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0. Introduction

Stable range conditions on a ring R were devised by H. Bass in order to deter-
mine values of n for which every matrix in GL,(R) can be row reduced (by
addition operations with coefficients from R) to a matrix with the same last
row and column as the identity matrix I,. In order to obtain analogous results
for orthogonal groups, M.R. Stein defined “absolute stable range” conditions
on a commutative ring R. Because he was working with group schemes, Stein
did not consider absolute stable range conditions for noncommutative rings.
Here we do so, and take up a corresponding stability question for orthogonal
groups, namely cancellation of quadratic forms. For this we use a very general
definition of quadratic form, which specializes to all classical examples.

Sections 1, 2 and 3 contain definitions associated with, and computations
of, absolute stable rank. Definitions associated with quadratic forms are intro-
duced in Sections 4, 5, 6 and 7; and Section 8 is devoted to Witt cancellation.

1. Definitions and their connections

Suppose A is an associative ring with unit. If S is a subset of 4, let J(S) denote
the intersection of A and all maximal left ideals of A which contains S. We

say a sequence dy, ..., d, in A can be shortened if there are coefficients ¢, ..., t,_,
in A for which

a,eJ(ag+toay, ..., 0, +t,ya,)
Consider the condition on the ring A4:
Condition L(n): Every sequence dy, ..., a, in A can be shortened.
Lemma 1.1. L(n) implies L{n+1).

Proof. Shorten a sequence ay, ..., 4, ; using coefficients ¢, ..., t,_,,0. [0
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The absolute stable rank of A is the least n with L(n) true. A sequence
dg, ..., a, in A is called unimodular if J(ay, ..., a,)=A. The stable rank of A
is the least n with L(n) true for unimodular sequences. (It is true that L(n)
for unimodular sequences implies L(n+ 1) for unimodular sequences; but this
is harder to prove than Lemma 1.1 — see Theorem 1 of [12].) We abbreviate
the absolute stable rank and stable rank of A by asr(A4) and sr(A4), respectively.

Lemma 1.2. For every ring A, sr(A)<asr(A).
Proof. If L(n) holds for all sequences, it holds for unimodular sequences. []

In many cases, sr(4)=asr(A4). To sec that they do not always agree, consider
the following examples. We learned about the first from R.M. Guralnick, and
the second from H.W. Lenstra, Jr.

Example 1. In [8, 5.1] D.R. Estes and R.M. Guralnick construct Dedekind
domains 4 with sr(A4)=1, but with nontorsion class group G. There are elements
a,, a, which generate a maximal ideal M of infinite order in G. If asr(4)=1,
there is some ¢ in A with

J(ay+tay)=J(a,,a,)=M.

Since A4 is Dedekind, A(ay +ta,) contains a power of its radical, M; so it equals
a power of M, in contradiction to the choice of M.

Example 2. Suppose R is the ring of integers in an algebraic number field with
nontrivial class group. Let S denote the smallest multiplicative set containing
the generators of the nonzero principal prime ideals of R. Take A to be S™'R.
Then sr(4)=1 and asr(4)>1.

To see this, suppose a, beA and Aa+Ab=A. For some o, § in R and
sin 8, a=a/s and b=fi/s. Then Ra-+ Rf meets S, hence equals a product of
principal primes, Rs". Then a=o's’, f=f's’ and s'=ya+8p for some o, f§,
7, 6 in R. Thus 1=ya'+Jf". By the theorem of Dirichlet on the distribution
of primes (see [7, p. 83]), «’ + R’ meets S. So for some ¢ in R, the element

@ +tf)=a+th
S

is a unit of A, proving sr(4)=1.

On the other hand, A has a nonprincipal prime ideal M. If d is a nonzero
element of M2, then 4/Ad is a principal ideal ring; so there is some ¢ in M
with M= Ac+ Ad. Suppose asr(4)=1. Then for some ¢ in A,

Jc+td)=J(c,d)=M.
So A{c+td)=M" for some integer n> 1. In the local ring A4,,,

My=Ay(c+td)+ Ayd
=M% My + Ay d.
So by Nakayama’s Lemma, My, = A,,d < M3, which is impossible in the Dede-

kind ring A4,,. (In Section 3, we show that asr(4)<dim(4)+ 1; so that, actually,
asr(4)=2 in this example.)
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The presence, in these two examples, of ideals which require at least two
generators is no coincidence.

Theorem 1.3. If A is a left principal ideal ring, then asr(A)=sr(A).

Proof. Suppose sr(4)=rn and a, ..., a,e A. For some d in A,
Aag+ ... +Aa,=Ad.
Specifically, for some «;, f; in A4, each a,=ua;d, while
Boao+ ... +B,a,=4d.

Then Byag+ ... + B, a,—1 annihilates d. The left annihilator of d in 4 is a
left ideal Ad' (d'e A); so aq, ..., &,, d’ is unimodular. Since sr(4)=n, there are
elements o; in o; + Ad’ for which oy, ..., «, is unimodular. Again, sr(4)=n implies
there are elements ¢;, t; in A with

tolag+coa)+ ... +t, g (a_+c_yon)=1

Multiplying on the right by d, we discover that every left ideal of 4 which
contains

{a0+c0 Ayy ooy an—1+cn—1 an}

also includes d, and hence a,. So asr(4)<n=sr(A). (The reverse inequality is
Lemma 1.2) O

2. Semilocal rings

We denote the Jacobson radical of a ring 4 by rad(4). This radical is especially
pertinent to absolute stable rank because rad(A) is the intersection of all maximal
left ideals of A. Following Bass (in [5]), we call a ring A4 semilocal if A/rad(A)
is a left artinian ring. Then by Wedderburn’s Theorems, A/rad(A) is a direct
product of finitely many matrix rings over division rings.

Lemma 2.1. If A is a ring and I is a (two-sided) ideal of A, then asr(A/I)<asr(A);
equality holds if I < rad(A).

Proof. If asr(A)=n any sequence g, ..., a, in A can be shortened with some
coefficients ¢y, ..., t,—, in 4. Suppose f: 4 - A/I is the canonical homomor-
phism. If M is a maximal left ideal of A/I, then f~!(M) is a maximal left
ideal of 4, and ff ~'(M)=M. So f(ay), ...,f(a,) is shortened by the coefficients
flto), ..., f(t,- ), proving asr(A/)<n.

If asr(4/)=m and a,, ..., a,cA, there are t,,...,t,_; in A for which
Sf(ao), ..., f(a,) is shortened by the coefficients f(t), ..., f(t,_,) in A/1. But if
I < rad(A), then for every maximal left ideal N of A4, f(N) is a maximal left
ideal of A/I, and N =f ~!f(N). In that case, aq, ..., a,,is shortened by t,, ..., t,_,
ind. O
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Lemma 2.2. If A= [] A, is the direct product of finitely many rings A;, then

i=1

asr(A)= sup asr(4;)

1<isr
Proof. Apply Lemma 2.1 to the projections 7;: A — 4; to see that

asr(4)= sup asr(4,;)

15igr

To prove the reverse inequality, shorten a sequence in 4 with coefficients whose
i-coordinates shorten the corresponding sequence of i-coordinates in A; for each
i. This works because each maximal ideal of 4 is =7 ! of a maximal left ideal
of A;for somei. []

Lemma 2.3. If A= M, (D) is the ring of n-by-n matrices with entries in a division
ring D, then asr(A)=1.

Proof. Suppose a, and a, belong to A. If the j-th row of a, is not in the (left)
row space of a, then some row (say the i-th row) of g, is in the linear span
of the others. Let e;; denote the matrix with 1 in the ij-position and 0’s elsewhere.
Then ay+e;;a, differs from a, only in that the j-th row of a, has been added
to the i-th row of a,. The effect has been to adjoin the j-th row of a; to the
row space of a,. Continuing in this way, we arrive at a,+t,a, (to€A) whose
row space includes all rows of a,. So there exists b in 4 with b(a,+1t, a,)=a;.
Then a,eJ(ag+toa,). [
Together, these lemmas prove:

Theorem 2.4. If A is a semilocal ring, then asr(A)=1. []

Remark 2.5. We can improve the statement of this result when rad(4)=0. For
any division ring D and positive integer n, there is a lattice isomorphism “row”
from the lattice of left ideals of M,(D) to the lattice of left vector subspaces
of D": If I is a left ideal, row(I) is the set of rows of its members. Since every
subspace of D" is an intersection of co-dimension one subspaces, it follows that
every left ideal of M,(D) is an intersection of maximal left ideals. Therefore
every left ideal I of a semisimple artinian ring S is an intersection of maximal
left ideals: J(I)=1. So, in such a ring S, every list aq, ..., a, of generators of
a left ideal I can be shortened to a single generator:

ao+ Y. ¢ia; (¢ €S).
i=1
We need the following lemma in Section 3:

Lemma 2.6. If J is a left ideal of a finite dimensional semisimple algebra S over
a field k, p(t)eJ[t], and for some x in k, Sp(x)=J, then there are at most finitely
many y in k with Sp(y)+J.
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Proof. Each simple component of S is a matrix ring M,(D) over a finite dimen-
sional division k-algebra D. The projection n: § - M,(D) is a k-algebra homo-
morphism. For each simple component of S, fix a left regular representation
of D over k, and apply it entrywise to define a k-algebra embedding p: M,(D)
- M, (k). We may apply the composite pn to each coefficient to define a ring
homomorphism:

S[) - M, (kL1 = M, (k[1]).

Let p#™(t) denote the image of p(f) under this map.

For any x in k, Sp(x) < J. Suppose Sp(y)+J for some y in k. It follows
from Remark 2.5 that, for some projection n to a simple component M, (D),
the D-dimension of the row space of n(p(y)) is less than the D-dimension m
of row (n(J)). Thus the k-dimension of the row space of pr(p(¥))=p°"(y) is less
than ms, so that every ms-by-ms submatrix of p?*(y) has determinant zero.
These determinants are polynomials over k evaluated at y, and are not all
identically zero since Sp(x)=J for some x; so they vanish for at most finitely
many y in k. Since there are only finitely many simple components of S, the
lemma follows. []

3. Absolute stable rank and dimension

Suppose R is a commutative ring. In this section we relate the absolute stable
rank of a module-finite R-algebra A to the dimension of R. For strongest results,
we work with the dimension of mspec(R), the subspace of the prime spectrum
of R consisting of the maximal ideals. (For its properties, we refer the reader
to pp. 92-102 of [5].)

Theorem 3.1. If the maximal spectrum of a commutative ring R is noetherian
of finite dimension d, then any module-finite R-algebra A has absolute stable
rank at most d+ 1.

If the word “absolute” is deleted, this is a theorem proved by H. Bass
in the early development of algebraic K-theory (see [4]). If “absolute” is put
back in, but 4=R, this theorem was proved by D. Estes and J. Ohm in 1967
(see Theorem 2.3 of [9] and M. Stein’s elaboration in Theorem 1.4 of [10]).

Before embarking on the proof of this theorem, we marshall some well known
facts about a commutative ring R and a module-finite R-algebra A. For simplici-
ty we state and prove these facts for the case in which R is a central subring
of 4. The proofs carry over easily to the case in which the map R— A4 (r—r-1)
has nonzero kernel.

Lemma 3.2. If M is a maximal left ideal of A and S is a multiplicative subset
of R which does not meet M, then S™' M is a maximal left ideal of S~ A whose
contraction to A is M.

Proof. Since M does not meet S, S™'M is a proper left ideal of S™'4; thus
ST!MnN A is a proper left ideal of A containing, hence equal to M. A larger
left ideal of S™! 4 would contract to a larger left ideal of 4. O
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Lemma 3.3. For any ideal I of R, the canonical map A — A/IA induces a bijection
between the maximal left ideals of A containing 1 and the maximal left ideals
of A/IA.

Proof. Elementary. [
Lemma 3.4. Rad(A) contains rad(R).

Proof. Suppose rerad(R). For each a in A, the finitely generated R-modules
A/A(1+ra) and A/(1+ra)A vanish by Nakayama’s Lemma; so 1+ra is invert-
ible. O

Lemma 3.5. If M is a maximal left ideal of A, then M AR is a maximal ideal
of R.

Proof. Otherwise we may choose r¢ M from a maximal ideal of R containing
M n R. The multiplicative set S=1+ Rr does not meet M. By Lemmas 3.4 and
32,

ST'Rrcrad(ST'R)crad(S"'4)= S M.

By Lemma 3.2, re M, a contradiction. []

Now we standardize some notation. Suppose p is a prime ideal of the commu-
tative ring R. Then R, denotes the location (R—p)~ ' R, k(p) denotes the residue
field of R,, 4, denotes A ®gR,, and A(p) denotes A Rzk(p). Note that the
localization R— R, induces an embedding «: R/p—k(p) of the domain R/p
into its field of fractions k(p). There is a commutative diagram:

Rlp —— A®(R/p) —— 4
“| 2
ko) —— A®k(p)

where the maps are the standard ones. Note that & is surjective with kernel
pA; so we will identify A ®z(R/p) with 4/pA. Also y: A/pA— A(p) is a localiza-
tion at (R/p—{0}); so its kernel is the set of elements with R — p torsion. Although
some of these maps need not be injective, we shall simplify notation by referring
to elements of R/p, k(p) or A as if they are in A(p), via these maps.

To prove Theorem 3.1, we resort to an induction on d, and for this purpose
it is natural to prove a more technical generalization. If Y is a subset of mspec(R)
and A is a module-finite R-algebra, we say that a sequence 4, ...,q, in 4
can be Y-shortened if there are coefficients tg, ..., t,_; in A for which a, belongs
to every maximal left ideal of A that contains both

{ao+toty, ... @uoy+t,_ 1 s}
and some member of Y. A certain flexibility is obtained from the following:

Lemma 3.6. If, for some b in A and i+d <n, the sequence:

oy -5 Ag_1, Ggt+ba;, ag4q,...,0,
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can be Y-shortened with coefficients t,, ..., t,_ 1, then the sequence aq, ..., a, can
be Y-shortened with coefficients:

|V PRV /N PR R M
Proof. fi=n, use t;=b+t,. Ifi%n, use ty=t,—bt;. [

By Lemma 3.5, asr(4)<d+ 1 means that every sequence of more than d+1
elements of A can be mspec(R)-shortened. So Theorem 3.1 is a corollary to
the following:

Theorem 3.7. Suppose R is a commutative ring, A is a module-finite R-algebra,
and X4, ..., X,, are finitely many noetherian subspaces of mspec(R), each of
dimension at most d. Then every sequence a,,...,a, in A with n>d can be
X u...u X, -shortened with coefficients ty, ..., t,—, with t;=0 for all i>d.

Proof. Since each X; is the union of finitely many irreducible components, we
can rewrite X;u...uX,, as Y;u...u Y, where each Y; is an irreducible noether-
ian subspace of mspec(R) of dimension at most d. Then the intersection of
the elements of Y, is a prime ideal p; of R.

Step 1. (Putting aq, in general position.)

We begin with an arbitrary sequence a, ..., 4, in A4 with n>d. Taking advan-
tage of Lemma 3.6, we now describe how to modify a, by a finite sequence
of addition operations until it generates the same left ideal as aq, ..., a, in each
ring A(p;)/rad A(p;).

Suppose p is a prime ideal of R. Since A(p) is a finite dimensional k(p)-algebra,
A(p)/rad A(p) is a semisimple artinian ring. Let J denote the left ideal of A(p)/
rad A(p) generated by ay, ..., a,. We say an element of J is in general position
if it generates J as a principal left ideal. By Remark 2.5, there are coefficients
Cos .., Cp IN A(p), with ¢,=0, for which g(1) is in general position, where

g)=a,+ Y xca;.

i=1

By Lemma 2.6, g(x) is in general position for all but finitely many x in k(p).
So for each nonzero z in R/p, there is a nonzero x in R/p for which g{zx)
is in general position. (If R/p is finite, it is a field, and g(c-(1/c})=g(1) is in
general position.)

Since A(p) is obtained from A/pA by inverting the nonzero elements of
R/p, we can choose a nonzero z in R/p for which each z¢; comes from A/pA,
and hence from A. For each i, choose a lifting ¢ in 4 of z¢;, choosing é;=0.
Define

h(x)=a,+ Y x¢a;.
i=1

Then for each x in R—p, h(x) belongs to A; and there is some y in R—p
for which h(x y) maps to g(cxy) in general position.
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Renumber the primes p,, if necessary, so that p,¢p; if i<j. (First number
the primes maximal among the p;’s then delete them and number those which
become maximal among the remaining p;’s, etc.) Assume q, is already in general
position at p; for every i<j. For each i <j, choose x; in p;— p;. Then the product
X, ... x;—, belongs to R—p;. Choose y in R~ p; for which

ag=h(x; ... x;_1))
has general position in A(p;)/rad A(p;). Notice that a, and a; are equal in each

A(py) for i<j; so aj is in general position at p; for every i<j. Continue in
this way, to reach a; in general position at every p;, where a;—a, is a left

A-linear combination of a,, ..., a4, g1 1, .--» dp.

Step 2. We now show that there is a subset Y of Y,u...uY, with each ¥;,—Y
having dimension at most d—1, for which aq, ..., a,-,, ay, 441, ..., 0, is Y-
shortened by any coefficients ¢,, ..., t,_, in A with t;=0.

Suppose a, is in general position at a prime ideal p of R. Then in A(p)/
rad A(p), a; generates a left ideal containing a,; so for some element a of A(p),
a,—aay belongs to rad A(p). Since A(p) is artinian, its radical is nilpotent; so
for some positive integer N,

[A(p)(a,—aay]* =0.

For some element u of R —p, ua lifts to an element b of A/pA. Then

[(4/pA)(ua,—bay)]"

is a finitely generated left R/p-module in the kernel of the localization A/pA
— A(p). So for some v in R—p,

[(A/pA)(vua,—vbay]"=0.

For each p; (= intersection of the primes in Y), let r; denote the product
vu associated with p=p, above. Let Y denote the set of primes m in
X,v...uX,=Y u...uY, which satisfy r,¢ me Y, for some i.

We claim that a, belongs to every maximal left ideal M of A which contains
both {a;} and a prime m from Y. To see this, suppose r;¢meY, and let S be
the multiplicative set generated by r. Notice that M contains p; but does not
meet S (since M n R=m is prime). By Lemmas 3.2 and 3.3, M is the contraction
to A of a maximal left ideal N of S™!4/p;A. Since the element a,—r; 'vhaj
generates a nilpotent left ideal of S™! 4/p; 4, it belongs to the Jacobson radical
of this ring, and hence to N. Since aje M, which is contracted from N, a,eM
as well, proving the claim.

For each i, r;¢p;; so there are primes from Y; which do not contain it.
So the primes from Y; which do not contain r; form a proper closed subset
of the irreducible component Y;, containing Y;,— Y. Thus Y,— Yis either empty
or noetherian of dimension at most d—1. And

Yyu..uY)—Y=(Y,—Y)u..ul,—-Y)
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Step 3. (The induction.) If every Y,—Y is empty (as happens when d=0), the
sequence

,
Aoy evs Bgmgs By Qgigs e Ay

is X, u...uX, (=Y)shortened with coefficients that are all zero. So by Lem-
ma 3.6, ay, ..., a, can be X, u...u X, —shortened with coefficients 0, ..., 0, 1,
0, ..., 0 as required.

If d > 1, we assume the theorem holds when d is decreased by 1. Then

Agy oo Qg—15 gy gy +-05 Ay

can be (Y;—Y)u...u(Y,—Y)shortened by some coefficients tg4, ...,t; ,,
0, ..., 0. By Step 2 above,

Aoy oves Qg s Ayy giqs covs Gy
is X u...uX,-shortened by the coefficients
tos ooos fam1s La(=0), 0, ..., 0.
So by Lemma 3.6, aq, ..., a, can be shortened by coefficients
toy ---rtg—1, ty, 0,...,0

as required. []

4. Quadratic forms

To include the various quadratic forms arising in L-theory, we combine the
definitions of A. Bak [1, 2, 3] with those of J. Tits [11] and C.T.C. Wall [14,
15] for maximum generality. Let A denote an associative ring with unit. Let
o denote an antiautomorphism of the ring A4; for notational convenience we
shall write a* to mean «(q) for a in A. Assume there is a unit ¢ of A, with
g*=¢~ ! so that a**=eae™! for every a in 4. (Of course, if ¢ is central, then
o is simply an involution on A4.)

Each right 4-module V becomes a left A-module via a. In particular, the
dual V*=Hom ,(V, A) has a right A-module structure defined, for each f in
V*and ain 4, by

(fO)(0)=a*f ()

forall vin V.
An a-sesquilinear form (subsequently just called a form or scalar product)
on a right A-module Vis a biadditive map Q: Vx V— 4 satisfying

Qua, vby=a*Q(u,v)b

for all u, v in Vand a, b in A. The set Sesq,(V) of forms on V is an additive
abelian group. The formula:

[/ @)]@)=Qu,v)
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defines a group isomorphism f«— Q between Hom ,(¥, V*) and Sesq, (V). A form
Q is called non-singular if the corresponding homomorphism f: V— V* is an
isomorphism.

A form Q on Vis called e-hermitian if

Qu, v)=0(v,u)*e
for all u, v in V, and is called even g-hermitian if
Qu,v)=F(u,v)+ F(v,u)*e

for some F in Sesq,(V) and all u, v in V.

To clarify these definitions, Wall defined a transposition operator
T,: Sesq,(V) - Sesq,(V)

by T, Q(u, v)=Q(v, w)*e. This T, is a group homomorphism, T2=1, and T_,=
—T,. The e-hermitian forms make up the kernel of 1—7,, and the even ¢-
hermitian forms constitute the image of 1+ T,. According to Wall’s definition,
a quadratic form on Vis any element of the cokernel of 1 — T, (see [15, p. 120].)
For greater generality, following A. Bak (in [2, 3]), we fix an additive sub-
group A of A with the two properties:
i) a*dac Aforallain A4,
i) A, c A< A
where
A,={a—a*e: aeA}
A*={acA: a=—a*e}
For any right A-module V, we define X(V, o, &, A) to be the additive group
of all (—¢)-hermitian forms F on V for which F(v, v)e 4 for each vin V.

A guadratic (or more precisely an («, ¢, A)-quadratic) form on V is any element
of the quotient group:

Sesq, (V)/ X (V, o, &, A).

If Vis a finitely generated projective right 4-module, then X (V a, ¢, 4,) coincides
with the image of 1—T,, as shown by the proof of Theorem 1.3 in [3]. So
our quadratic forms include those of Wall. (The various L-groups are constructed
from finitely generated projective modules with nonsingular forms.)

For any quadratic form

q=0+ XV, o, ¢, A)
on V, we define an associated length
[lg: V= 4/4 by |v|,=Q,v)+4
and an associated scalar product or linearization

(gt VX V>4 by (u,0),=0u,v)+Qfv,u)*e.
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Neither of these depends on a choice of coset representative Q. In fact,
a form is taken to its linearization by 1+ T,=1-—T_, which has kernel the
(—e¢)-hermitian forms, and image the even &-hermitian forms on V. Clearly g
is uniquely determined by its length map and linearization. If the even e-hermi-
tian form (,), is non-singular, we call q non-singular.

The lengths and scalar products of elements u, v of V are related by the
following useful identities:

[u+ o], =ulg+vl,+(u, v),
(v, v),=x+x*¢

lval,=a*xa+ A

for any x in |v|, and a in A.

When A = A? the quadratic form ¢ is uniquely determined by its linearization
(,)4, which can be any even e-hermitian form on V. When A does not contain
any nonzero ideals of A4, then g is uniquely determined by its length map | |,.
(To see the latter, note that the additive subgroup of A generated by the values
of (,), is an ideal of A4, contained in A if the length map is zero.)

Now A=0 if and only if e=1, a is the identity, and A is commutative.
This is the case in which | |,: V— A is a classical quadratic form on V.

Another classical case is A=A. Then ¢= —1, « is the identity, and A4 is
commutative. In this case there is a bijection between the quadratic forms g
on V and their linearizations, which are the alternating forms on V.

Remark. The definition of quadratic form used by A. Bak in [1, 2 and 3],
H. Bass in [6] and L.N. Vaserstein in [13] is just a special case of the definition
presented here — namely the case where ¢ is central in A, so that « is an involution.
The data (A, «, &, A) is called a form ring by Bak in [3] and a unitary ring
by Bass in [6]. In [14] and [15], C.T.C. Wall removes the hypothesis that
¢ is central, does not use A, and calls the data (A, «, &) an antistructure.

5. Quadratic spaces and morphisms

If g is a quadratic form on the right A-module V, the pair (V, g) is called a
quadratic space. If (V', q') is another quadratic space over the same A4, «, &
and A, then an A-linear map f: V- V' is called a morphism (V, q)—>(V', q')
of quadratic spaces if

f@)lg=1vl; and (). (W) =(v, W),

for all v, w in V. With these morphisms, the (4, «, & A)-quadratic forms become
a category. A morphism f in this category is an isomorphism (i.e. invertible)
if and only if it is bijective.

If Qeq and Q'eq’ the form Q @ Q' determines a quadratic form g@ ¢’ on
V@ V' which is independent of the choice of Q and Q'. Thus we can define
the orthogonal sum:

VLV, 9=V V',q®q)

as a binary operation on (4, a, &, A)-quadratic forms.
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If a morphism (V’, ¢} = (¥, q) is an inclusion of modules V' <V, we call
(V', ) a quadratic subspace of (V, g). In this case, if ¢’ is non-singular, then
(V', 4') is an orthogonal summand of (¥, g):

Va=(v.q)L(V".q")

where V" is the orthogonal complement of V' under (,),, and g” is the coset
of forms on V" restricting those of g to V.

6. Hyperbolic forms and Witt index

For any right A-module ¥, the hyperbolic space H(V) is the quadratic space
(V@ V*, q), where g is represented by the form Q defined by

2w, u), (v, V) =v'(v)

for all u, v in V and «, v in V*. Recall that V* is a right A-module via a.
If we make V** into a right 4-module via the anti-isomorphism «~!, then
the map B: V- V**, defined by

B@@)=o""(v'(v)

for all v' in V*, is A-linear. It is routine to show that the hyperbolic form
q (above) is non-singular if and only if f is an isomorphism. The latter condition
does not involve A, and (according to Wall [14, p. 2477]) it is independent of
a, and is true when Vis a finitely generated projective 4-module.

Any quadratic space (V, g) can be embedded into the hyperbolic space H(V)
as follows: Pick @ in ¢, and send Vito V@®V* by

v, 00, —))

Of course, each choice of @ gives rise to a different embedding. If g is nonsingular,
each such embedding can be extended to an isomorphism:

V@ LV, —q)=H(V)

of quadratic spaces.

On the other hand, a quadratic space is measured by means of hyperbolic
subspaces. The Witt index, ind(q), of (V, g) is the lagest r=0 for which (¥, gq)
contains a quadratic subspace isomorphic to H(A"). Since H(A") is non-singular,
it is then an orthogonal summand of (V, g).

If vy, ..., 0, is a basis of A", and v}, ..., v, is the dual basis of (4")*, and
if q is the quadratic form in H(A4"), the for each i, j with i ],

Ivi|q=|v;|q=09 (U;,U;),I:l
and

(Uii Uj)q = (U;’ U})q = (U:‘, vj)q =0.
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For an internal description of the Witt index in an arbitrary quadratic space
(V, q), we therefore define a hyperbolic pair in (V, q) to be any (ordered) pair
e, f in Vsatisfying the conditions:

lel,=1f1,=0 and (e,f),=1.

A vector v in Vis called g-unimodular if there is a vector w in V for which
(v, w),=1. In a hyperbolic pair e, f both e and f are g-unimodular, and every
g-unimodular vector e with |e|,=0 can be included in a hyperbolic pair.

The A-linear span of a hyperbolic pair e, f is a subspace of (¥, g) isomorphic
to the hyperbolic plane H(A) by f— 1€ 4, e — identity mape A*. More generally,
the span of mutually orthogonal hyperbolic pairs e,, fi, ..., ¢,, f, is isomorphic
to

H(AY=H(A)L...LH(A) (rcopies).

So ind(g)=r if and only if ¥ contains r mutually orthogonal hyperbolic pairs.

7. The orthogonal group and transvections

Take A, o, &, A, V and g to have the same meaning as above. The group of
automorphisms of the quadratic space (V, q) is called the orthogonal group,
0{q). They are the A-linear automorphisms of V which preserve lengths ||,
and scalar products (,),.

Suppose e and u are elements of V with je|,=0 and (e, u),=0. Choose x
in |u|,. The map (e, u, x): V— Vdefined by

(e, u, x)(v)=v+ule, v),—ee*(u, v),—ec* x(e,v),

belongs to G(q). If e is g-unimodular, then t{e, u, x) is called an orthogonal
transvection.

8. Application of absolute stable rank

Theorem 8.1. Suppose (V, q) is a quadratic space over A. Assume that either
ind(q)=asr(A)+2, or that o is the identity map (so A is commutative} and
ind(q)= asr(A)+ 1. Then O{q) acts transitively on the set of all g-unimodular vec-
tors v in V with a given length |v|,.

Proof. Suppose e, f1, ..., €4, [, are n mutually orthogonal hyperbolic pairs in
(V, q), where n= asr(4)+ 1, and, if « is not trivial, n = asr(A4)+2. Suppose

n n
v=Y ga+ Y fibi+u
i=1 i=1

(a;, bie A, ueV) is a g-unimodular vector with length |v],=x4+ 1 (xeA), where
u is orthogonal to all e;, f;. Note that the coefficients a;, b; (and hence the
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vector u) are uniquely determined by v, since
a?‘ =(U3 f;)q and biz(eia v)q'

We will perform a sequence of orthogonal transvections z(e;, ?, 7) and z(f;
?, 7) on v to transform v to the standard vector e+ f, x of the same length.

Step1. Since v is g-unimodular, there is a vector w orthogonal to all ¢;, f; for
which

> (Aa;+Ab)+A(w,u),=A.
i=1

Since sr(A4)<n, we can make

™M=

(Aa;+Ab)=A

i=1

if we replace v by

n

1—[ (e, wey, ¢ff ye)(v)

i=1

with appropriate c; in A, where ye|w|,.

Step 2. Assume ) (Aa;+ Ab)= A. Since sr(4)<n— 1, we can make,

i=1

n—1
Ab,+ Y (Aa;+Ab)=4

i=1

if we replace v by
n~1
(T ercn0))
i=1

with appropriate ¢; in A.

n-1
Step 3. Assume Ab,+ Y (Aa;+Ab)= A. Replacing v by

i=1

. (en, S et fid), 0) ®
i=1

for appropriate ¢;, d; in A, we can make a,=1+zb, for some z in A4,

So far we have only used sr(4)<n—1, which follows from sr(4)=<asr(A).
At this point we bring to bear the absolute stable range condition, in an altered
but equivalent form:
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Lemma 8.2. For any ring R and positive integer n, astr(R)<n if and only if for
each list ro, ry, ..., 1, of elements from R, there exist ty, t,...,t,_, in R so
that

n—1
R(+hr)+ ¥ R(i+6r)=R

i=0
for every hin R.

Proof. 1f asr(R) < n, use the same coefficients ¢, ..., t,_; which shorten rq, ..., r,.

For the converse, if , is not in a maximal left ideal M containing the r;+1¢; 7,
(0£ign-1), then —1=m+hr, for some min M and h in A. So 1+ hr, belongs
to M, a contradiction.

Step 4. Assume that a,=1+zb, for some z in A, and suppose « is the identity
map (a*=a for all ae A). Since asr(4)<n—1, we can apply Lemma 8.2 to the
list ay, ..., a,, b?; so there are ¢, in 4 with

n—1
A +hb2)+ Y Afa;+c bh)=4
i=1
for all hin A.
Since « is trivial, 4 is a commutative ring. Let B denote the ideal
n—1

Y A(a;+c; bl

i=1
Then bZerad(A/B); so also b,erad(A/B), and

n—1
A(+hb)+ Y Ala;+c;bly=A

i=1

for all h in A. So, if we replace v by

n—1
T (e,,, Z €; C; bn’ 0)(”):

i=1

we then have Aa, + ... + Aa,=A.

Now consider the general case with asr(4)<n—2. Again assume that q,=
1+zb, for some z in A. Apply Lemma 8.2 to the list b,, a,, ..., a,_, to find
c;in A with

n-1
A(L+hb)+ Y Alaj+c;b)=A

i=2

for all hin A. Replacing v by

T (el, nil €; C;y 0)(0),

i=2
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we then have
n—1
A(l+hby)+ Z Aa;=A.
i=2

Since a,=1+1zb,, it follows that Aa,+ Ab,=A. So we can choose c,, d, in
A and replace v by

1(ey, €, Cn+ fo dy, X) ()
(where x€le, ¢, + f, d,l,), to make
Aa+...+Aa,_=A.
So again,
Aay+ ... +Aa,=A.
Step 5. Assume that Aa, + ... + Aa,= A. By replacing v with
(fj,eic;e%,0)(v)  (i$j,c;€A)

we change a; to a;+ ¢; a; without affecting the other coefficients among ay, ..., a,.
Since sr(4)<n—1, we can perform a sequence of such orthogonal transvections
until g, = 1.

Step 6. Assume a, = 1. Replacing v by
T(fla —uﬁ*’ ?)T(fl’ - Zf;bx 8*7 O)T(fla - z €;4; 8*’0)(0)
i=2 i=2

results in v=e¢, + f; b,. Then
x+A=|vl,=le;+fy bil,=b; + 4.
And
©(f1,0,e(by —x) e*)e, + f1 by)=e + f1x,

completing the proof of Theorem 8.1. []

Corollary 8.3. (Cancellation) Suppose (V, q) is a quadratic space with ind(q)=
ast(A). If the anti-isomorphism o is not the identity map, assume further that
ind(q)Z asr(A)+ 1. Suppose (V', ¢') and (V”, q") are quadratic spaces, V" is a
finitely generated projective A-module, q" is non-singular, and

V5q) LV, 4" )=(V,q) L(V", ")
Then (V', 4)=(V, q).
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Proof. Since (V", q”) is isomorphic to an orthogonal summand of
H(AM=H(A)L...L H(4) (ncopies)

for some positive integer n, it suffices to prove the cancellation in the case
(", ¢"y=H(A).

Choose mutually orthogonal hyperbolic pairs e,, f5, ..., ¢,, f, (r=ind(g) + 1)
in (V, g) and let e, f, denote the standard hyperbolic pair in H(A). Identify
these pairs with their images in (¥, q) L H(4). By Theorem 8.1, applied to g-
unimodular elements of length zero, we can compose the given isomorphism

(V',q) LH(A)=(V.q) LH(A4)

with a sequence of orthogonal transvections on (V, q) L H(A), so that the compos-~
ite takes f; to itself, and hence takes e, to some

w=Y ea+ . fib+u

i=1 i=1

(a;, b; in A, u orthogonal to all ¢, f;) for which w, f, is a hyperbolic pair.
In particular, a,=1. Just as in Step 6 of the proof of Theorem 8.1, a sequence
of orthogonal transvections t(f;, 7, ?) will take w to e,. Since 7(f}, 7, ?) fixes
f1, the entire composite of the above isomorphisms takes the orthogonal sum-
mand H(A) to itself. Since H(A) is non-singular, this composite restricts to
the desired isomorphism (V', ¢)=(V, q). [

Note. The proof of Theorem 8.1 also works under the hypotheses: 4 is commuta-
tive, ind(q) = asr(4)+ 1, and for all a in A4, a(a)e Aa (or equivalently « leaves
ideals invariant). So the conclusion of Corollary 8.3 also works under the hypoth-
eses: A is commutative, ind(g) = asr(A), and « leaves ideals invariant.
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