Absolute stable rank and Witt cancellation for noncommutative rings

B.A. Magurn ${ }^{1 \star}$, W. Van der Kallen ${ }^{2}$, and L.N. Vaserstein ${ }^{3 \star \star}$
${ }^{1}$ Department of Mathematics and Statistics Miami University, Oxford, OH 45056, USA
${ }^{2}$ Math. Instituut, University of Utrecht, Postbus 80.010 , NL-3508 TA, Utrecht, The Netherlands
${ }^{3}$ Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

0. Introduction

Stable range conditions on a ring R were devised by H. Bass in order to determine values of n for which every matrix in $G L_{n}(R)$ can be row reduced (by addition operations with coefficients from R) to a matrix with the same last row and column as the identity matrix I_{n}. In order to obtain analogous results for orthogonal groups, M.R. Stein defined "absolute stable range" conditions on a commutative ring R. Because he was working with group schemes, Stein did not consider absolute stable range conditions for noncommutative rings. Here we do so, and take up a corresponding stability question for orthogonal groups, namely cancellation of quadratic forms. For this we use a very general definition of quadratic form, which specializes to all classical examples.

Sections 1,2 and 3 contain definitions associated with, and computations of, absolute stable rank. Definitions associated with quadratic forms are introduced in Sections 4, 5, 6 and 7; and Section 8 is devoted to Witt cancellation.

1. Definitions and their connections

Suppose A is an associative ring with unit. If S is a subset of A, let $J(S)$ denote the intersection of A and all maximal left ideals of A which contains S. We say a sequence a_{0}, \ldots, a_{n} in A can be shortened if there are coefficients t_{0}, \ldots, t_{n-1} in A for which

$$
a_{n} \in J\left(a_{0}+t_{0} a_{n}, \ldots, a_{n-1}+t_{n-1} a_{n}\right)
$$

Consider the condition on the ring A :
Condition $L(n)$: Every sequence a_{0}, \ldots, a_{n} in A can be shortened.
Lemma 1.1. $L(n)$ implies $L(n+1)$.
Proof. Shorten a sequence a_{0}, \ldots, a_{n+1} using coefficients $t_{0}, \ldots, t_{n-1}, 0$.

[^0]The absolute stable rank of A is the least n with $L(n)$ true. A sequence a_{0}, \ldots, a_{n} in A is called unimodular if $J\left(a_{0}, \ldots, a_{n}\right)=A$. The stable rank of A is the least n with $L(n)$ true for unimodular sequences. (It is true that $L(n)$ for unimodular sequences implies $L(n+1)$ for unimodular sequences; but this is harder to prove than Lemma 1.1 - see Theorem 1 of [12].) We abbreviate the absolute stable rank and stable rank of A by asr (A) and $\operatorname{sr}(A)$, respectively.
Lemma 1.2. For every ring $A, \operatorname{sr}(A) \leqq \operatorname{asr}(A)$.
Proof. If $L(n)$ holds for all sequences, it holds for unimodular sequences.
In many cases, $\operatorname{sr}(A)=\operatorname{asr}(A)$. To see that they do not always agree, consider the following examples. We learned about the first from R.M. Guralnick, and the second from H.W. Lenstra, Jr.

Example 1. In [8, 5.1] D.R. Estes and R.M. Guralnick construct Dedekind domains A with $\operatorname{sr}(A)=1$, but with nontorsion class group G. There are elements a_{1}, a_{2} which generate a maximal ideal M of infinite order in G. If $\operatorname{asr}(A)=1$, there is some t in A with

$$
J\left(a_{1}+t a_{2}\right)=J\left(a_{1}, a_{2}\right)=M .
$$

Since A is Dedekind, $A\left(a_{1}+t a_{2}\right)$ contains a power of its radical, M; so it equals a power of M, in contradiction to the choice of M.

Example 2. Suppose R is the ring of integers in an algebraic number field with nontrivial class group. Let S denote the smallest multiplicative set containing the generators of the nonzero principal prime ideals of R. Take A to be $S^{-1} R$. Then $\operatorname{sr}(A)=1$ and $\operatorname{ast}(A)>1$.

To see this, suppose $a, b \in A$ and $A a+A b=A$. For some α, β in R and s in $S, a=\alpha / s$ and $b=\beta / s$. Then $R \alpha+R \beta$ meets S, hence equals a product of principal primes, $R s^{\prime}$. Then $\alpha=\alpha^{\prime} s^{\prime}, \beta=\beta^{\prime} s^{\prime}$ and $s^{\prime}=\gamma \alpha+\delta \beta$ for some $\alpha^{\prime}, \beta^{\prime}$, γ, δ in R. Thus $1=\gamma \alpha^{\prime}+\delta \beta^{\prime}$. By the theorem of Dirichlet on the distribution of primes (see [7, p. 83]), $\alpha^{\prime}+R \beta^{\prime}$ meets S. So for some t in R, the element

$$
\left(\alpha^{\prime}+t \beta^{\prime}\right) \frac{s^{\prime}}{s}=a+t b
$$

is a unit of A, proving $\operatorname{sr}(A)=1$.
On the other hand, A has a nonprincipal prime ideal M. If d is a nonzero element of M^{2}, then $A / A d$ is a principal ideal ring; so there is some c in M with $M=A c+A d$. Suppose asr $(A)=1$. Then for some t in A,

$$
J(c+t d)=J(c, d)=M .
$$

So $A(c+t d)=M^{n}$ for some integer $n>1$. In the local ring A_{M},

$$
\begin{aligned}
M_{M} & =A_{M}(c+t d)+A_{M} d \\
& =M_{M}^{n-1} M_{M}+A_{M} d .
\end{aligned}
$$

So by Nakayama's Lemma, $M_{M}=A_{M} d \subseteq M_{M}^{2}$, which is impossible in the Dedekind ring A_{M}. (In Section 3 , we show that $\operatorname{asr}(A) \leqq \operatorname{dim}(A)+1$; so that, actually, $\operatorname{asr}(A)=2$ in this example.)

The presence, in these two examples, of ideals which require at least two generators is no coincidence.

Theorem 1.3. If A is a left principal ideal ring, then $\operatorname{asr}(A)=\operatorname{sr}(A)$.
Proof. Suppose $\operatorname{sr}(A)=n$ and $a_{0}, \ldots, a_{n} \in A$. For some d in A,

$$
A a_{0}+\ldots+A a_{n}=A d
$$

Specifically, for some α_{i}, β_{i} in A, each $a_{i}=\alpha_{i} d$, while

$$
\beta_{0} a_{0}+\ldots+\beta_{n} a_{n}=d
$$

Then $\beta_{0} \alpha_{0}+\ldots+\beta_{n} \alpha_{n}-1$ annihilates d. The left annihilator of d in A is a left ideal $A d^{\prime}\left(d^{\prime} \in A\right)$; so $\alpha_{0}, \ldots, \alpha_{n}, d^{\prime}$ is unimodular. Since $\operatorname{sr}(A)=n$, there are elements α_{i}^{\prime} in $\alpha_{i}+A d^{\prime}$ for which $\alpha_{0}^{\prime}, \ldots, \alpha_{n}^{\prime}$ is unimodular. Again, $\operatorname{sr}(A)=n$ implies there are elements c_{i}, t_{i} in A with

$$
t_{0}\left(\alpha_{0}^{\prime}+c_{0} a_{n}^{\prime}\right)+\ldots+t_{n-1}\left(\alpha_{n-1}^{\prime}+c_{n-1} \alpha_{n}^{\prime}\right)=1
$$

Multiplying on the right by d, we discover that every left ideal of A which contains

$$
\left\{a_{0}+c_{0} a_{n}, \ldots, a_{n-1}+c_{n-1} a_{n}\right\}
$$

also includes d, and hence a_{n}. So $\operatorname{asr}(A) \leqq n=\operatorname{sr}(A)$. (The reverse inequality is Lemma 1.2.)

2. Semilocal rings

We denote the Jacobson radical of a ring A by $\operatorname{rad}(A)$. This radical is especially pertinent to absolute stable rank because $\operatorname{rad}(A)$ is the intersection of all maximal left ideals of A. Following Bass (in [5]), we call a ring A semilocal if $A / \operatorname{rad}(A)$ is a left artinian ring. Then by Wedderburn's Theorems, $A / \operatorname{rad}(A)$ is a direct product of finitely many matrix rings over division rings.

Lemma 2.1. If A is a ring and I is a (two-sided) ideal of A, then $\operatorname{asr}(A / I) \leqq \operatorname{asr}(A)$; equality holds if $I \subseteq \operatorname{rad}(A)$.

Proof. If $\operatorname{asr}(A)=n$ any sequence a_{0}, \ldots, a_{n} in A can be shortened with some coefficients t_{0}, \ldots, t_{n-1} in A. Suppose $f: A \rightarrow A / I$ is the canonical homomorphism. If M is a maximal left ideal of A / I, then $f^{-1}(M)$ is a maximal left ideal of A, and $f f^{-1}(M)=M$. So $f\left(a_{0}\right), \ldots, f\left(a_{n}\right)$ is shortened by the coefficients $f\left(t_{0}\right), \ldots, f\left(t_{n-1}\right)$, proving $\operatorname{asr}(A / I) \leqq n$.

If $\operatorname{asr}(A / I)=m$ and $a_{0}, \ldots, a_{m} \in A$, there are t_{0}, \ldots, t_{m-1} in A for which $f\left(a_{0}\right), \ldots, f\left(a_{m}\right)$ is shortened by the coefficients $f\left(t_{0}\right), \ldots, f\left(t_{m-1}\right)$ in A / I. But if $I \subseteq \operatorname{rad}(A)$, then for every maximal left ideal N of $A, f(N)$ is a maximal left ideal of A / I, and $N=f^{-1} f(N)$. In that case, a_{0}, \ldots, a_{m} is shortened by t_{0}, \ldots, t_{m-1} in A. \square

Lemma 2.2. If $A=\prod_{i=1}^{r} A_{i}$ is the direct product of finitely many rings A_{i}, then

$$
\operatorname{asr}(A)=\sup _{1 \leqq i \leqq r} \operatorname{asr}\left(A_{i}\right)
$$

Proof. Apply Lemma 2.1 to the projections $\pi_{i}: A \rightarrow A_{i}$ to see that

$$
\operatorname{asr}(A) \geqq \sup _{1 \leqq i \leqq r} \operatorname{asr}\left(A_{i}\right)
$$

To prove the reverse inequality, shorten a sequence in A with coefficients whose i-coordinates shorten the corresponding sequence of i-coordinates in A_{i} for each i. This works because each maximal ideal of A is π_{i}^{-1} of a maximal left ideal of A_{i} for some i.

Lemma 2.3. If $A=M_{n}(D)$ is the ring of n-by-n matrices with entries in a division $\operatorname{ring} D$, then $\operatorname{asr}(A)=1$.

Proof. Suppose a_{0} and a_{1} belong to A. If the j-th row of a_{1} is not in the (left) row space of a_{0} then some row (say the i-th row) of a_{0} is in the linear span of the others. Let $e_{i j}$ denote the matrix with 1 in the $i j$-position and 0 's elsewhere. Then $a_{0}+e_{i j} a_{1}$ differs from a_{0} only in that the j-th row of a_{1} has been added to the i-th row of a_{0}. The effect has been to adjoin the j-th row of a_{1} to the row space of a_{0}. Continuing in this way, we arrive at $a_{0}+t_{0} a_{1}\left(t_{0} \in A\right)$ whose row space includes all rows of a_{1}. So there exists b in A with $b\left(a_{0}+t_{0} a_{1}\right)=a_{1}$. Then $a_{1} \in J\left(a_{0}+t_{0} a_{1}\right)$.

Together, these lemmas prove:
Theorem 2.4. If A is a semilocal ring, then $\operatorname{asr}(A)=1$.
Remark 2.5. We can improve the statement of this result when $\operatorname{rad}(A)=0$. For any division ring D and positive integer n, there is a lattice isomorphism "row" from the lattice of left ideals of $M_{n}(D)$ to the lattice of left vector subspaces of D^{n} : If I is a left ideal, row (I) is the set of rows of its members. Since every subspace of D^{n} is an intersection of co-dimension one subspaces, it follows that every left ideal of $M_{n}(D)$ is an intersection of maximal left ideals. Therefore every left ideal I of a semisimple artinian ring S is an intersection of maximal left ideals: $J(I)=I$. So, in such a ring S, every list a_{0}, \ldots, a_{n} of generators of a left ideal I can be shortened to a single generator:

$$
a_{0}+\sum_{i=1}^{n} c_{i} a_{i} \quad\left(c_{i} \in S\right)
$$

We need the following lemma in Section 3:
Lemma 2.6. If J is a left ideal of a finite dimensional semisimple algebra S over a field $k, p(t) \in J[t]$, and for some x in $k, S p(x)=J$, then there are at most finitely many y in k with $\operatorname{Sp}(y) \neq J$.

Proof. Each simple component of S is a matrix ring $M_{n}(D)$ over a finite dimensional division k-algebra D. The projection $\pi: S \rightarrow M_{n}(D)$ is a k-algebra homomorphism. For each simple component of S, fix a left regular representation of D over k, and apply it entrywise to define a k-algebra embedding $\rho: M_{n}(D)$ $\rightarrow M_{n s}(k)$. We may apply the composite $\rho \pi$ to each coefficient to define a ring homomorphism:

$$
S[t] \rightarrow M_{n s}(k)[t] \cong M_{n s}(k[t]) .
$$

Let $p^{\rho \pi}(t)$ denote the image of $p(t)$ under this map.
For any x in $k, S p(x) \subseteq J$. Suppose $S p(y) \neq J$ for some y in k. It follows from Remark 2.5 that, for some projection π to a simple component $M_{n}(D)$, the D-dimension of the row space of $\pi(p(y))$ is less than the D-dimension m of row $\left(\pi(J)\right.$). Thus the k-dimension of the row space of $\rho \pi(p(y))=p^{\rho \pi}(y)$ is less than $m s$, so that every $m s$-by-ms submatrix of $p^{\rho \pi}(y)$ has determinant zero. These determinants are polynomials over k evaluated at y, and are not all identically zero since $S p(x)=J$ for some x; so they vanish for at most finitely many y in k. Since there are only finitely many simple components of S, the lemma follows.

3. Absolute stable rank and dimension

Suppose R is a commutative ring. In this section we relate the absolute stable rank of a module-finite R-algebra A to the dimension of R. For strongest results, we work with the dimension of $\operatorname{mspec}(R)$, the subspace of the prime spectrum of R consisting of the maximal ideals. (For its properties, we refer the reader to $\mathrm{pp} .92-102$ of [5].)

Theorem 3.1. If the maximal spectrum of a commutative ring R is noetherian of finite dimension d, then any module-finite R-algebra A has absolute stable rank at most $d+1$.

If the word "absolute" is deleted, this is a theorem proved by H. Bass in the early development of algebraic K-theory (see [4]). If "absolute" is put back in, but $A=R$, this theorem was proved by D. Estes and J. Ohm in 1967 (see Theorem 2.3 of [9] and M. Stein's elaboration in Theorem 1.4 of [10]).

Before embarking on the proof of this theorem, we marshall some well known facts about a commutative ring R and a module-finite R-algebra A. For simplicity we state and prove these facts for the case in which R is a central subring of A. The proofs carry over easily to the case in which the map $R \rightarrow A(r \rightarrow r \cdot 1)$ has nonzero kernel.

Lemma 3.2. If M is a maximal left ideal of A and S is a multiplicative subset of R which does not meet M, then $S^{-1} M$ is a maximal left ideal of $S^{-1} A$ whose contraction to A is M.

Proof. Since M does not meet $S, S^{-1} M$ is a proper left ideal of $S^{-1} A$; thus $S^{-1} M \cap A$ is a proper left ideal of A containing, hence equal to M. A larger left ideal of $S^{-1} A$ would contract to a larger left ideal of A.

Lemma 3.3. For any ideal I of R, the canonical map $A \rightarrow A / I A$ induces a bijection between the maximal left ideals of A containing I and the maximal left ideals of $A / I A$.
Proof. Elementary.
Lemma 3.4. $\operatorname{Rad}(A)$ contains $\operatorname{rad}(R)$.
Proof. Suppose $r \in \operatorname{rad}(R)$. For each a in A, the finitely generated R-modules $A / A(1+r a)$ and $A /(1+r a) A$ vanish by Nakayama's Lemma; so $1+r a$ is invertible.

Lemma 3.5. If M is a maximal left ideal of A, then $M \cap R$ is a maximal ideal of R.

Proof. Otherwise we may choose $r \notin M$ from a maximal ideal of R containing $M \cap R$. The multiplicative set $S=1+R r$ does not meet M. By Lemmas 3.4 and 3.2,

$$
S^{-1} R r \subseteq \operatorname{rad}\left(S^{-1} R\right) \subseteq \operatorname{rad}\left(S^{-1} A\right) \subseteq S^{-1} M
$$

By Lemma 3.2, $r \in M$, a contradiction.
Now we standardize some notation. Suppose p is a prime ideal of the commutative ring R. Then R_{p} denotes the location $(R-p)^{-1} R, k(p)$ denotes the residue field of R_{p}, A_{p} denotes $A \otimes_{R} R_{p}$, and $A(p)$ denotes $A \otimes_{R} k(p)$. Note that the localization $R \rightarrow R_{p}$ induces an embedding $\alpha: R / p \rightarrow k(p)$ of the domain R / p into its field of fractions $k(p)$. There is a commutative diagram:

where the maps are the standard ones. Note that δ is surjective with kernel $p A$; so we will identify $A \otimes_{R}(R / p)$ with $A / p A$. Also $\gamma: A / p A \rightarrow A(p)$ is a localization at ($R / p-\{0\}$); so its kernel is the set of elements with $R-p$ torsion. Although some of these maps need not be injective, we shall simplify notation by referring to elements of $R / p, k(p)$ or A as if they are in $A(p)$, via these maps.

To prove Theorem 3.1, we resort to an induction on d, and for this purpose it is natural to prove a more technical generalization. If Y is a subset of $m \operatorname{spec}(R)$ and A is a module-finite R-algebra, we say that a sequence a_{0}, \ldots, a_{n} in A can be Y-shortened if there are coefficients t_{0}, \ldots, t_{n-1} in A for which a_{n} belongs to every maximal left ideal of A that contains both

$$
\left\{a_{0}+t_{0} a_{n}, \ldots, a_{n-1}+t_{n-1} a_{n}\right\}
$$

and some member of Y. A certain flexibility is obtained from the following:
Lemma 3.6. If, for some b in A and $i \neq d<n$, the sequence:

$$
a_{0}, \ldots, a_{d-1}, \quad a_{d}+b a_{i}, \quad a_{d+1}, \ldots, a_{n}
$$

can be Y-shortened with coefficients t_{0}, \ldots, t_{n-1}, then the sequence a_{0}, \ldots, a_{n} can be Y-shortened with coefficients:

$$
t_{0}, \ldots, t_{d-1}, \quad t_{d}^{\prime}, \quad t_{d+1}, \ldots, t_{n-1} .
$$

Proof. If $i=n$, use $t_{d}^{\prime}=b+t_{d}$. If $i \neq n$, use $t_{d}^{\prime}=t_{d}-b t_{i}$.
By Lemma 3.5, $\operatorname{asr}(A) \leqq d+1$ means that every sequence of more than $d+1$ elements of A can be mspec (R)-shortened. So Theorem 3.1 is a corollary to the following:

Theorem 3.7. Suppose R is a commutative ring, A is a module-finite R-algebra, and X_{1}, \ldots, X_{m} are finitely many noetherian subspaces of $\operatorname{mspec}(R)$, each of dimension at most d. Then every sequence a_{0}, \ldots, a_{n} in A with $n>d$ can be $X_{1} \cup \ldots \cup X_{m}$-shortened with coefficients t_{0}, \ldots, t_{n-1} with $t_{i}=0$ for all $i>d$.
Proof. Since each X_{i} is the union of finitely many irreducible components, we can rewrite $X_{1} \cup \ldots \cup X_{m}$ as $Y_{1} \cup \ldots \cup Y_{r}$ where each Y_{i} is an irreducible noetherian subspace of $\operatorname{mspec}(R)$ of dimension at most d. Then the intersection of the elements of Y_{i} is a prime ideal p_{i} of R.
Step 1. (Putting a_{d} in general position.)
We begin with an arbitrary sequence a_{0}, \ldots, a_{n} in A with $n>d$. Taking advantage of Lemma 3.6, we now describe how to modify a_{d} by a finite sequence of addition operations until it generates the same left ideal as a_{0}, \ldots, a_{n} in each ring $A\left(p_{i}\right) / \operatorname{rad} A\left(p_{i}\right)$.

Suppose p is a prime ideal of R. Since $A(p)$ is a finite dimensional $k(p)$-algebra, $A(p) / \operatorname{rad} A(p)$ is a semisimple artinian ring. Let J denote the left ideal of $A(p) /$ $\operatorname{rad} A(p)$ generated by a_{0}, \ldots, a_{n}. We say an element of J is in general position if it generates J as a principal left ideal. By Remark 2.5 , there are coefficients c_{0}, \ldots, c_{n} in $A(p)$, with $c_{d}=0$, for which $g(1)$ is in general position, where

$$
g(x)=a_{d}+\sum_{i=1}^{n} x c_{i} a_{i} .
$$

By Lemma 2.6, $g(x)$ is in general position for all but finitely many x in $k(p)$. So for each nonzero z in R / p, there is a nonzero x in R / p for which $g(z x)$ is in general position. (If R / p is finite, it is a field, and $g(c \cdot(1 / c))=g(1)$ is in general position.)

Since $A(p)$ is obtained from $A / p A$ by inverting the nonzero elements of R / p, we can choose a nonzero z in R / p for which each $z c_{i}$ comes from $A / p A$, and hence from A. For each i, choose a lifting \tilde{c}_{i} in A of $z c_{i}$, choosing $\tilde{c}_{d}=0$. Define

$$
h(x)=a_{d}+\sum_{i=1}^{n} x \tilde{c}_{i} a_{i} .
$$

Then for each x in $R-p, h(x)$ belongs to A; and there is some y in $R-p$ for which $h(x y)$ maps to $g(c x y)$ in general position.

Renumber the primes p_{i}, if necessary, so that $p_{i} \neq p_{j}$ if $i<j$. (First number the primes maximal among the p_{i} 's then delete them and number those which become maximal among the remaining p_{i} 's, etc.) Assume a_{d} is already in general position at p_{i} for every $i<j$. For each $i<j$, choose x_{i} in $p_{i}-p_{j}$. Then the product $x_{1} \ldots x_{j-1}$ belongs to $R-p_{j}$. Choose y in $R-p_{j}$ for which

$$
a_{d}^{\prime}=h\left(x_{1} \ldots x_{j-1} y\right)
$$

has general position in $A\left(p_{j}\right) /$ rad $A\left(p_{j}\right)$. Notice that a_{d} and a_{d}^{\prime} are equal in each $A\left(p_{i}\right)$ for $i<j$; so a_{d}^{\prime} is in general position at p_{i} for every $i \leqq j$. Continue in this way, to reach a_{d}^{\prime} in general position at every p_{i}, where $a_{d}^{\prime}-a_{d}$ is a left A-linear combination of $a_{1}, \ldots, a_{d-1}, a_{d+1}, \ldots, a_{n}$.
Step 2. We now show that there is a subset Y of $Y_{1} \cup \ldots \cup Y_{r}$ with each $Y_{i}-Y$ having dimension at most $d-1$, for which $a_{0}, \ldots, a_{d-1}, a_{d}^{\prime}, a_{d+1}, \ldots, a_{n}$ is Y shortened by any coefficients t_{o}, \ldots, t_{n-1} in A with $\mathrm{t}_{d}=0$.

Suppose a_{d}^{\prime} is in general position at a prime ideal p of R. Then in $A(p) /$ $\operatorname{rad} A(p), a_{d}^{\prime}$ generates a left ideal containing a_{n}; so for some element a of $A(p)$, $a_{n}-a a_{d}^{\prime}$ belongs to $\operatorname{rad} A(p)$. Since $A(p)$ is artinian, its radical is nilpotent; so for some positive integer N,

$$
\left[A(p)\left(a_{n}-a a_{d}^{\prime}\right)\right]^{N}=0 .
$$

For some element u of $R-p, u a$ lifts to an element b of $A / p A$. Then

$$
\left[(A / p A)\left(u a_{n}-b a_{d}^{\prime}\right)\right]^{N}
$$

is a finitely generated left R / p-module in the kernel of the localization $A / p A$ $\rightarrow A(p)$. So for some v in $R-p$,

$$
\left[(A / p A)\left(v u a_{n}-v b a_{d}^{\prime}\right)\right]^{N}=0 .
$$

For each $p_{i}\left(=\right.$ intersection of the primes in $\left.Y_{i}\right)$, let r_{i} denote the product $v u$ associated with $p=p_{i}$ above. Let Y denote the set of primes m in $X_{1} \cup \ldots \cup X_{m}=Y_{1} \cup \ldots \cup Y_{r}$ which satisfy $r_{i} \notin \mathfrak{m} \in Y_{i}$ for some i.

We claim that a_{n} belongs to every maximal left ideal M of A which contains both $\left\{a_{d}^{\prime}\right\}$ and a prime \mathfrak{m} from Y. To see this, suppose $r_{i} \notin \mathfrak{n t \in Y _ { i }}$ and let S be the multiplicative set generated by r_{i}. Notice that M contains p_{i} but does not meet S (since $M \cap R=\mathrm{m}$ is prime). By Lemmas 3.2 and $3.3, M$ is the contraction to A of a maximal left ideal N of $S^{-1} A / p_{i} A$. Since the element $a_{n}-r_{i}^{-1} v b a_{d}^{\prime}$ generates a nilpotent left ideal of $S^{-1} A / p_{i} A$, it belongs to the Jacobson radical of this ring, and bence to N. Since $a_{d}^{\prime} \in M$, which is contracted from $N, a_{n} \in M$ as well, proving the claim.

For each $i, r_{i} \notin p_{i}$; so there are primes from Y_{i} which do not contain it. So the primes from Y_{i} which do not contain r_{i} form a proper closed subset of the irreducible component Y_{i}, containing $Y_{i}-Y$. Thus $Y_{i}-Y$ is cither empty or noetherian of dimension at most $d-1$. And

$$
\left(Y_{1} \cup \ldots \cup Y_{r}\right)-Y=\left(Y_{1}-Y\right) \cup \ldots \cup\left(Y_{r}-Y\right) .
$$

Step 3. (The induction.) If every $Y_{i}-Y$ is empty (as happens when $d=0$), the sequence

$$
a_{0}, \ldots, a_{d-1}, a_{d}^{\prime}, a_{d+1}, \ldots, a_{n}
$$

is $X_{1} \cup \ldots \cup X_{m}(=Y)$-shortened with coefficients that are all zero. So by Lemma $3.6, a_{0}, \ldots, a_{n}$ can be $X_{1} \cup \ldots \cup X_{m}$-shortened with coefficients $0, \ldots, 0, t_{d}$, $0, \ldots, 0$ as required.

If $d>1$, we assume the theorem holds when d is decreased by 1 . Then

$$
a_{0}, \ldots, a_{d-1}, a_{d+1}, \ldots, a_{n}
$$

can be $\left(Y_{1}-Y\right) \cup \ldots \cup\left(Y_{r}-Y\right)$-shortened by some coefficients t_{0}, \ldots, t_{d-1}, $0, \ldots, 0$. By Step 2 above,

$$
a_{0}, \ldots, a_{d-1}, a_{d}^{\prime}, a_{d+1}, \ldots, a_{n}
$$

is $X_{1} \cup \ldots \cup X_{m}$-shortened by the coefficients

$$
t_{0}, \ldots, t_{d-1}, t_{d}(=0), 0, \ldots, 0
$$

So by Lemma 3.6, a_{0}, \ldots, a_{n} can be shortened by coefficients

$$
t_{0}, \ldots, t_{d-1}, t_{d}^{\prime}, 0, \ldots, 0
$$

as required.

4. Quadratic forms

To include the various quadratic forms arising in L-theory, we combine the definitions of A. Bak [1, 2, 3] with those of J. Tits [11] and C.T.C. Wall [14, 15] for maximum generality. Let A denote an associative ring with unit. Let α denote an antiautomorphism of the ring A; for notational convenience we shall write a^{*} to mean $\alpha(a)$ for a in A. Assume there is a unit ε of A, with $\varepsilon^{*}=\varepsilon^{-1}$, so that $a^{* *}=\varepsilon a \varepsilon^{-1}$ for every a in A. (Of course, if ε is central, then α is simply an involution on A.)

Each right A-module V becomes a left A-module via α. In particular, the dual $V^{*}=\operatorname{Hom}_{A}(V, A)$ has a right A-module structure defined, for each f in V^{*} and a in A, by

$$
(f a)(v)=a^{*} f(v)
$$

for all v in V.
An α-sesquilinear form (subsequently just called a form or scalar product) on a right A-module V is a biadditive map $Q: V \times V \rightarrow A$ satisfying

$$
Q(u a, v b)=a^{*} Q(u, v) b
$$

for all u, v in V and a, b in A. The set $\operatorname{Sesq}_{\alpha}(V)$ of forms on V is an additive abelian group. The formula:

$$
[f(u)](v)=Q(u, v)
$$

defines a group isomorphism $f \leftrightarrow Q$ between $\operatorname{Hom}_{A}\left(V, V^{*}\right)$ and $\operatorname{Sesq}_{\alpha}(V)$. A form Q is called non-singular if the corresponding homomorphism $f: V \rightarrow V^{*}$ is an isomorphism.

A form Q on V is called ε-hermitian if

$$
Q(u, v)=Q(v, u)^{*} \varepsilon
$$

for all u, v in V, and is called even ε-hermitian if

$$
Q(u, v)=F(u, v)+F(v, u)^{*} \varepsilon
$$

for some F in $\operatorname{Sesq}_{\alpha}(V)$ and all u, v in V.
To clarify these definitions, Wall defined a transposition operator

$$
T_{\varepsilon}: \operatorname{Sesq}_{\alpha}(V) \rightarrow \operatorname{Sesq}_{\alpha}(V)
$$

by $T_{\varepsilon} Q(u, v)=Q(v, u)^{*} \varepsilon$. This T_{ε} is a group homomorphism, $T_{\varepsilon}^{2}=1$, and $T_{-\varepsilon}=$ $-T_{\varepsilon}$. The ε-hermitian forms make up the kernel of $1-T_{\varepsilon}$, and the even ε hermitian forms constitute the image of $1+T_{\varepsilon}$. According to Wall's definition, a quadratic form on V is any element of the cokernel of $1-T_{\varepsilon}$ (see [15, p. 120].)

For greater generality, following A. Bak (in [2, 3]), we fix an additive subgroup A of A with the two properties:
i) $a^{*} A a \subseteq A$ for all a in A,
ii) $A_{\varepsilon} \subseteq A \subseteq A^{\varepsilon}$,
where

$$
\begin{aligned}
& A_{\varepsilon}=\left\{a-a^{*} \varepsilon: a \in A\right\} \\
& A^{\varepsilon}=\left\{a \in A: a=-a^{*} \varepsilon\right\}
\end{aligned}
$$

For any right A-module V, we define $X(V, \alpha, \varepsilon, A)$ to be the additive group of all ($-\varepsilon$)-hermitian forms F on V for which $F(v, v) \in \Lambda$ for each v in V.

A quadratic (or more precisely an ($\alpha, \varepsilon, \Lambda$)-quadratic) form on V is any element of the quotient group:

$$
\operatorname{Sesq}_{\alpha}(V) / X(V, \alpha, \varepsilon, A)
$$

If V is a finitely generated projective right A-module, then $X\left(V, \alpha, \varepsilon, A_{\varepsilon}\right)$ coincides with the image of $1-T_{\varepsilon}$, as shown by the proof of Theorem 1.3 in [3]. So our quadratic forms include those of Wall. (The various L-groups are constructed from finitely generated projective modules with nonsingular forms.)

For any quadratic form

$$
q=Q+X(V, \alpha, \varepsilon, A)
$$

on V, we define an associated length

$$
\left\|\|_{q}: V \rightarrow A / \Lambda \quad \text { by } \quad \mid v\right\|_{q}=Q(v, v)+\Lambda
$$

and an associated scalar product or linearization

$$
(,)_{q}: V \times V \rightarrow A \quad \text { by } \quad(u, v)_{q}=Q(u, v)+Q(v, u)^{*} \varepsilon .
$$

Neither of these depends on a choice of coset representative Q. In fact, a form is taken to its linearization by $1+T_{\varepsilon}=1-T_{-\varepsilon}$ which has kernel the $(-\varepsilon)$-hermitian forms, and image the even ε-hermitian forms on V. Clearly q is uniquely determined by its length map and linearization. If the even ε-hermitian form $(,)_{q}$ is non-singular, we call q non-singular.

The lengths and scalar products of elements u, v of V are related by the following useful identities:

$$
\begin{aligned}
|u+v|_{q} & =|u|_{q}+|v|_{q}+(u, v)_{q} \\
(v, v)_{q} & =x+x^{*} \varepsilon \\
|v a|_{q} & =a^{*} x a+\Lambda
\end{aligned}
$$

for any x in $|v|_{q}$ and a in A.
When $\Lambda=A^{z}$, the quadratic form q is uniquely determined by its linearization $(,)_{q}$, which can be any even ε-hermitian form on V. When A does not contain any nonzero ideals of A, then q is uniquely determined by its length map $\left\|\|_{q}\right.$. (To see the latter, note that the additive subgroup of A generated by the values of $(,)_{q}$ is an ideal of A, contained in A if the length map is zero.)

Now $A=0$ if and only if $\varepsilon=1, \alpha$ is the identity, and A is commutative. This is the case in which $\|_{q}: V \rightarrow A$ is a classical quadratic form on V.

Another classical case is $A=A$. Then $\varepsilon=-1, \alpha$ is the identity, and A is commutative. In this case there is a bijection between the quadratic forms q on V and their linearizations, which are the alternating forms on V.
Remark. The definition of quadratic form used by A. Bak in [1, 2 and 3], H. Bass in [6] and L.N. Vaserstein in [13] is just a special case of the definition presented here - namely the case where ε is central in A, so that α is an involution. The data $(A, \alpha, \varepsilon, A)$ is called a form ring by Bak in [3] and a unitary ring by Bass in [6]. In [14] and [15], C.T.C. Wall removes the hypothesis that ε is central, does not use Λ, and calls the data (A, α, ε) an antistructure.

5. Quadratic spaces and morphisms

If q is a quadratic form on the right A-module V, the pair (V, q) is called a quadratic space. If (V^{\prime}, q^{\prime}) is another quadratic space over the same A, α, ε and Λ, then an A-linear map $f: V \rightarrow V^{\prime}$ is called a $\operatorname{morphism}(V, q) \rightarrow\left(V^{\prime}, q^{\prime}\right)$ of quadratic spaces if

$$
|f(v)|_{q^{\prime}}=|v|_{q} \quad \text { and } \quad(f(v), f(w))_{q^{\prime}}=(v, w)_{q}
$$

for all v, w in V. With these morphisms, the $(A, \alpha, \varepsilon, A)$-quadratic forms become a category. A morphism f in this category is an isomorphism (i.e. invertible) if and only if it is bijective.

If $Q \in q$ and $Q^{\prime} \in q^{\prime}$ the form $Q \oplus Q^{\prime}$ determines a quadratic form $q \oplus q^{\prime}$ on $V \oplus V^{\prime}$ which is independent of the choice of Q and Q^{\prime}. Thus we can define the orthogonal sum:

$$
(V, q) \perp\left(V^{\prime}, q\right)=\left(V \oplus V^{\prime}, q \oplus q^{\prime}\right)
$$

as a binary operation on $(A, \alpha, \varepsilon, A)$-quadratic forms.

If a morphism $\left(V^{\prime}, q^{\prime}\right) \rightarrow(V, q)$ is an inclusion of modules $V^{\prime} \subseteq V$, we call (V^{\prime}, q^{\prime}) a quadratic subspace of (V, q). In this case, if q^{\prime} is non-singular, then (V^{\prime}, q^{\prime}) is an orthogonal summand of (V, q) :

$$
(V, q) \cong\left(V^{\prime}, q^{\prime}\right) \perp\left(V^{\prime \prime}, q^{\prime \prime}\right)
$$

where $V^{\prime \prime}$ is the orthogonal complement of V^{\prime} under $(,)_{q}$, and $q^{\prime \prime}$ is the coset of forms on $V^{\prime \prime}$ restricting those of q to $V^{\prime \prime}$.

6. Hyperbolic forms and Witt index

For any right A-module V, the hyperbolic space $H(V)$ is the quadratic space ($V \oplus V^{*}, q$), where q is represented by the form Q defined by

$$
Q\left(\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right)=u^{\prime}(v)
$$

for all u, v in V and u^{\prime}, v^{\prime} in V^{*}. Recall that V^{*} is a right A-module via α. If we make $V^{* *}$ into a right A-module via the anti-isomorphism α^{-1}, then the map $\beta: V \rightarrow V^{* *}$, defined by

$$
\beta(v)\left(v^{\prime}\right)=\alpha^{-1}\left(v^{\prime}(v)\right)
$$

for all v^{\prime} in V^{*}, is A-linear. It is routine to show that the hyperbolic form q (above) is non-singular if and only if β is an isomorphism. The latter condition does not involve Λ, and (according to Wall [14, p. 247]) it is independent of α, and is true when V is a finitely generated projective A-module.

Any quadratic space (V, q) can be embedded into the hyperbolic space $H(V)$ as follows: Pick Q in q, and send V to $V \oplus V^{*}$ by

$$
v \rightarrow(v, Q(v,-)) .
$$

Of course, each choice of Q gives rise to a different embedding. If q is nonsingular, each such embedding can be extended to an isomorphism:

$$
(V, q) \perp(V,-q) \cong H(V)
$$

of quadratic spaces.
On the other hand, a quadratic space is measured by means of hyperbolic subspaces. The Witt index, ind (q), of (V, q) is the lagest $r \geqq 0$ for which (V, q) contains a quadratic subspace isomorphic to $H\left(A^{\prime}\right)$. Since $H\left(A^{r}\right)$ is non-singular, it is then an orthogonal summand of (V, q).

If v_{1}, \ldots, v_{r} is a basis of A^{r}, and $v_{1}^{\prime}, \ldots, v_{r}^{\prime}$ is the dual basis of $\left(A^{r}\right)^{*}$, and if q is the quadratic form in $H\left(A^{\prime}\right)$, the for each i, j with $i \neq j$,

$$
\left|v_{i}\right|_{q}=\left|v_{i}^{\prime}\right|_{q}=0, \quad\left(v_{i}^{\prime}, v_{i}\right)_{q}=1
$$

and

$$
\left(v_{i}, v_{j}\right)_{q}=\left(v_{i}^{\prime}, v_{j}^{\prime}\right)_{q}=\left(v_{i}^{\prime}, v_{j}\right)_{q}=0
$$

For an internal description of the Witt index in an arbitrary quadratic space (V, q), we therefore define a hyperbolic pair in (V, q) to be any (ordered) pair e, f in V satisfying the conditions:

$$
|e|_{q}=|f|_{q}=0 \quad \text { and } \quad(e, f)_{q}=1
$$

A vector v in V is called q-unimodular if there is a vector w in V for which $(v, w)_{q}=1$. In a hyperbolic pair e, f both e and f are q-unimodular, and every q-unimodular vector e with $|e|_{q}=0$ can be included in a hyperbolic pair.

The A-linear span of a hyperbolic pair e, f is a subspace of (V, q) isomorphic to the hyperbolic plane $H(A)$ by $f \rightarrow 1 \in A, e \rightarrow$ identity map $\in A^{*}$. More generally, the span of mutually orthogonal hyperbolic pairs $e_{1}, f_{1}, \ldots, e_{r}, f_{r}$ is isomorphic to

$$
H\left(A^{r}\right) \cong H(A) \perp \ldots \perp H(A) \quad(r \text { copies })
$$

So ind $(q) \geqq r$ if and only if V contains r mutually orthogonal hyperbolic pairs.

7. The orthogonal group and transvections

Take $A, \alpha, \varepsilon, A, V$ and q to have the same meaning as above. The group of automorphisms of the quadratic space (V, q) is called the orthogonal group, $\mathcal{O}(q)$. They are the A-linear automorphisms of V which preserve lengths $\|_{q}$ and scalar products $(,)_{q}$.

Suppose e and u are elements of V with $|e|_{q}=0$ and $(e, u)_{q}=0$. Choose x in $|u|_{q}$. The map $\tau(e, u, x): V \rightarrow V$ defined by

$$
\tau(e, u, x)(v)=v+u(e, v)_{q}-e \varepsilon^{*}(u, v)_{q}-e \varepsilon^{*} x(e, v)_{q}
$$

belongs to $\mathcal{O}(q)$. If e is q-unimodular, then $\tau(e, u, x)$ is called an orthogonal transvection.

8. Application of absolute stable rank

Theorem 8.1. Suppose (V, q) is a quadratic space over A. Assume that either ind $(q) \geqq \operatorname{asr}(A)+2$, or that α is the identity map (so A is commutative) and $\operatorname{ind}(q) \geqq \operatorname{asr}(A)+1$. Then $\mathcal{O}(q)$ acts transitively on the set of all q-unimodular vectors v in V with a given length $|v|_{q}$.

Proof. Suppose $e_{1}, f_{1}, \ldots, e_{n}, f_{n}$ are n mutually orthogonal hyperbolic pairs in (V, q), where $n \geqq \operatorname{asr}(A)+1$, and, if α is not trivial, $n \geqq \operatorname{asr}(A)+2$. Suppose

$$
v=\sum_{i=1}^{n} e_{i} a_{i}+\sum_{i=1}^{n} f_{i} b_{i}+u
$$

$\left(a_{i}, b_{i} \in A, u \in V\right)$ is a q-unimodular vector with length $|v|_{q}=x+\Lambda(x \in A)$, where u is orthogonal to all e_{i}, f_{i}. Note that the coefficients a_{i}, b_{i} (and hence the
vector u) are uniquely determined by v, since

$$
a_{i}^{*}=\left(v, f_{i}\right)_{q} \quad \text { and } \quad b_{i}=\left(e_{i}, v\right)_{q} .
$$

We will perform a sequence of orthogonal transvections $\tau\left(e_{i}, ?, ?\right)$ and $\tau\left(f_{i}\right.$, ?, ?) on v to transform v to the standard vector $e_{1}+f_{1} x$ of the same length.

Step1. Since v is q-unimodular, there is a vector w orthogonal to all e_{i}, f_{i} for which

$$
\sum_{i=1}^{n}\left(A a_{i}+A b_{i}\right)+A(w, u)_{q}=A
$$

Since $\operatorname{sr}(A) \leqq n$, we can make

$$
\sum_{i=1}^{n}\left(A a_{i}+A b_{i}\right)=A
$$

if we replace v by

$$
\prod_{i=1}^{n} \tau\left(e_{i}, w c_{i}, c_{i}^{*} y c_{i}\right)(v)
$$

with appropriate c_{i} in A, where $y \in|w|_{q}$.
Step 2. Assume $\sum_{i=1}^{n}\left(A a_{i}+A b_{i}\right)=A$. Since $\operatorname{sr}(A) \leqq n-1$, we can make,

$$
A b_{n}+\sum_{i=1}^{n-1}\left(A a_{i}+A b_{i}\right)=A
$$

if we replace v by

$$
\tau\left(f_{n}, \sum_{i=1}^{n-1} e_{i} c_{i}, 0\right)(v)
$$

with appropriate c_{i} in A.
Step 3. Assume $A b_{n}+\sum_{i=1}^{n-1}\left(A a_{i}+A b_{i}\right)=A$. Replacing v by

$$
\tau\left(e_{n}, \sum_{i=1}^{n-1}\left(e_{i} c_{i}+f_{i} d_{i}\right), 0\right)(v)
$$

for appropriate c_{i}, d_{i} in A, we can make $a_{n}=1+z b_{n}$ for some z in A,
So far we have only used $\operatorname{sr}(A) \leqq n-1$, which follows from $\operatorname{sr}(A) \leqq \operatorname{asr}(A)$. At this point we bring to bear the absolute stable range condition, in an altered but equivalent form:

Lemma 8.2. For any ring R and positive integer n, $\operatorname{asr}(R) \leqq n$ if and only if for each list $r_{0}, r_{1}, \ldots, r_{n}$ of elements from R, there exist $t_{0}, t_{1}, \ldots, t_{n-1}$ in R so that

$$
R\left(1+h r_{n}\right)+\sum_{i=0}^{n-1} R\left(r_{i}+t_{i} r_{n}\right)=R
$$

for every h in R.
Proof. If asr $(R) \leqq n$, use the same coefficients t_{0}, \ldots, t_{n-1} which shorten r_{0}, \ldots, r_{n}.
For the converse, if r_{n} is not in a maximal left ideal M containing the $r_{i}+t_{i} r_{n}$ $(0 \leqq i \leqq n-1)$, then $-1=m+h r_{n}$ for some m in M and h in A. So $1+h r_{n}$ belongs to M, a contradiction.

Step 4. Assume that $a_{n}=1+z b_{n}$ for some z in A, and suppose α is the identity map $\left(a^{*}=a\right.$ for all $a \in A$). Since $\operatorname{asr}(A) \leqq n-1$, we can apply Lemma 8.2 to the list $a_{1}, \ldots, a_{n-1}, b_{n}^{2}$; so there are c_{1} in A with

$$
A\left(1+h b_{n}^{2}\right)+\sum_{i=1}^{n-1} A\left(a_{i}+c_{i} b_{n}^{2}\right)=A
$$

for all h in A.
Since α is trivial, A is a commutative ring. Let B denote the ideal

$$
\sum_{i=1}^{n-1} A\left(a_{i}+c_{i} b_{n}^{2}\right) .
$$

Then $b_{n}^{2} \in \operatorname{rad}(A / B)$; so also $b_{n} \in \operatorname{rad}(A / B)$, and

$$
A\left(1+h b_{n}\right)+\sum_{i=1}^{n-1} A\left(a_{i}+c_{i} b_{n}^{2}\right)=A
$$

for all h in A. So, if we replace v by

$$
\tau\left(e_{n}, \sum_{i=1}^{n-1} e_{i} c_{i} b_{n}, 0\right)(v)
$$

we then have $A a_{1}+\ldots+A a_{n}=A$.
Now consider the general case with $\operatorname{asr}(A) \leqq n-2$. Again assume that $a_{n}=$ $1+z b_{n}$ for some z in A. Apply Lemma 8.2 to the list $b_{1}, a_{2}, \ldots, a_{n-1}$ to find c_{i} in A with

$$
A\left(1+h b_{1}\right)+\sum_{i=2}^{n-1} A\left(a_{i}+c_{i} b_{1}\right)=A
$$

for all h in A. Replacing v by

$$
\tau\left(e_{i}, \sum_{i=2}^{n-1} e_{i} c_{i}, 0\right)(v)
$$

we then have

$$
A\left(1+h b_{1}\right)+\sum_{i=2}^{n-1} A a_{i}=A
$$

Since $a_{n}=1+z b_{n}$, it follows that $A a_{n}+A b_{n}=A$. So we can choose c_{n}, d_{n} in A and replace v by

$$
\tau\left(e_{1}, e_{n} c_{n}+f_{n} d_{n}, x\right)(v)
$$

(where $x \in\left|e_{n} c_{n}+f_{n} d_{n}\right|$), to make

$$
A a_{1}+\ldots+A a_{n-1}=A
$$

So again,

$$
A a_{1}+\ldots+A a_{n}=A
$$

Step 5. Assume that $A a_{1}+\ldots+A a_{n}=A$. By replacing v with

$$
\tau\left(f_{j}, e_{i} c_{i} \varepsilon^{*}, 0\right)(v) \quad\left(i \neq j, c_{i} \in A\right)
$$

we change a_{i} to $a_{i}+c_{i} a_{j}$ without affecting the other coefficients among a_{1}, \ldots, a_{n}. Since $\operatorname{sr}(A) \leqq n-1$, we can perform a sequence of such orthogonal transvections until $a_{1}=1$.

Step 6. Assume $a_{1}=1$. Replacing v by

$$
\tau\left(f_{1},-u \varepsilon^{*}, ?\right) \tau\left(f_{1},-\sum_{i=2}^{n} f_{i} b_{i} \varepsilon^{*}, 0\right) \tau\left(f_{1},-\sum_{i=2}^{n} e_{i} a_{i} \varepsilon^{*}, 0\right)(v)
$$

results in $v=e_{1}+f_{1} b_{1}$. Then

$$
x+A=|v|_{q}=\left|e_{1}+f_{1} b_{1}\right|_{q}=b_{1}+A
$$

And

$$
\tau\left(f_{1}, 0, \varepsilon\left(b_{1}-x\right) \varepsilon^{*}\right)\left(e_{1}+f_{1} b_{1}\right)=e_{1}+f_{1} x
$$

completing the proof of Theorem 8.1.
Corollary 8.3. (Cancellation) Suppose (V, q) is a quadratic space with ind $(q) \geqq$ $\operatorname{asr}(A)$. If the anti-isomorphism α is not the identity map, assume further that $\operatorname{ind}(q) \geqq \operatorname{asr}(A)+1$. Suppose $\left(V^{\prime}, q^{\prime}\right)$ and $\left(V^{\prime \prime}, q^{\prime \prime}\right)$ are quadratic spaces, $V^{\prime \prime}$ is a finitely generated projective A-module, $q^{\prime \prime}$ is non-singular, and

$$
\left(V^{\prime}, q^{\prime}\right) \perp\left(V^{\prime \prime}, q^{\prime \prime}\right) \cong(V, q) \perp\left(V^{\prime \prime}, q^{\prime \prime}\right)
$$

Then $\left(V^{\prime}, q^{\prime}\right) \cong(V, q)$.

Proof. Since ($V^{\prime \prime}, q^{\prime \prime}$) is isomorphic to an orthogonal summand of

$$
H\left(A^{n}\right) \cong H(A) \perp \ldots \perp H(A) \quad(n \text { copies })
$$

for some positive integer n, it suffices to prove the cancellation in the case $\left(V^{\prime \prime}, q^{\prime \prime}\right)=H(A)$.

Choose mutually orthogonal hyperbolic pairs $e_{2}, f_{2}, \ldots, e_{r}, f_{r}(r=\operatorname{ind}(q)+1)$ in (V, q) and let e_{1}, f_{1} denote the standard hyperbolic pair in $H(A)$. Identify these pairs with their images in $(V, q) \perp H(A)$. By Theorem 8.1, applied to q unimodular elements of length zero, we can compose the given isomorphism

$$
\left(V^{\prime}, q^{\prime}\right) \perp H(A) \cong(V, q) \perp H(A)
$$

with a sequence of orthogonal transvections on $(V, q) \perp H(A)$, so that the composite takes f_{1} to itself, and hence takes e_{1} to some

$$
w=\sum_{i=1}^{n} e_{i} a_{i}+\sum_{i=1}^{n} f_{i} b_{i}+u
$$

$\left(a_{i}, b_{i}\right.$ in A, u orthogonal to all $\left.e_{i}, f_{i}\right)$ for which w, f_{1} is a hyperbolic pair. In particular, $a_{1}=1$. Just as in Step 6 of the proof of Theorem 8.1, a sequence of orthogonal transvections $\tau\left(f_{1}\right.$, ?, ?) will take w to e_{1}. Since $\tau\left(f_{1}\right.$, ?, ?) fixes f_{1}, the entire composite of the above isomorphisms takes the orthogonal summand $H(A)$ to itself. Since $H(A)$ is non-singular, this composite restricts to the desired isomorphism $\left(V^{\prime}, q^{\prime}\right) \cong(V, q)$.
Note. The proof of Theorem 8.1 also works under the hypotheses: \boldsymbol{A} is commutative, $\operatorname{ind}(q) \geqq \operatorname{asr}(A)+1$, and for all a in $A, \alpha(a) \in A a$ (or equivalently α leaves ideals invariant). So the conclusion of Corollary 8.3 also works under the hypotheses: A is commutative, ind $(q) \geqq \operatorname{asr}(A)$, and α leaves ideals invariant.

References

[^1]11. Tits, J.: Formes quadratiques, groupes orthogonaux et algebres de Clifford. Invent. Math. 5, 19-41 (1968)
12. Vaserstein, L.N.: Stable rank of rings and dimensions of topological spaces. Funct. Anal. Appl. 5, 102-110 (1971); Funk. Anal. Pril. 5, 17-27 (1971)
13. Vaserstein, L.N.: Stabilization for classical groups over rings. Math. USSR Sb. 22, 271-303(1975); Mat. Sb. 93, 268-295 (1974)
14. Wall, C.T.C.: On the axiomatic foundation of the theory of hermitian forms. Proc. Camb. Philos. Soc. 67, 243-250 (1970)
15. Wall, C.T.C.: On the classification of Hermitian forms II. Semisimple rings. Invent. Math. 18, 119-141 (1972)

[^0]: * Supported by Miami University FRC Summer Research Appointment
 ** Supported by the National Science Foundation and the Guggenheim Foundation

[^1]: 1. Bak, A.: On modules with quadratic forms. In: Algebraic K-Theory and its Geometric Applications (Lect. Notes Math. vol. 108, pp. 55-66) Berlin Heidelberg New York: Springer 1969
 2. Bak, A.: Definitions and problems in surgery and related groups. Gen. Topol. Appl. 7, 215-231 (1977)
 3. Bak, A.: K-Theory of Forms. Ann. Math. Studies 98, 1981
 4. Bass, H.: K-Theory and stable algebra. Publ. Math. I.H.E.S. 22, 5-60 (1964)
 5. Bass, H.: Algebraic K-Theory. New York: W.A. Benjamin, Inc., 1968
 6. Bass, H.: Unitary algebraic K-Theory. In: Algebraic K-Theory III. (Lect. Notes Math. vol. 343, pp. 57-265) Berlin Heidelberg New York: Springer 1973
 7. Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem for $S L_{n}(n \geqq 3)$ and $S p_{2 n}(n \geqq 2)$. Publ. Math. I.H.E.S. 33, 58-137 (1967)
 8. Estes, D.R., Guralnick, R.M.: Module equivalences: Local to global. When primitive polynomials represent units. J. Algebra 77, 138-157 (1982)
 9. Estes, D.R., Ohm, J.: Stable range in commutative rings. J. Algebra 7, 343-362 (1967)
 10. Stein, M.R.: Stability theorems for K_{1}, K_{2} and related functors modeled on Chevalley groups. Jpn. J. Math. 4, 77-108 (1978)
