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O. Introduction 

Stable range condi t ions  on  a ring R were devised by H. Bass in order  to deter- 
mine values of n for which  every matr ix  in GL,(R) can be row reduced (by 
addi t ion operat ions  with coefficients from R) to a matr ix  with the same last 
row and  co lumn as the identi ty mat r ix  1,. In order  to ob ta in  ana logous  results 
for o r thogona l  groups, M.R. Stein defined "abso lu te  stable range"  condi t ions  
on a commuta t ive  ring R. Because he was working with g roup  schemes, Stein 
did not  consider  absolute  stable range condi t ions  for noncommuta t i ve  rings. 
Here we do so, and take up a cor responding  stability quest ion for o r thogona l  
groups, namely  cancel lat ion of quadra t ic  forms. For  this we use a very general 
definition of quadra t ic  form, which specializes to all classical examples. 

Sections 1, 2 and 3 conta in  definitions associated with, and  computa t ions  
of, absolute  s table rank. Definit ions associated with quadra t ic  forms are intro-  
duced in Sections 4, 5, 6 and  7; and  Section 8 is devoted to Wi t t  cancellation. 

1. Definitions and their connections 

Suppose A is an  associative ring wi th  unit. If S is a subset of A, let J(S) denote  
the intersect ion of A a n d  all maximal  left ideals of A which conta ins  S. We 
say a sequence a0 . . . .  , a .  in A can be shortened if there are coefficients to, ..., t ,_ a 
in A for which 

a.~J(ao + to a . . . . . .  a,_ l + t,_ 1 a.). 

Consider  the condi t ion  o n  the ring A: 

Condition L(n): Every sequence ao . . . .  , a,  in A can be shortened.  

Lemma 1.1. L(n) implies L(n + 1). 

Proof Shor ten  a sequence a0, ..., a.  + 1 using coefficients to, . . . ,  t ,_ 1, 0. [ ]  
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The absolute stable rank of A is the least n with L(n) true. A sequence 
a0 . . . .  , a, in A is called unimodular if J(ao . . . . .  a,)=A. The stable rank of A 
is the least n with L(n) true for unimodular  sequences. (It is true that L(n) 
for unimodular  sequences implies L(n+ 1) for unimodular  sequences; but this 
is harder to prove than Lemma 1.1 - see Theorem 1 of [12].) We abbreviate 
the absolute stable rank and stable rank of A by asr(A) and sr(A), respectively. 

L e m m a  1.2. For every ring A, sr(A)< asr(A). 

Proof If L(n) holds for all sequences, it holds for unimodular  sequences. [] 

In many cases, sr(A)= asr(A). To see that they do not always agree, consider 
the following examples. We learned about the first from R.M. Guralnick, and 
the second from H.W. Lenstra, Jr. 

Example I. In [8, 5.1] D.R. Estes and R.M. Guralnick construct Dedekind 
domains A with sr(A)= 1, but with nontorsion class group G. There are elements 
al,  a2 which generate a maximal ideal M of infinite order in G. If asr(A)= 1, 
there is some t in A with 

d(al + ta2) = d(al, a2) = M. 

Since A is Dedekind, A(a~ +ta2) contains a power of its radical, M;  so it equals 
a power of M, in contradiction to the choice of M. 

Example 2. Suppose R is the ring of integers in an algebraic number field with 
nontrivial class group. Let S denote the smallest multiplicative set containing 
the generators of the nonzero principal prime ideals of R. Take A to be S -  1 R. 

Then sr(A)= 1 and asr(A)> 1. 
To see this, suppose a, b~A and Aa+Ab=A.  For  some ~, fl in R and 

s in S, a=ct/s and b=fl/s. Then Rct+Rfl meets S, hence equals a product of 
principal primes, R s'. Then a=ct's', fl=fl's' and s ' = 7 ~ + b f l  for some ~', fl', 
?, 6 in R. Thus l = ? a ' + b f l ' .  By the theorem of Dirichlet on the distribution 
of primes (see [7, p. 83]), c(+Rfi' meets S. So for some t in R, the element 

(c( +tfl') S'=a+tb 
S 

is a unit of A, proving sr(A) = 1. 
On the other hand, A has a nonprincipal prime ideal M. If d is a nonzero 

element of M 2, then A/Ad is a principal ideal ring; so there is some c in M 
with M=Ac+Ad .  Suppose asr(A)= 1. Then for some t in A, 

J(c +td)=J(c,d)=M. 

So A(c + td)= M" for some integer n > 1. In the local ring AM, 

MM= AM(c + td)+ AMd 
=M~-t MM+ AMd. 

So by Nakayama's  Lemma, MM = AMd ~- M 2, which is impossible in the Dede- 
kind ring AM. (In Section 3, we show that a s r (A)<d im(A)+  1; so that, actually, 
asr(A) = 2 in this example.) 
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The presence, in these two examples, of ideals which require at least two 
generators is no coincidence. 

Theorem 1.3. I f  A is a left principal ideal ring, then asr(A)= sr(A). 

Proof Suppose s r (A)=n and ao, ..., a,~A. For some d in A, 

Aao+ ... + A a , = A d .  

Specifically, for some ~i, fli in A, each ai=~id, while 

flo ao + -.- + 13, a. = d. 

Then flo ~o + ... + ft, c~,-1 annihilates d. The left annihilator of d in A is a 
left ideal Ad' (d'~A); so ~o . . . . .  ~,, d' is unimodular. Since sr(A)=n,  there are 
elements ~'i in ~i + A d' for which ~ ,  ..., c(, is unimodular. Again, sr(A)= n implies 
there are elements ci, ti in A with 

to (C(o + Co a',) + . . .  + t,_ 1 (a',_ 1 -~- Cn - 10~'n) : l .  

Multiplying on the right by d, we discover that every left ideal of A which 
contains 

{ao +Co a . . . . . .  a , - i  +c ._1  a,} 

also includes d, and hence a.. So asr(A)<n=sr(A).  (The reverse inequality is 
Lemma 1.2.) [] 

2. Semiiocal rings 

We denote the Jacobson radical of a ring A by rad(A). This radical is especially 
pertinent to absolute stable rank because rad(A) is the intersection of all maximal 
left ideals of A. Following Bass (in [5]), we call a ring A semilocal if A/rad(A) 
is a left artinian ring. Then by Wedderburn's  Theorems, A/rad(A) is a direct 
product of finitely many matrix rings over division rings. 

Lemma 2.1. I f  A is a ring and I is a (two-sided) ideal of  A, then asr(A/l)<=asr(A); 
equality holds if  I ~_ rad(A). 

Proof If as r (A)=n any sequence ao . . . . .  a, in A can be shortened with some 
coefficients to, ..., t,_ 1 in A. Suppose f :  A ~ A/I  is the canonical homomor-  
phism. If M is a maximal left ideal of Aft,  then f - l ( M )  is a maximal left 
ideal of A, and f) r - l ( M )  = M. So f(ao) . . . . . .  f(a,)  is shortened by the coefficients 
f(to) . . . . .  f ( t , _  1), proving asr(A/I)N n. 

If asr(A/I)=m and ao . . . . .  am6A, there are to, ..., tin_ 1 in A for which 
f(ao) . . . . .  f(a,,) is shortened by the coefficients f( to) . . . . .  f ( t m - O  in A/I. But if 
I _  tad(A), then for every maximal left ideal N of A, f ( N )  is a maximal left 
ideal of A/I, and N = f -  i f (N).  In that case, a0, ..., a,, is shortened by to . . . . .  tin- 1 
in A. [] 
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Lemma 2.2. I f  A = ~I Ai is the direct product of  finitely many rings Ai, then 
/=1 

asr(A)= sup asr(Ai) 
l<=i<=r 

Proof. Apply Lemma 2.1 to the projections n~: A - -+A i to see that 

asr(A)> sup asr(Ai) 
1 <=i<r 

TO prove the reverse inequality, shorten a sequence in A with coefficients whose 
/-coordinates shorten the corresponding sequence of/-coordinates in A~ for each 
i. This works because each maximal ideal of A is n/-t of a maximal left ideal 
of Ai for some i. [ ]  

Lemma 2.3. I f  A =Mn(D) is the ring of n-by-n matrices with entries in a division 
ring D, then asr(A)= 1. 

Proof. Suppose a o and at belong to A. If the j - th  row of at is not in the (left) 
row space of ao then some row (say the i-th row) of a o is in the linear span 
of the others. Let e~j denote the matrix with 1 in the/ j -posi t ion and O's elsewhere. 
Then ao+eija t differs from a o only in that the j - th  row of al has been added 
to the i-th row of a0. The effect has been to adjoin the j - th  row of at to the 
row space of ao. Continuing in this way, we arrive at ao+toal  (toeA) whose 
row space includes all rows of al.  So there exists b in A with b(a o + t o a O = a r  
Then al~J(ao+t  oat). [] 

Together, these lemmas prove: 

Theorem 2.4. I f  A is a semilocal ring, then asr(A) = 1. []  

Remark 2.5. We can improve the statement of this result when rad(A)=0.  For  
any division ring D and positive integer n, there is a lattice isomorphism " r o w "  
from the lattice of left ideals of M,(D) to the lattice of left vector subspaces 
of D": If I is a left ideal, row(I) is the set of rows of its members. Since every 
subspace of D" is an intersection of co-dimension one subspaces, it follows that 
every left ideal of Mn(D) is an intersection of maximal left ideals. Therefore 
every left ideal I of a semisimple artinian ring S is an intersection of maximal 
left ideals: J(1)=I. So, in such a ring S, every list ao . . . .  , a, of generators of 
a left ideal I can be shortened to a single generator:  

ao+ ~, ciai (ci~S). 
i=l 

We need the following lemma in Section 3: 

Lemma 2.6. I f  J is a left ideal of  a finite dimensional semisimple algebra S over 
a field k, p(t)~J I't], and for some x in k, Sp(x)= J, then there are at most finitely 
many y in k with Sp(y)#J .  
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Proof. Each simple component  of S is a matrix ring M,(D) over a finite dimen- 
sional division k-algebra D. The projection 7z: S ~ Mn(D) is a k-algebra homo- 
morphism. For  each simple component  of S, fix a left regular representation 
of D over k, and apply it entrywise to define a k-algebra embedding p: Mn(D ) 

M,s(k). We may apply the composite pn to each coefficient to define a ring 
homomorphism : 

S [t] ~ M,s(k) [ t ] -  M,~(k [t]). 

Let p~(t)  denote the image of p(t) under this map. 
For  any x in k, S p ( x ) ~ J .  Suppose Sp(y):~J for some y in k. It follows 

from Remark 2.5 that, for some projection n to a simple component  Mn(D ), 
the D-dimension of the row space of n(p(y)) is less than the D-dimension m 
of row (n(J)). Thus the k-dimension of the row space of pn(p(y))=pP~(y) is less 
than ms, so that every ms-by-ms submatrix of pP'(y) has determinant zero. 
These determinants are polynomials over k evaluated at y, and are not  all 
identically zero since Sp(x )=J  for some x; so they vanish for at most finitely 
many y in k. Since there are only finitely many simple components of S, the 
lemma follows. [] 

3. Absolute stable rank and dimension 

Suppose R is a commutat ive ring. In this section we relate the absolute stable 
rank of a module-finite R-algebra A to the dimension of R. For  strongest results, 
we work with the dimension of mspec(R), the subspace of the prime spectrum 
of R consisting of the maximal ideals. (For its properties, we refer the reader 
to pp. 92-102 of [5].) 

Theorem 3.1. I f  the maximal spectrum of a commutative ring R is noetherian 
of finite dimension d, then any module-finite R-algebra A has absolute stable 
rank at most d + 1. 

If the word "abso lu te"  is deleted, this is a theorem proved by H. Bass 
in the early development of algebraic K-theory (see [4]). If "absolute"  is put 
back in, but A = R ,  this theorem was proved by D. Estes and J. Ohm in 1967 
(see Theorem 2.3 of [9] and M. Stein's elaboration in Theorem 1.4 of [10]). 

Before embarking on the proof  of this theorem, we marshall some well known 
facts about  a commutat ive ring R and a module-finite R-algebra A. For  simplici- 
ty we state and prove these facts for the case in which R is a central subring 
of A. The proofs carry over easily to the case in which the map R--,  A (r ~ r. 1) 
has nonzero kernel. 

Lemma 3.2. I f  M is a maximal left ideal of  A and S is a multiplicative subset 
of R which does not meet M, then S -  1M is a maximal left ideal of  S -  1 A whose 
contraction to A is M. 

Proof. Since M does not meet S, S - a M  is a proper left ideal of S - a A ;  thus 
S - 1 M  c~ A is a proper left ideal of A containing, hence equal to M. A larger 
left ideal of S -  ~ A would contract to a larger left ideal of A. []  
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Lemma 3.3. For any ideal I of  R, the canonical map A --* AlIA induces a bijection 
between the maximal left ideals of  A containing I and the maximal left ideals 
of  A/IA. 

Proof Elementary. [] 

Lemma 3.4. Rad(A) contains rad(R). 

Proof Suppose rErad(R). Fo r  each a in A, the finitely generated R-modules 
A/A(1 +ra) and A/(1 +ra)A vanish by Nakayama's  Lemma;  so 1 +ra is invert- 
ible. []  

Lemma 3.5. I f  M is a maximal left ideal of  A, then M c~ R is a maximal ideal 
of  R. 

Proof Otherwise we may choose r r  from a maximal ideal of R containing 
M c~ R. The multiplicative set S =  1 + R r  does not meet M. By Lemmas 3.4 and 
3.2, 

S - 1 R r  c_ r a d ( S - 1 R ) _  r a d ( S - l A )  ~ S-1M.  

By Lemma 3.2, r~M, a contradiction. [] 

N o w  we standardize some notation. Suppose p is a prime ideal of the commu- 
tative ring R. Then R ,  denotes the location ( R - p ) - ~  R, k(p) denotes the residue 
field of Rp, Ap denotes A|  p, and A(p) denotes A| Note that the 
localization R--*Rp induces an embedding e: R / p ~ k ( p )  of the domain R/p 
into its field of fractions k(p). There is a commutat ive diagram: 

Rip , A| ) , A 

k(p) , A | k(p) 

where the maps are the standard ones. Note  that 6 is surjective with kernel 
pA; so we will identify A | with A/pA. Also ~,: A/pA---} A(p) is a localiza- 
tion at ( R / p -  {0}); so its kernel is the set of elements with R - p  torsion. Al though 
some of these maps need not be injective, we shall simplify notat ion by referring 
to elements of R/p, k(p) or A as if they are in A(p), via these maps. 

To  prove Theorem 3.1, we resort to an induction on d, and for this purpose 
it is natural  to prove a more technical generalization. If Y is a subset of mspec (R) 
and A is a module-finite R-algebra, we say that a sequence a0 . . . . .  a, in A 
can be Y-shortened if there are coefficients to . . . . .  t._ x in A for which a, belongs 
to every maximal left ideal of A that contains both 

{a0 + to a . . . . . .  a ,_ t + t,_ 1 a,} 

and some member of  Y A certain flexibility is obtained from the following: 

Lemma 3.6. If, for some h in A and i4: d < n, the sequence: 

a O, . . . ,  a d -  1, ad+bai, a d + l ,  . . . ,  an 
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can be Y-shortened with coefficients to . . . . .  t ,_  1, then the sequence ao . . . . .  a, can 
be Y-shortened with coefficients: 

to, ..., td-1, t'd, td+l, ..., t,--1. 

Proof I f i = n ,  use t'd=b+td. I f i + n ,  use t'd=td--bt i. [] 

By Lemma 3.5, a s r ( A ) < d +  1 means  tha t  every sequence of more  than  d +  1 
elements of A can be mspec(R)-shortened.  So Theorem 3.1 is a corollary to 
the following: 

Theorem 3.7. Suppose R is a commutative ring, A is a module-finite R-algebra, 
and X I  . . . . .  X, ,  are finitely many noetherian subspaces of  mspec(R), each of 
dimension at most d. Then every sequence ao . . . . .  a, in A with n > d  can be 
X 1 u ... u Xm-shortened with coefficients to . . . . .  t,_ ~ with ti = 0 Jor all i > d. 

Proof. Since each Xi is the un ion  of finitely many  irreducible components ,  we 
can rewrite X1 ~ . . .  u Xm as Y1 ~ . . .  u Yr where each Y~ is an  irreducible noether-  
ian subspace of mspec(R) of d imension at most  d. Then  the intersect ion of 
the elements of Yi is a prime ideal Pi of R. 

Step 1. (Putt ing a d in general position.) 
We  begin with an arbi t rary  sequence ao . . . . .  a ,  in A with n > d. Taking  advan-  

tage of Lemma 3.6, we now describe how to modify aa by a finite sequence 
of addi t ion  operat ions  until  it generates the same left ideal as ao . . . .  , a ,  in each 
ring A (pi)/rad A (Pi). 

Suppose p is a pr ime ideal of R. Since A(p) is a finite d imensional  k(p)-algebra, 
A(p)/rad A(p) is a semisimple ar t in ian ring. Let J denote  the left ideal of A(p)/ 
rad A (p) generated by a o . . . . .  a, .  We say an element of J is in general position 
if it generates J as a principal  left ideal. By Remark  2.5, there are coefficients 
Co . . . .  , c, in A(p), with ca=0 ,  for which g(1) is in general position, where 

g(x)=ad+ ~ xciai.  
i = l  

By L e m m a  2.6, g(x) is in general  posi t ion for all but  finitely many  x in k(p). 
So for each nonzero  z in R/p, there is a nonzero  x in Rip for which g(zx) 
is in general position. (If Rip is finite, it is a field, and  g(c.(1/c))=g(1) is in 
general position.) 

Since A(p) is obta ined  from A/pA by invert ing the nonzero  elements of 
R/p, we can choose a nonzero  z in R/p for which each zc~ comes from A/pA,  
and hence from A. For  each i, choose a lifting ci in A of zci, choosing gd=0. 
Define 

h (x) = ad + ~, X Ci ai. 
i=1 

Then for each x in R - p ,  h(x) belongs to A; and  there is some y in R - - p  
for which  h(xy) maps to g(cxy)  in general position. 
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Renumber  the primes p~, if necessary, so that Plf~Pj if i < j .  (First number 
the primes maximal among the p[s then delete them and number those which 
become maximal among the remaining p{s, etc.) Assume ad is already in general 
position at p~ for every i < j .  For  each i < j ,  choose x~ in p ~ - p j .  Then the product 
x 1 ... x j _  1 belongs to R - - p j .  Choose y in R - - p j  for which 

a 'a=h(x l  ... x j - l y )  

has general position in A(pj ) / rad  A(pj). Notice that ad and a~ are equal in each 
A(pi) for i < j ;  so a~ is in general position at Pi for every i<=j. Continue in 
this way, to reach a~ in general position at every Pi, where a '~-aa  is a left 
A-linear combination of al, ..., ad-  1, aa+ 1 . . . .  , a, .  

S tep  2. We now show that there is a subset Y of Y~ u . . .  w Yr with each Y~-Y 
having dimension at most d - I ,  for which a o . . . . .  ad-1,  a'd, ad+ 1, . . . ,  a,  is Y- 
shortened by any coefficients t . . . . . .  t,_ 1 in A with td = 0. 

Suppose a~ is in general position at a prime ideal p of R. Then in A(p)/  
rad A(p), a'~ generates a left ideal containing a, ; so for some element a of A(p), 
a , - a a ' a  belongs to rad A(p). Since A(p) is artinian, its radical is nilpotent; so 
for some positive integer N, 

[A(p)(a,--aa'd)]N=O. 

For some element u of R - - p ,  ua  lifts to an element b of A / p A .  Then 

[ ( A / p A ) ( u a , - b a ' d ) ]  N 

is a finitely generated left R / p - m o d u l e  in the kernel of the localization A / p A  
~ A ( p ) .  So for some v in R - - p ,  

[(ALP A) (v u a, --  v b a~)] N = 0. 

Fo r  each p~ ( =  intersection of the primes in Y3, let ri denote the product 
vu associated with p=p~ above. Let Y denote the set of primes m in 
X1 u . . .  ~ X,, = Y1 ~ . - .  w Y, which satisfy r i C m e  Y~ for some i. 

We claim that a, belongs to every maximal left ideal M of A which contains 
both {a~} and a prime m from Y. To see this, suppose r i C m e  Y~ and let S be 
the multiplicative set generated by r~. Notice that M contains Pi but does not 
meet S (since M c~ R = m is prime). By Lemmas 3.2 and 3.3, M is the contraction 
to A of a maximal left ideal N of S 1AlphA.  Since the element a , - - r [ l v b a ' d  
generates a nilpotent left ideal of S -  t AlphA,  it belongs to the Jacobson radical 
of this ring, and hence to N. Since a'deM, which is contracted from N,  a, e M  
as well, proving the claim. 

For  each i, rir so there are primes from Y~ which do not contain it. 
So the primes from Y~ which do not contain r~ form a proper closed subset 
of the irreducible component  Y~, containing Y~- Y. Thus Y~- Y is either empty 
or noetherian of dimension at most d -  1. And 

(Y1 ~ ... u Y~)-- Y = ( Y 1  -- Y ) w  ... w(Y~- -  Y). 
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Step 3. (The induction.)  If every Y/-  Y is empty (as happens  when d=0) ,  the 
sequence 

ao, . . . , a d - l ,  a~, ad+l ,  . . . , a n  

is X1 • ... u X,, ( =  Y)-shortened with coefficients tha t  are all zero. So by Lem- 
ma 3.6, a0, ..., a,  can be X1 w ... u X , , - s h o r t e n e d  with coefficients 0, ... ,  0, ta, 
0, ..., 0 as required. 

If d > 1, we assume the theorem holds when d is decreased by 1. Then  

ao, . . . ,  ad -1 ,  ad+l, ... ,  a,  

can be (Y1-Y)u . . .w(Y~-Y) -shor tened  by some coefficients to,.. . ,td 1, 
0 . . . .  ,0.  By Step 2 above, 

a 0, . . . , a d - 1 ,  a'a, a d + l , . . . , a  n 

is X t u . . .  u X, , -shortened by the coefficients 

t o . . . . .  tn_l,  ta(=0) ,  0 . . . . .  0. 

So by Lemma 3.6, ao . . . .  , a,  can be shor tened  by coefficients 

[0 '  " ' ' ' r e  1' td,  0 . . . . .  0 

as required. [ ]  

4. Quadratic forms 

To include the various quadra t ic  forms arising in L-theory,  we combine  the 
definitions of A. Bak El, 2, 3] with those of J. Tits [11] and  C.T.C. Wall [14, 
15] for max imum generality. Let A denote  an  associative ring with unit. Let 

denote  an an t i au tomorph i sm of the ring A; for nota t iona l  convenience we 
shall write a* to mean  a(a) for a in A. Assume there is a unit  e, of A, with 
e,*=e -1, so tha t  a * * = ~ a e  -1 for every a in A. (Of course, if e is central,  then 
c~ is simply an involut ion  on A.) 

Each right A-module  V becomes a left A-module  via ~. In particular,  the 
dual V * = H o m a ( V ,  A) has a r ight  A-module  s t ructure  defined, for each f in 
V* and  a in A, by 

( f  a) (v) = a* f (v) 

for all v in V. 
An  a-sesquilinear form (subsequently jus t  called a .form or scalar product) 

on a r ight  A-module  Vis a biaddi t ive m ap  Q: Vx v--* A satisfying 

Q(ua, vb)=a*Q(u,v)b 

for all u, v in V a n d  a, b in A. The  set Sesq~(V) of forms on Vis  an addit ive 
abelian group. The formula:  

[f(u)](v) = Q(u, v) 
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defines a group isomorphism f . - ,Q between HomA(V, V*) and Sesq~(V). A form 
Q is called non-singular if the corresponding homomorphism f :  V--* V* is an 
isomorphism. 

A form Q on Vis called e-hermitian if 

Q(u, v) = Q(v, u)* 

for all u, v in V, and is called even ~-hermitian if 

Q(u, v) = f(u,  v) + F(v, u)* e, 

for some F in Sesq~(V) and all u, v in V. 

To clarify these definitions, Wall defined a transposition operator 

T~ : Ses%(V) ~ Sesq~(V) 

by T~ Q(u, v)=Q(v, u)*e. This ~ is a group homomorphism, T~2= 1, and T_~= 
--T~. The e.-hermitian forms make up the kernel of 1 -  T~, and the even e- 
hermitian forms constitute the image of 1 + T~. According to Wall's definition, 
a quadratic form on V is any element of the cokernel of 1 - T~ (see [15, p. 120].) 

For  greater generality, following A. Bak (in [2, 3]), we fix an additive sub- 
group A of A with the two properties: 

i) a*Aa ~_ A for all a in A, 
ii) A~ ~_ A _ A ~, 

where 
A , = { a - a * e :  a~A} 

A~={a6A: a = - a ' e . }  

For  any right A-module V, we define X(V, c~, e, A) to be the additive group 
of all ( -e ) -hermi t ian  forms F on V for which F(v, v)e A for each v in V. 

A quadratic (or more precisely an (e, e, A)-quadratic)form on V is any element 
of the quotient group: 

Sesq~(V)/X (V, ~, e., A). 

If V is a finitely generated projective right A-module, then X(V, ~, e, At) coincides 
with the image of 1-T~,  as shown by the proof of Theorem 1.3 in [3]. So 
our quadratic forms include those of Wall. (The various L-groups are constructed 
from finitely generated projective modules with nonsingular forms.) 

For  any quadratic form 

q = Q +  X(V,~,e,A) 

on V, we define an associated length 

[[q: V ~ A / A  by IvLq=Q(v,v)+A 

and an associated scalar product or linearization 

(,)q: Vx V---, A by (u,v)q=Q(u,v)+Q(v,u)*e. 



Absolute stable rank 535 

Neither of these depends on a choice of coset representative Q. In fact, 
a form is taken to its linearization by 1 + T~= 1--T_~ which has kernel the 
( -e) -hermi t ian  forms, and image the even e.-hermitian forms on V. Clearly q 
is uniquely determined by its length map and linearization. If the even e-hermi- 
tian form (,)q is non-singular, we call q non-singular. 

The lengths and scalar products of elements u, v of V are related by the 
following useful identities: 

lu + vl~ = lul~ + Ivl~ +(u, v)~ 

(v, v)q = x + x* 

Ivalq=a*xa+ A 

for any x in Ivl~ and a in A. 
When A = A ~, the quadratic form q is uniquely determined by its linearization 

(,)q, which can be any even e-hermitian form on V. When A does not contain 
any nonzero ideals of A, then q is uniquely determined by its length map I1~. 
(To see the latter, note that the additive subgroup of A generated by the values 
of (,)q is an ideal of A, contained in A if the length map is zero.) 

Now A = 0  if and only if e =  1, c~ is the identity, and A is commutative. 
This is the case in which [ [q : V--, A is a classical quadratic form on V. 

Another  classical case is A =A.  Then e = -  1, c~ is the identity, and A is 
commutative. In this case there is a bijection between the quadratic forms q 
on V and their linearizations, which are the alternating forms on V. 

Remark. The definition of quadratic form used by A. Bak in [1, 2 and 3], 
H. Bass in [6] and L.N. Vaserstein in [13] is just a special case of the definition 
presented here - namely the case where e is central in A, so that c~ is an involution. 
The data (A, c~, e, A) is called a form ring by Bak in [3] and a unitary ring 
by Bass in [6]. In [14] and [15], C.T.C. Wall removes the hypothesis that 

is central, does not use A, and calls the data (A, ~, e) an antistructure. 

5. Quadratic spaces and morphisms 

If q is a quadratic form on the right A-module V, the pair (V, q) is called a 
quadratic space. If (V', q') is another quadratic space over the same A, ~, e 
and A, then an A-linear map f :  V ~  V' is called a morphism (V, q)~(V' ,  q') 
of quadratic spaces if 

If(v)lq,=lvlq and (f(v),f(w))q,=(v,w)q 

for all v, w in V. With these morphisms, the (A, ~, e, A)-quadratic forms become 
a category. A morphism f in this category is an isomorphism (i.e. invertible) 
if and only if it is bijective. 

If Q~q and Q'~q' the form QOQ' determines a quadratic form qGq'  on 
Vq) V' which is independent of the choice of Q and Q'. Thus we can define 
the orthogonal sum: 

(V, q) l (V', q)=(VO) V', q ~) q') 

as a binary operation on (A, a, e, A)-quadratic forms. 
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If a morphism (V', q')--*(V, q) is an inclusion of modules V'_~ V, we call 
(V', q') a quadratic subspace of (V, q). In this case, if q' is non-singular, then 
(V', q') is an orthogonal summand of (V, q): 

(~q)~(V',q')•  

where V" is the orthogonal complement of V' under (,)q, and q" is the coset 
of forms on V" restricting those of q to V". 

6. Hyperbolic forms and Witt index 

For any right A-module V, the hyperbolic space H(V) is the quadratic space 
(V~ V*, q), where q is represented by the form Q defined by 

Q ((u, u'), (v, v')) = u' (v) 

for all u, v in V and u', v' in V*. Recall that V* is a right A-module via cc 
If we make V** into a right A-module via the anti-isomorphism ~-1, then 
the map fl: V--, V**, defined by 

f l (v)(v ')  = ~ -  ' (v' (v)) 

for all v' in V*, is A-linear. It is routine to show that the hyperbolic form 
q (above) is non-singular if and only if fl is an  isomorphism. The latter condition 
does not  involve A, and (according to Wall  [14, p. 247]) it is independent of 
~, and is true when Visa  finitely generated projective A-module. 

Any quadratic space (V, q) can be embedded into the hyperbolic space H(V) 
as follows: Pick Q in q, and send Vto V ~ V *  by 

v ~ t v ,  Q(v,  - ) ) .  

Of course, each choice of Q gives rise to a different embedding. If q is nonsingular, 
each such embedding can be extended to an  isomorphism: 

(V, q)_L(V, - q ) ~ H ( V )  

of quadratic spaces. 
On the other hand,  a quadratic space is measured by means of hyperbolic 

subspaces. The Witt index, ind(q), of (V, q) is the lagest r > 0  for which (V, q) 
contains a quadratic subspace isomorphic to H(Ar). Since H(A') is non-singular, 
it is then an  orthogonal summand of(V, q). 

If vl . . . . .  v, is a basis of A', and v'l . . . . .  v', is the dual basis of (A')*, and 
if q is the quadratic form in H(A~), the for each i, j with i4=j, 

Iv i lo= lv~ lq=0 ,  (v'~, v~)q= 1 

and 

(vi, v j) .  = (v~, v))q = (v~, vih = O. 
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For an internal description of the Witt index in an arbitrary quadratic space 
(V, q), we therefore define a hyperbolic pair in (V, q) to be any (ordered) pair 
e, f in Vsatisfying the conditions: 

l e l q = l f l q = 0  and (e , f )q=l .  

A vector v in V is called q-unimodular if there is a vector w in V for which 
(v, w)q = 1. In a hyperbolic pair e, f both e and f are q-unimodular,  and every 
q-unimodular vector e with lelq=0 can be included in a hyperbolic pair. 

The A-linear span of a hyperbolic pair e, f is a subspace of (V,, q) isomorphic 
to the hyperbolic plane H(A) by f ~  1 cA, e ~ identity map~A*. More generally, 
the span of mutually orthogonal hyperbolic pairs e~, fa, ..., er, fr is isomorphic 
to 

H (A r) ~ H(A) I . . .  Z H (A) (r copies). 

So ind(q)> r if and only if Vcontains r mutually orthogonal hyperbolic pairs. 

7. The orthogonal group and transvections 

Take A, c~, e, A, V and q to have the same meaning as above. The group of 
automorphisms of the quadratic space (V, q) is called the orthogonal group, 
C(q). They are the A-linear automorphisms of V which preserve lengths I lq 
and scalar products (,)q. 

Suppose e and u are elements of V with lelq=0 and (e, u)q=0. Choose x 
in lulq. The map z(e, u, x): V~  Vdefined by 

z(e, u, x)(v) = v + u(e, V)q-- e ~* (u, v)q -- e ~* x(e, v)q 

belongs to (9(q). If e is q-unimodular,  then z(e, u, x) is called an orthogonal 
transveetion. 

8. Application of absolute stable rank 

Theorem 8.1. Suppose (V, q) is a quadratic space over A. Assume that either 
ind(q)>asr (A)+2,  or that ct is the identity map (so A is commutative) and 
ind(q) > asr(A)+ t. Then (~(q) acts transitively on the set of all q-unimodular vec- 
tors v in V with a given length Ivlq. 

Proof. Suppose e~, f l  . . . . .  e,, f ,  are n mutually orthogonal hyperbolic pairs in 
(V, q), where n > a s r ( A ) +  1, and, if ct is not trivial, n > a s r ( A ) + 2 .  Suppose 

n 

v= eiai+ ~ f~b~+u 
i = 1  i = 1  

(ai, bieA, u~ V) is a q-unimodular vector with length Iv lq=x+A (xEA), where 
u is orthogonal to all ei, f~. Note that the coefficients at, b~ (and hence the 
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vector u) are uniquely determined by v, since 

a*=(v,f/)~ and bi=(e~,v)q. 

We will perform a sequence of orthogonal  transvections z(ei, ?, ?) and r ( f ,  
?, ?) on v to transform v to the standard vector e t+f lx  of the same length, 

Step1. Since v is q-unimodular, there is a vector w orthogonal  to all el, f~ for 
which 

~ (Aai+Abi)+A(w, u)o=A. 
i = 1  

Since sr(A)< n, we can make 

• (Aai+Abi)=A 
i=1  

if we replace v by 

I r(ei, wci, c* yci)(V ) 
i=1  

with appropriate c~ in A, where yelwlq. 

Step 2. Assume ~ (Aai+Abi)=A. Since sr(A)=<n-1,  we can make, 
i = l  

n - 1  

Ab.+ ~, (Aai+Abl)=A 
i=1  

if we replace v by 

n - 1  

with appropriate c~ in A. 

n - - I  

Step 3. Assume A b, + ~ (A a i + A hi) = A. Replacing v by 
i = 1  

n - I  0 )  
z e., ~ (eici+f/d,) ,  (v) 

\ i = 1  

for appropriate ci, di in A, we can make a , =  1 +zb, for some z in A, 
So far we have only used s r (A)<n- -1 ,  which follows from sr(A)<asr(A). 

At this point we bring to bear the absolute stable range condition, in an altered 
but equivalent form: 
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L e m m a  8.2. For any ring R and positive integer n, a s r ( R ) < n  if and only if for 
each list ro, r I . . . .  , r, of  elements from R, there exist to, tt, ..., t . -1  in R so 
that 

n-1 
R(I  +hr . )+  ~ R ( r i + t i G ) = R  

i = 0  

for every h in R. 

Proof If  a s r ( R ) <  n, use the  same coefficients to . . . . .  t ,_  1 which  sho r t en  r0 . . . . .  r , .  
F o r  the  converse ,  if r ,  is n o t  in a max ima l  left ideal  M con ta in ing  the  r~ + t~ r ,  

(0 < i < n -  1), t hen  - 1 = m + hr, for s o m e  m in M a n d  h in A. So 1 + hr, be longs  
to M, a con t rad ic t ion .  

Step 4. A s s u m e  tha t  a , =  1 +zb .  for some  z in A, and  suppose  ct is the ident i ty  
m a p  ( a * = a  for all a6A). Since a s r ( A ) < n - - 1 ,  we can  apply  L e m m a  8.2 to the 
list at  . . . .  , a , _  1, b2 ; so there  are  c 1 in A wi th  

n 1 

A ( l + h b 2 )  + Z A(ai+clb2) = A  
i -1  

for all h in A. 
Since ct is trivial, A is a c o m m u t a t i v e  ring. Let  B deno te  the  ideal  

n - - I  

Z A (a i -~- c i b~). 
i = 1  

Then  bZ. erad(A/B); so also b,~rad(A/B), a n d  

n 1 

A ( l + h b . ) +  y' A(a,+c,  b2)=A 
i = 1  

for all h in A. So, if we replace  v by 

o) "c e.. ~. ei ci b., (v), 
\ i = l  

we then  have  Aat  + ... + A a . = A .  
N o w  cons ide r  the  general  case wi th  a s r ( A ) <  n - - 2 .  A g a i n  a s sume  tha t  a . =  

l + z b ,  for some  z in A. A p p l y  L e m m a  8.2 to the  list b~, a2, . . . , a . - t  to f ind 
c~ in A wi th  

n - 1  

A( l  + h b l ) +  ~ A(a~+cib t )=A 
i = 2  

for all h in A. Rep lac ing  v by 

n-1 O) 
"r el ,  ~, ei ci~ (v), 

\ i=2 
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we then have 

B.A. M a g u r n  et  al. 

n- -1  

A ( l + h b O +  ~, Aai=A.  
i = 2  

Since a . = l + z b , ,  it follows that A a , + A b . = A .  So we can choose c,, d, in 
A and replace v by 

r(el, e , c ,+ f ,d , , x ) ( v )  

(where x~le.  c , + f .  d, lq), to make 

Aa~+ ... + A a . _ I = A .  

So again, 

Aal + ... + A a , = A .  

Step 5. Assume that  Aa~ + ... + Aa, =A. By replacing v with 

T ( f j , e i c i ~ * , O ) ( v )  ( i @ j ,  c i ~ A )  

we change a i to a i + ci aj without affecting the other coefficients among at, ..., a,. 
Since s r ( A ) < n - 1 ,  we can perform a sequence of such orthogonal  transvections 
until at = 1 .  

Step 6. Assume at = 1. Replacing v by 

z ( f i , - - u e * , ? ) ~  f t , -  ~ f ib i~* ,O  �9 f ~ , -  eiai~*,O (v) 
i = 2  i = 2  

results in v=et  + f t  bl. Then 

x + A = Ivlq= let + A  ba]q=bl + A. 

And 

z(f l ,  0, e(bl--  x)~*)(el + f l  b i ) = e l  + f i x ,  

completing the p roof  of Theorem 8.1. [] 

Corollary 8.3. (Cancellation) Suppose (V, q) is a quadratic space with i n d ( q ) -  > _ 
asr(A). I f  the anti-isomorphism ~ is not the identity map, assume further that 
ind(q)>=asr(A)+l.  Suppose (V', q') and (V", q") are quadratic spaces, V" is a 
finitely generated projective A-module, q" is non-singular, and 

t r tt t! (V,q)_L(V ,q )=(V,q)_k(V",q"). 

t Then (V', q)=(V, q). 
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Proof Since (V", q") is i s o m o r p h i c  to an o r t h o g o n a l  s u m m a n d  of  

H (A") ~_ H (A) A_... l H (A) (n copies)  

for s o m e  posi t ive  in teger  n, it suffices to  p rove  the cance l la t ion  in the case 
(V", q") = H(A). 

C h o o s e  mutua l ly  o r t h o g o n a l  hyperbo l i c  pairs  e2, J2 . . . . .  er, fr  (r = i n d ( q ) +  1) 
in (V, q) and  let el ,  f l  deno te  the  s t a n d a r d  hyperbo l i c  pa i r  in H(A). Ident i fy  
these pa i r s  wi th  their  images  in (V, q)A_H(A). By T h e o r e m  8.1, appl ied  to q- 
u n i m o d u l a r  e lements  o f  length  zero,  we can  c o m p o s e  the  given i s o m o r p h i s m  

(V', q') A_ H (A) ~ (V, q) A_ H (A) 

with a sequence  of  o r t h o g o n a l  t r ansvec t ions  on  (V, q) 3_ H(A),  so t ha t  the  c o m p o s -  
ite takes  f l  to itself, a n d  hence t akes  el to s o m e  

w = ~  eiai+ ~ f i b i + u  
i = 1  i = 1  

(ai, bi in A, u o r t h o g o n a l  to all ei, fi) for which  w, f l  is a hyperbo l i c  pair.  
In par t icular ,  al  = 1. Jus t  as in S tep  6 of  the  p r o o f  of  T h e o r e m  8.1, a sequence  
of o r t h o g o n a l  t r ansvec t ions  z ( f l ,  ?, ?) will t ake  w to e v Since z(ft, ?, ?) fixes 
f l ,  the ent i re  c o m p o s i t e  of  the a b o v e  i s o m o r p h i s m s  takes  the o r t h o g o n a l  sum-  
mand  H(A) to itself. Since H(A) is non-s ingu la r ,  this c o m p o s i t e  restr icts  to 
the des i red  i s o m o r p h i s m  (V', q ' )~ (V,  q). [ ]  

Note. T h e  p r o o f  of  T h e o r e m  8.1 also w o r k s  unde r  the  hypo theses :  A is c o m m u t a -  
tive, i n d ( q ) > a s r ( A ) +  1, and for  all a in A, ~(a)eAa (or equivalent ly  ~ leaves 
ideals invariant) .  So the  conc lus ion  of  Coro l l a ry  8.3 also works  u n d e r  the h y p o t h -  
eses: A is c o m m u t a t i v e ,  ind (q)==_ asr(A), a n d  ct leaves ideals  invar iant .  
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