We say an element of J is in general position if it generates J as a principal left ideal. By Remark 2.5, there are coefficients c_0, \ldots, c_n in A(p), with $c_d = 0$, for which g(1) is in general position, where

$$g(x) = a_d + \sum_{i=1}^n x c_i a_i.$$

By Lemma 2.6, g(x) is in general position for all but finitely many x in k(p). So for each nonzero z in R/p, there is a nonzero x in R/p for which g(zx) is in general position. (If R/p is finite, it is a field, and $g(c \cdot (1/c)) = g(1)$ is in general position.)

Since A(p) is obtained from A/pA by inverting the nonzero elements of R/p, we can choose a nonzero z in R/p for which each zc_i comes from A/pA, and hence from A. For each i, choose a lifting \tilde{c}_i in A of zc_i , choosing $\tilde{c}_d = 0$. Define

$$h(x) = a_d + \sum_{i=1}^n x \, \tilde{c}_i \, a_i.$$

Then for each x in R-p, h(x) belongs to A; and there is some y in R-p for which h(xy) maps to g(cxy) in general position.

Renumber the primes p_i , if necessary, so that $p_i \notin p_j$ if i < j. (First number the primes maximal among the p_i 's then delete them and number those which become maximal among the remaining p_i 's, etc.) Assume a_d is already in general position at p_i for every i < j. For each i < j, choose x_i in $p_i - p_j$. Then the product $x_1 \dots x_{i-1}$ belongs to $R - p_i$. Choose y in $R - p_i$ for which

$$a'_d = h(x_1 \dots x_{i-1} y)$$

has general position in $A(p_j)/\operatorname{rad} A(p_j)$. Notice that a_d and a'_d are equal in each $A(p_i)$ for i < j; so a'_d is in general position at p_i for every $i \leq j$. Continue in this way, to reach a'_d in general position at every p_i , where $a'_d - a_d$ is a left A-linear combination of $a_1, \ldots, a_{d-1}, a_{d+1}, \ldots, a_n$.

Step 2. We now show that there is a subset Y of $Y_1 \cup ... \cup Y_r$ with each $Y_i - Y$ having dimension at most d-1, for which $a_0, ..., a_{d-1}, a'_d, a_{d+1}, ..., a_n$ is Y-shortened by any coefficients $t_0, ..., t_{n-1}$ in A with $t_d = 0$.

Suppose a'_a is in general position at a prime ideal p of R. Then in A(p)/rad A(p), a'_a generates a left ideal containing a_n ; so for some element a of A(p), $a_n - aa'_a$ belongs to rad A(p). Since A(p) is artinian, its radical is nilpotent; so for some positive integer N,

$$[A(p)(a_n-aa_d')]^N=0.$$

For some element u of R-p, ua lifts to an element b of A/pA. Then

$$[(A/pA)(ua_n - ba'_d)]^{\Lambda}$$

is a finitely generated left R/p-module in the kernel of the localization $A/pA \rightarrow A(p)$. So for some v in R-p,

$$[(A/pA)(vua_n-vba_d)]^N=0.$$

For each p_i (= intersection of the primes in Y_i), let r_i denote the product vu associated with $p = p_i$ above. Let Y denote the set of primes m in $X_1 \cup \ldots \cup X_m = Y_1 \cup \ldots \cup Y_r$ which satisfy $r_i \notin m \in Y_i$ for some *i*.

We claim that a_n belongs to every maximal left ideal M of A which contains both $\{a'_d\}$ and a prime \mathfrak{m} from Y. To see this, suppose $r_i \notin \mathfrak{m} \in Y_i$ and let S be the multiplicative set generated by r_i . Notice that M contains p_i but does not meet S (since $M \cap R = \mathfrak{m}$ is prime). By Lemmas 3.2 and 3.3, M is the contraction to A of a maximal left ideal N of $S^{-1}A/p_iA$. Since the element $a_n - r_i^{-1}vba'_d$ generates a nilpotent left ideal of $S^{-1}A/p_iA$, it belongs to the Jacobson radical of this ring, and hence to N. Since $a'_d \in M$, which is contracted from N, $a_n \in M$ as well, proving the claim.

For each *i*, $r_i \notin p_i$; so there are primes from Y_i which do not contain it. So the primes from Y_i which do not contain r_i form a proper closed subset of the irreducible component Y_i , containing $Y_i - Y$. Thus $Y_i - Y$ is either empty or noetherian of dimension at most d-1. And

$$(Y_1 \cup \ldots \cup Y_r) - Y = (Y_1 - Y) \cup \ldots \cup (Y_r - Y).$$

Step 3. (The induction.) If every $Y_i - Y$ is empty (as happens when d = 0), the sequence

 $a_0, \ldots, a_{d-1}, a'_d, a_{d+1}, \ldots, a_n$

is $X_1 \cup ... \cup X_m$ (= Y)-shortened with coefficients that are all zero. So by Lemma 3.6, $a_0, ..., a_n$ can be $X_1 \cup ... \cup X_m$ -shortened with coefficients 0, ..., 0, t_d , 0, ..., 0 as required.

If d > 1, we assume the theorem holds when d is decreased by 1. Then

 $a_0, \ldots, a_{d-1}, a_{d+1}, \ldots, a_n$

can be $(Y_1 - Y) \cup ... \cup (Y_r - Y)$ -shortened by some coefficients $t_0, ..., t_{d-1}, 0, ..., 0$. By Step 2 above,

 $a_0, \ldots, a_{d-1}, a'_d, a_{d+1}, \ldots, a_n$

is $X_1 \cup \ldots \cup X_m$ -shortened by the coefficients

 $t_0, \ldots, t_{d-1}, t_d (=0), 0, \ldots, 0.$

So by Lemma 3.6, a_0, \ldots, a_n can be shortened by coefficients

$$t_0, \ldots, t_{d-1}, t'_d, 0, \ldots, 0$$

as required.

4. Quadratic forms

To include the various quadratic forms arising in L-theory, we combine the definitions of A. Bak [1, 2, 3] with those of J. Tits [11] and C.T.C. Wall [14, 15] for maximum generality. Let A denote an associative ring with unit. Let α denote an antiautomorphism of the ring A; for notational convenience we shall write a^* to mean $\alpha(a)$ for a in A. Assume there is a unit ε of A, with $\varepsilon^* = \varepsilon a \varepsilon^{-1}$, so that $a^{**} = \varepsilon a \varepsilon^{-1}$ for every a in A. (Of course, if ε is central, then α is simply an involution on A.)

Each right A-module V becomes a left A-module via α . In particular, the dual $V^* = \text{Hom}_A(V, A)$ has a right A-module structure defined, for each f in V^* and a in A, by

$$(fa)(v) = a^*f(v)$$

for all v in V.

An α -sesquilinear form (subsequently just called a form or scalar product) on a right A-module V is a biadditive map $Q: V \times V \rightarrow A$ satisfying

$$Q(ua, vb) = a^*Q(u, v)b$$

for all u, v in V and a, b in A. The set $\text{Sesq}_{\alpha}(V)$ of forms on V is an additive abelian group. The formula:

$$[f(u)](v) = Q(u, v)$$

defines a group isomorphism $f \leftrightarrow Q$ between $\operatorname{Hom}_{\mathcal{A}}(V, V^*)$ and $\operatorname{Sesq}_{\mathfrak{a}}(V)$. A form Q is called *non-singular* if the corresponding homomorphism $f: V \to V^*$ is an isomorphism.

A form Q on V is called ε -hermitian if

$$Q(u,v) = Q(v,u)^* \varepsilon$$

for all u, v in V, and is called even ε -hermitian if

$$Q(u, v) = F(u, v) + F(v, u)^* \varepsilon$$

for some F in $\text{Sesq}_{\alpha}(V)$ and all u, v in V.

To clarify these definitions, Wall defined a transposition operator

$$T_{\varepsilon}: \operatorname{Sesq}_{\alpha}(V) \to \operatorname{Sesq}_{\alpha}(V)$$

by $T_{\epsilon} Q(u, v) = Q(v, u)^* \epsilon$. This T_{ϵ} is a group homomorphism, $T_{\epsilon}^2 = 1$, and $T_{-\epsilon} = -T_{\epsilon}$. The ϵ -hermitian forms make up the kernel of $1 - T_{\epsilon}$, and the even ϵ -hermitian forms constitute the image of $1 + T_{\epsilon}$. According to Wall's definition, a quadratic form on V is any element of the cokernel of $1 - T_{\epsilon}$ (see [15, p. 120].)

For greater generality, following A. Bak (in [2, 3]), we fix an additive subgroup A of A with the two properties:

- i) $a^* \Lambda a \subseteq \Lambda$ for all a in A,
- ii) $A_{\varepsilon} \subseteq A \subseteq A^{\varepsilon}$,

where

$$A_{\varepsilon} = \{a - a^{*} \varepsilon : a \in A\}$$
$$A^{\varepsilon} = \{a \in A : a = -a^{*} \varepsilon\}$$

For any right A-module V, we define $X(V, \alpha, \varepsilon, A)$ to be the additive group of all $(-\varepsilon)$ -hermitian forms F on V for which $F(v, v) \in A$ for each v in V.

A quadratic (or more precisely an $(\alpha, \varepsilon, \Lambda)$ -quadratic) form on V is any element of the quotient group:

$$\operatorname{Sesq}_{\alpha}(V)/X(V, \alpha, \varepsilon, \Lambda).$$

If V is a finitely generated projective right A-module, then $X(V, \alpha, \varepsilon, A_{\varepsilon})$ coincides with the image of $1 - T_{\varepsilon}$, as shown by the proof of Theorem 1.3 in [3]. So our quadratic forms include those of Wall. (The various L-groups are constructed from finitely generated projective modules with nonsingular forms.)

For any quadratic form

$$q = Q + X(V, \alpha, \varepsilon, \Lambda)$$

on V, we define an associated length

$$||_a: V \to A/\Lambda$$
 by $|v|_a = Q(v, v) + \Lambda$

and an associated scalar product or linearization

$$(,)_q: V \times V \rightarrow A \quad \text{by} \quad (u, v)_q = Q(u, v) + Q(v, u)^* \varepsilon.$$

Neither of these depends on a choice of coset representative Q. In fact, a form is taken to its linearization by $1 + T_{\varepsilon} = 1 - T_{-\varepsilon}$ which has kernel the $(-\varepsilon)$ -hermitian forms, and image the even ε -hermitian forms on V. Clearly qis uniquely determined by its length map and linearization. If the even ε -hermitian form (,)_e is non-singular, we call q non-singular.

The lengths and scalar products of elements u, v of V are related by the following useful identities:

$$|u+v|_q = |u|_q + |v|_q + (u, v)_q$$
$$(v, v)_q = x + x^* \varepsilon$$
$$|va|_q = a^* x a + \Lambda$$

for any x in $|v|_a$ and a in A.

When $\Lambda = A^e$, the quadratic form q is uniquely determined by its linearization $(,)_q$, which can be *any* even ε -hermitian form on V. When Λ does not contain any nonzero ideals of A, then q is uniquely determined by its length map $||_q$. (To see the latter, note that the additive subgroup of A generated by the values of $(,)_q$ is an ideal of A, contained in Λ if the length map is zero.)

Now A=0 if and only if $\varepsilon = 1$, α is the identity, and A is commutative. This is the case in which $||_{\alpha}: V \to A$ is a classical quadratic form on V.

Another classical case is A = A. Then $\varepsilon = -1$, α is the identity, and A is commutative. In this case there is a bijection between the quadratic forms q on V and their linearizations, which are the alternating forms on V.

Remark. The definition of quadratic form used by A. Bak in [1, 2 and 3], H. Bass in [6] and L.N. Vaserstein in [13] is just a special case of the definition presented here – namely the case where ε is central in A, so that α is an involution. The data $(A, \alpha, \varepsilon, A)$ is called a *form ring* by Bak in [3] and a *unitary ring* by Bass in [6]. In [14] and [15], C.T.C. Wall removes the hypothesis that ε is central, does not use A, and calls the data (A, α, ε) an *antistructure*.

5. Quadratic spaces and morphisms

If q is a quadratic form on the right A-module V, the pair (V, q) is called a *quadratic space*. If (V', q') is another quadratic space over the same A, α , ε and A, then an A-linear map $f: V \rightarrow V'$ is called a *morphism* $(V, q) \rightarrow (V', q')$ of quadratic spaces if

$$|f(v)|_{a'} = |v|_{a}$$
 and $(f(v), f(w))_{a'} = (v, w)_{a}$

for all v, w in V. With these morphisms, the $(A, \alpha, \varepsilon, \Lambda)$ -quadratic forms become a category. A morphism f in this category is an isomorphism (i.e. invertible) if and only if it is bijective.

If $Q \in q$ and $Q' \in q'$ the form $Q \oplus Q'$ determines a quadratic form $q \oplus q'$ on $V \oplus V'$ which is independent of the choice of Q and Q'. Thus we can define the orthogonal sum:

$$(V,q) \perp (V',q) = (V \oplus V',q \oplus q')$$

as a binary operation on $(A, \alpha, \varepsilon, \Lambda)$ -quadratic forms.

If a morphism $(V', q') \rightarrow (V, q)$ is an inclusion of modules $V' \subseteq V$, we call (V', q') a quadratic subspace of (V, q). In this case, if q' is non-singular, then (V', q') is an orthogonal summand of (V, q):

$$(V,q) \cong (V',q') \perp (V'',q'')$$

where V'' is the orthogonal complement of V' under $(,)_q$, and q'' is the coset of forms on V'' restricting those of q to V''.

6. Hyperbolic forms and Witt index

For any right A-module V, the hyperbolic space H(V) is the quadratic space $(V \oplus V^*, q)$, where q is represented by the form Q defined by

$$Q((u, u'), (v, v')) = u'(v)$$

for all u, v in V and u', v' in V^* . Recall that V^* is a right A-module via α . If we make V^{**} into a right A-module via the anti-isomorphism α^{-1} , then the map $\beta: V \to V^{**}$, defined by

$$\beta(v)(v') = \alpha^{-1}(v'(v))$$

for all v' in V^* , is A-linear. It is routine to show that the hyperbolic form q (above) is non-singular if and only if β is an isomorphism. The latter condition does not involve Λ , and (according to Wall [14, p. 247]) it is independent of α , and is true when V is a finitely generated projective A-module.

Any quadratic space (V, q) can be embedded into the hyperbolic space H(V) as follows: Pick Q in q, and send V to $V \oplus V^*$ by

$$v \rightarrow (v, Q(v, -)).$$

Of course, each choice of Q gives rise to a different embedding. If q is nonsingular, each such embedding can be extended to an isomorphism:

$$(V,q) \perp (V,-q) \cong H(V)$$

of quadratic spaces.

On the other hand, a quadratic space is measured by means of hyperbolic subspaces. The Witt index, ind(q), of (V, q) is the lagest $r \ge 0$ for which (V, q) contains a quadratic subspace isomorphic to H(A'). Since H(A') is non-singular, it is then an orthogonal summand of (V, q).

If v_1, \ldots, v_r is a basis of A^r , and v'_1, \ldots, v'_r is the dual basis of $(A^r)^*$, and if q is the quadratic form in $H(A^r)$, the for each i, j with $i \neq j$,

$$|v_i|_q = |v'_i|_q = 0, \quad (v'_i, v_i)_q = 1$$

and

$$(v_i, v_j)_q = (v'_i, v'_j)_q = (v'_i, v_j)_q = 0.$$

Absolute stable rank

For an internal description of the Witt index in an arbitrary quadratic space (V, q), we therefore define a hyperbolic pair in (V, q) to be any (ordered) pair e, f in V satisfying the conditions:

$$|e|_{q} = |f|_{q} = 0$$
 and $(e, f)_{q} = 1$.

A vector v in V is called *q*-unimodular if there is a vector w in V for which $(v, w)_q = 1$. In a hyperbolic pair e, f both e and f are q-unimodular, and every q-unimodular vector e with $|e|_q = 0$ can be included in a hyperbolic pair.

The A-linear span of a hyperbolic pair e, f is a subspace of (V, q) isomorphic to the hyperbolic plane H(A) by $f \to 1 \in A$, $e \to i$ dentity map $\in A^*$. More generally, the span of mutually orthogonal hyperbolic pairs $e_1, f_1, \ldots, e_r, f_r$ is isomorphic to

$$H(A^r) \cong H(A) \perp \ldots \perp H(A)$$
 (r copies).

So $ind(q) \ge r$ if and only if V contains r mutually orthogonal hyperbolic pairs.

7. The orthogonal group and transvections

Take A, α , ε , Λ , V and q to have the same meaning as above. The group of automorphisms of the quadratic space (V, q) is called the *orthogonal group*, $\mathcal{O}(q)$. They are the A-linear automorphisms of V which preserve lengths $||_q$ and scalar products $(,)_q$.

Suppose e and u are elements of V with $|e|_q = 0$ and $(e, u)_q = 0$. Choose x in $|u|_q$. The map $\tau(e, u, x): V \to V$ defined by

$$\tau(e, u, x)(v) = v + u(e, v)_a - e \varepsilon^*(u, v)_a - e \varepsilon^* x(e, v)_a$$

belongs to $\mathcal{O}(q)$. If e is q-unimodular, then $\tau(e, u, x)$ is called an orthogonal transvection.

8. Application of absolute stable rank

Theorem 8.1. Suppose (V, q) is a quadratic space over A. Assume that either $\operatorname{ind}(q) \ge \operatorname{asr}(A) + 2$, or that α is the identity map (so A is commutative) and $\operatorname{ind}(q) \ge \operatorname{asr}(A) + 1$. Then $\mathcal{O}(q)$ acts transitively on the set of all q-unimodular vectors v in V with a given length $|v|_q$.

Proof. Suppose $e_1, f_1, ..., e_n, f_n$ are *n* mutually orthogonal hyperbolic pairs in (V, q), where $n \ge \operatorname{asr}(A) + 1$, and, if α is not trivial, $n \ge \operatorname{asr}(A) + 2$. Suppose

$$v = \sum_{i=1}^{n} e_i a_i + \sum_{i=1}^{n} f_i b_i + u$$

 $(a_i, b_i \in A, u \in V)$ is a q-unimodular vector with length $|v|_q = x + A$ ($x \in A$), where u is orthogonal to all e_i , f_i . Note that the coefficients a_i , b_i (and hence the

vector u) are uniquely determined by v, since

$$a_i^* = (v, f_i)_q$$
 and $b_i = (e_i, v)_q$.

We will perform a sequence of orthogonal transvections $\tau(e_i, ?, ?)$ and $\tau(f_i, ?, ?)$ on v to transform v to the standard vector $e_1 + f_1 x$ of the same length.

Step 1. Since v is q-unimodular, there is a vector w orthogonal to all e_i , f_i for which

$$\sum_{i=1}^{n} (A a_i + A b_i) + A (w, u)_q = A.$$

Since $sr(A) \leq n$, we can make

$$\sum_{i=1}^{n} (A a_i + A b_i) = A$$

if we replace v by

$$\prod_{i=1}^{n} \tau(e_i, wc_i, c_i^* yc_i)(v)$$

with appropriate c_i in A, where $y \in |w|_q$.

Step 2. Assume $\sum_{i=1}^{n} (Aa_i + Ab_i) = A$. Since $sr(A) \leq n-1$, we can make,

$$A b_n + \sum_{i=1}^{n-1} (A a_i + A b_i) = A$$

if we replace v by

$$\tau\left(f_n,\sum_{i=1}^{n-1}e_i\,c_i,0\right)(v)$$

with appropriate c_i in A.

Step 3. Assume $Ab_n + \sum_{i=1}^{n-1} (Aa_i + Ab_i) = A$. Replacing v by

$$\tau\left(e_{n},\sum_{i=1}^{n-1}(e_{i}\,c_{i}+f_{i}\,d_{i}),0\right)(v)$$

for appropriate c_i , d_i in A, we can make $a_n = 1 + z b_n$ for some z in A,

So far we have only used $sr(A) \le n-1$, which follows from $sr(A) \le asr(A)$. At this point we bring to bear the absolute stable range condition, in an altered but equivalent form: **Lemma 8.2.** For any ring R and positive integer n, $\operatorname{asr}(R) \leq n$ if and only if for each list r_0, r_1, \ldots, r_n of elements from R, there exist $t_0, t_1, \ldots, t_{n-1}$ in R so that

$$R(1+hr_n) + \sum_{i=0}^{n-1} R(r_i + t_i r_n) = R$$

for every h in R.

Proof. If $\operatorname{asr}(R) \leq n$, use the same coefficients t_0, \ldots, t_{n-1} which shorten r_0, \ldots, r_n .

For the converse, if r_n is not in a maximal left ideal M containing the $r_i + t_i r_n$ $(0 \le i \le n-1)$, then $-1 = m + hr_n$ for some m in M and h in A. So $1 + hr_n$ belongs to M, a contradiction.

Step 4. Assume that $a_n = 1 + zb_n$ for some z in A, and suppose α is the identity map $(a^* = a \text{ for all } a \in A)$. Since $asr(A) \le n-1$, we can apply Lemma 8.2 to the list $a_1, \ldots, a_{n-1}, b_n^2$; so there are c_1 in A with

$$A(1+hb_n^2) + \sum_{i=1}^{n-1} A(a_i + c_i b_n^2) = A$$

for all h in A.

Since α is trivial, A is a commutative ring. Let B denote the ideal

$$\sum_{i=1}^{n-1} A(a_i + c_i b_n^2).$$

Then $b_n^2 \in \operatorname{rad}(A/B)$; so also $b_n \in \operatorname{rad}(A/B)$, and

$$A(1+hb_n) + \sum_{i=1}^{n-1} A(a_i + c_i b_n^2) = A$$

for all h in A. So, if we replace v by

$$\tau\left(e_n,\sum_{i=1}^{n-1}e_i\,c_i\,b_n,0\right)(v),$$

we then have $Aa_1 + \ldots + Aa_n = A$.

Now consider the general case with $asr(A) \leq n-2$. Again assume that $a_n = 1+zb_n$ for some z in A. Apply Lemma 8.2 to the list $b_1, a_2, \ldots, a_{n-1}$ to find c_i in A with

$$A(1+hb_1) + \sum_{i=2}^{n-1} A(a_i + c_i b_1) = A$$

for all h in A. Replacing v by

$$\tau\left(e_1,\sum_{i=2}^{n-1}e_i\,c_i,0\right)(v),$$

we then have

$$A(1+hb_1) + \sum_{i=2}^{n-1} Aa_i = A.$$

Since $a_n = 1 + zb_n$, it follows that $Aa_n + Ab_n = A$. So we can choose c_n , d_n in A and replace v by

$$\tau(e_1, e_n c_n + f_n d_n, x)(v)$$

(where $x \in |e_n c_n + f_n d_n|_q$), to make

$$A a_1 + \ldots + A a_{n-1} = A$$

So again,

$$Aa_1 + \ldots + Aa_n = A.$$

Step 5. Assume that $Aa_1 + \ldots + Aa_n = A$. By replacing v with

$$\tau(f_i, e_i c_i \varepsilon^*, 0)(v) \quad (i \neq j, c_i \in A)$$

we change a_i to $a_i + c_i a_j$ without affecting the other coefficients among a_1, \ldots, a_n . Since sr(A) $\leq n-1$, we can perform a sequence of such orthogonal transvections until $a_1 = 1$.

Step 6. Assume $a_1 = 1$. Replacing v by

$$\tau(f_1, -u\varepsilon^*, ?)\tau\left(f_1, -\sum_{i=2}^n f_i b_i\varepsilon^*, 0\right)\tau\left(f_1, -\sum_{i=2}^n e_i a_i\varepsilon^*, 0\right)(v)$$

results in $v = e_1 + f_1 b_1$. Then

$$x + \Lambda = |v|_q = |e_1 + f_1 b_1|_q = b_1 + \Lambda.$$

And

$$\tau(f_1, 0, \varepsilon(b_1 - x)\varepsilon^*)(e_1 + f_1 b_1) = e_1 + f_1 x,$$

completing the proof of Theorem 8.1. \Box

Corollary 8.3. (Cancellation) Suppose (V, q) is a quadratic space with $ind(q) \ge ast(A)$. If the anti-isomorphism α is not the identity map, assume further that $ind(q) \ge ast(A) + 1$. Suppose (V', q') and (V'', q'') are quadratic spaces, V'' is a finitely generated projective A-module, q'' is non-singular, and

$$(V', q') \perp (V'', q'') \cong (V, q) \perp (V'', q'').$$

Then $(V', q') \cong (V, q)$.

540

Proof. Since (V'', q'') is isomorphic to an orthogonal summand of

$$H(A^n) \cong H(A) \perp \ldots \perp H(A)$$
 (*n* copies)

for some positive integer *n*, it suffices to prove the cancellation in the case (V'', q'') = H(A).

Choose mutually orthogonal hyperbolic pairs $e_2, f_2, ..., e_r, f_r$ (r = ind(q) + 1)in (V, q) and let e_1, f_1 denote the standard hyperbolic pair in H(A). Identify these pairs with their images in $(V, q) \perp H(A)$. By Theorem 8.1, applied to qunimodular elements of length zero, we can compose the given isomorphism

$$(V', q') \perp H(A) \cong (V, q) \perp H(A)$$

with a sequence of orthogonal transvections on $(V, q) \perp H(A)$, so that the composite takes f_1 to itself, and hence takes e_1 to some

$$w = \sum_{i=1}^{n} e_i a_i + \sum_{i=1}^{n} f_i b_i + u$$

 $(a_i, b_i \text{ in } A, u \text{ orthogonal to all } e_i, f_i)$ for which w, f_1 is a hyperbolic pair. In particular, $a_1 = 1$. Just as in Step 6 of the proof of Theorem 8.1, a sequence of orthogonal transvections $\tau(f_1, ?, ?)$ will take w to e_1 . Since $\tau(f_1, ?, ?)$ fixes f_1 , the entire composite of the above isomorphisms takes the orthogonal summand H(A) to itself. Since H(A) is non-singular, this composite restricts to the desired isomorphism $(V', q') \cong (V, q)$. \Box

Note. The proof of Theorem 8.1 also works under the hypotheses: A is commutative, $ind(q) \ge asr(A) + 1$, and for all a in A, $\alpha(a) \in Aa$ (or equivalently α leaves ideals invariant). So the conclusion of Corollary 8.3 also works under the hypotheses: A is commutative, $ind(q) \ge asr(A)$, and α leaves ideals invariant.

References

- Bak, A.: On modules with quadratic forms. In: Algebraic K-Theory and its Geometric Applications (Lect. Notes Math. vol. 108, pp. 55–66) Berlin Heidelberg New York: Springer 1969
- 2. Bak, A.: Definitions and problems in surgery and related groups. Gen. Topol. Appl. 7, 215-231 (1977)
- 3. Bak, A.: K-Theory of Forms. Ann. Math. Studies 98, 1981
- 4. Bass, H.: K-Theory and stable algebra. Publ. Math. I.H.E.S. 22, 5-60 (1964)
- 5. Bass, H.: Algebraic K-Theory. New York: W.A. Benjamin, Inc., 1968
- Bass, H.: Unitary algebraic K-Theory. In: Algebraic K-Theory III. (Lect. Notes Math. vol. 343, pp. 57–265) Berlin Heidelberg New York: Springer 1973
- 7. Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem for SL_n $(n \ge 3)$ and Sp_{2n} $(n \ge 2)$. Publ. Math. I.H.E.S. 33, 58–137 (1967)
- Estes, D.R., Guralnick, R.M.: Module equivalences: Local to global. When primitive polynomials represent units. J. Algebra 77, 138–157 (1982)
- 9. Estes, D.R., Ohm, J.: Stable range in commutative rings. J. Algebra 7, 343-362 (1967)
- Stein, M.R.: Stability theorems for K₁, K₂ and related functors modeled on Chevalley groups. Jpn. J. Math. 4, 77-108 (1978)

- 11. Tits, J.: Formes quadratiques, groupes orthogonaux et algebres de Clifford. Invent. Math. 5, 19-41 (1968)
- 12. Vaserstein, L.N.: Stable rank of rings and dimensions of topological spaces. Funct. Anal. Appl. 5, 102-110 (1971); Funk. Anal. Pril. 5, 17-27 (1971)
- Vaserstein, L.N.: Stabilization for classical groups over rings. Math. USSR Sb. 22, 271-303 (1975); Mat. Sb. 93, 268-295 (1974)
- Wall, C.T.C.: On the axiomatic foundation of the theory of hermitian forms. Proc. Camb. Philos. Soc. 67, 243-250 (1970)
- 15. Wall, C.T.C.: On the classification of Hermitian forms II. Semisimple rings. Invent. Math. 18, 119-141 (1972)

Oblatum 1-IX-1987