
Complexity of an extended lattice reduction
algorithm

Wilberd van der Kallen

December 1998

1 Summary

We consider the complexity of a Lenstra Lenstra Lovász lattice reduction
algorithm ([LLL]) in which the vectors are allowed to be linearly dependent
and in which one also asks for the matrix of the transformation from the
given generators to the reduced basis. The main problem will be to show
that the entries of the transformation matrix remain bounded through the
algorithm, with a reasonable bound. Here the difficulty is of course that due
to the dependence of the generators the transformation is not determined by
the basis. To remedy this we work with two inner products and apply the
LLL methods to both.

2 Description of GramLatticeReduce

Let e1,. . . ,en be the standard basis of Rn. The input of GramLatticeReduce
is the Gram matrix gram = (〈ei, ej〉)ni,j=1 of a positive semidefinite inner
product 〈 , 〉 on Rn. We assume gram has integer entries. We are concerned
with the lattice Zn. The output of GramLatticeReduce is an integer rank
and an integer matrix b of determinant one. To explain its properties we need
some more notation. The ordinary inner product on Rn is denoted ( , ). Call
v isotropic if 〈v, v〉 = 0. Put isodim = n − rank and let b∗i denote the i-th
Gram-Schmidt vector in the following sense. We have b∗i ∈ (bi +

∑i−1
j=1Rbi)

and if 1 ≤ j < i, j ≤ isodim then (b∗i , bj) = 0, but if 1 ≤ j < i, j > isodim
then 〈b∗i , bj〉 = 0. With those notations the output satisfies:

1



1. The first isodim rows bi of b are isotropic.

2. With respect to ( , ) the first isodim rows of b form an LLL reduced
basis of

∑isodim
j=1 Zbi.

3. With respect to 〈 , 〉 the last rank rows of b form an LLL reduced basis
of the lattice they span, and this lattice contains no nonzero isotropic
vector.

4. For 1 ≤ i ≤ isodim, i < j ≤ n we have |(b∗i , bj)| ≤ 1/2(b∗i , bi).

Remark 2.1 Variations are possible, depending on what one is really after.
If one is only interested in the isotropic vectors, one may weaken condition
3 to

3’ The last rank rows of b form a basis of the lattice they span, and this
lattice contains no nonzero isotropic vector. Furthermore, |〈b∗i , bj〉| ≤
1/2〈b∗i , bi〉 for n− rank + 1 ≤ i ≤ n, i < j ≤ n.

Similarly, one may wish to replaces condition 2 with

2’ For 1 ≤ i ≤ isodim, i < j ≤ isodim we have |(b∗i , bj)| ≤ 1/2(b∗i , bi).

These changes do not affect our analysis in any essential way. One just has
to change the wording, not the formulas. And in the algorithm one has to
leave out some swaps.

3 Description of ExtendedLatticeReduce

Given generators b1, . . . , bn of a sublattice of Zm, the algorithm
ExtendedLatticeReduce basically just calls GramLatticeReduce with as in-
put the Gram matrix ((bi, bj))

n
i,j=1.

4 Sketch of the algorithm

We assume the reader is familiar with [LLL] and also with the implementation
of the LLL algorithm in integer arithmetic, as described in [C].

Most of the time we are given

• An integer matrix b of determinant one,

2



• Integers k, kmax , 1 ≤ k ≤ kmax ≤ n,

• An integer isodim ≥ 0, so that the first isodim rows bi of b span the
isotropic subspace of

∑kmax
j=1 Rbj.

(Initialize with k = kmax = 1 and isodim = 0.)
Let priso be the orthogonal projection according to ( , ) of Rn onto∑isodim
j=1 Rbj and put

(v, w)mix = (prisov, prisow) + 〈v, w〉.

Let µi,j be defined for i > j so that

bi = b∗i +
i−1∑
j=1

µi,jb
∗
j .

The first standard assumption is then that, with respect to ( , )mix, the
first k− 1 rows of b form an LLL reduced basis of

∑k−1
j=1 Zbj, except that one

does not require
|b∗i + µi,i−1b

∗
i−1|2mix ≥ 3/4|b∗i−1|2mix

when i = isodim + 1. And the second standard assumption is that, as in [C],
the first kmax rows of b form a basis of

∑kmax
j=1 Zei.

We run the LLL algorithm with respect to ( , )mix, except that one
never swaps bisodim with bisodim+1. This roughly amounts to running two LLL
algorithms, one for ( , ) and one for 〈 , 〉. That is how one implements
it and that is how we would have told it if we had not needed ( , )mix for
the complexity analysis. One runs LLL until k tries to go to kmax + 1. If
kmax = n we are through. If kmax < n and

∑kmax+1
j=1 Zbj contains no more

isotropic vectors than
∑kmax

j=1 Zbj, then we simply increase kmax by one.
In the remaining case we have to work until we are back in the standard

situation with k = 2 and with both isodim and kmax one bigger. This is what
trickledown is for. We postpone its discussion. At the end of trickledown
we also make that |µi,j| ≤ 1/2 for j < i ≤ kmax . This may not be necessary
(and indeed we did not do this in earlier versions) but it can do little harm
and definitely simplifies the estimates below.

3



5 Estimates

We want to give estimates as in [LLL]. Thus let B ≥ 2 so that the entries of
gram are at most B. Our main result is that all through the algorithm all
entries have bit length O(n log(nB)). We do not care about the constants in
this estimate. We leave to the reader the easy task of estimating the number
of operations in the algorithm in the manner of [LLL].

5.1 Determinants

Let grammix be the Gram matrix ((ei, ej)mix) with respect to e1, . . . , ekmax .
Its entries are at most B + 1. With Hadamard this gives

| det(grammix)| ≤ (
√
n(B + 1))n

and the same estimate holds for its subdeterminants. We claim that the
determinant of grammix is an integer, so that we also get this upper bound
for the entries of gram−1

mix. To see the claim, consider as in [P] the inner
product ( , )ε given by (v, w)ε = ε(v, w) + 〈v, w〉. Its Gram matrix has a
determinant which is a polynomial detε of ε with integer coefficients. One
may also compute detε with respect to a basis which is obtained from e1,
. . . , ekmax through an orthogonal transformation matrix. By diagonalizing
the Gram matrix of 〈 , 〉 we see that det(grammix) is the coefficient of εisodim

in detε. 2

Lemma 5.2 For v ∈ Rn one has

(v, v)mix ≤ n(B + 1)(v, v)

and for v ∈
∑kmax

j=1 Rej one has

(v, v) ≤ n(
√
n(B + 1))n(v, v)mix.

Proof

The supremum of { (v, v)mix | (v, v) = 1 } is the largest eigenvalue of the
gram matrix of ( , )mix with respect to e1, . . . , en. The largest eigenvalue is
no larger than the trace of this matrix. So it is at most n(B + 1). Similarly
the largest eigenvalue of gram−1

mix it is at most n(
√
n(B + 1))n. 2

4



5.3 Vectors

Now put

disoi =
i∏

j=1

(b∗j , b
∗
j)

for i ≤ isodim and

di =
i∏

j=1

〈b∗j+isodim , b
∗
j+isodim〉

for i ≤ rank . As far as di is concerned we may compute modulo isotropic
vectors, or also with ( , )mix. Indeed

〈b∗j+isodim , b
∗
j+isodim〉 = (b∗j+isodim , b

∗
j+isodim)mix

for 1 ≤ j ≤ rank . Both disoi and dj are integers and they descend when
applying LLL.

One may also compute det(grammix) with the b∗i basis, as the transition
matrix has determinant one. From that one sees that it is just disoisodimdrank .
So we get disoisodim ≤ (

√
n(B + 1))n. In fact, for i ≤ isodim one has the

same estimate
disoi ≤ (

√
n(B + 1))n

because i was equal to isodim earlier in the algorithm and LLL only makes it
go down. Similarly drank ≤ (

√
n(B + 1))n, but actually we know from [LLL]

that
di ≤ Bi.

(This is not spoiled by trickledown which also makes di descend.)

Lemma 5.4 Let 1 ≤ i ≤ kmax. Then

(
√
n(B + 1))−n ≤ (b∗i , b

∗
i )mix ≤ (

√
n(B + 1))n

and if |µij| ≤ 1/2 for 1 ≤ j < i then

(bi, bi)mix ≤ n(
√
n(B + 1))n

2

Remark 5.5 These estimates are not as sharp as those in [LLL] but that can
not be helped: It is no longer true that (b∗1, b

∗
1) ≤ B. Consider for instance

the quadratic form 〈v, v〉 =
∑n−1

i=1 (Nxi − xi+1)
2 for some large integer N .

The shortest nonzero isotropic vector in Zn is (1, N,N2, . . . , Nn).

5



5.6 Preserved estimates

Lemma 5.7 The following estimates hold between applications of
trickledown.

1. disoi ≤ (
√
n(B + 1))n for i ≤ isodim,

2. di ≤ Bi for i ≤ rank,

3. (bi, bi)mix ≤ n(
√
n(B + 1))n for i 6= k,

4. (bk, bk)mix ≤ n24n(
√
n(B + 1))3n,

5. |µi,j| ≤ 1/2 for 1 ≤ j < i < k,

6. |µk,j| ≤ 2n−k
√
n(
√
n(B + 1))n for 1 ≤ j < k,

7. |µi,j| ≤
√
n(
√
n(B + 1))n for 1 ≤ j < i > k.

Proof

That these are preserved under LLL follows as in [LLL], so one has to check
that they hold right after trickledown. Given our earlier estimates this is
straightforward. 2

6 Description of trickledown

Before we can do estimates concerning trickledown we must describe it.
One starts with having k = kmax + 1 ≤ n. Consider the lattice generated by
b1, . . . , bkmax+1 where bkmax+1 = ekmax+1. By assumption this lattice contains
a nonzero vector v with (v, v)mix = 0. Modulo Rv the vector bk is linearly
dependent on the bi with i < k. Changing the basis of Zbk−1 + Zbk we can
achieve that modulo Rv the vector bk−1 is linearly dependent on the bi with
i < k−1. Then lower k by one and repeat until k = isodim+1, where isodim
is the one from before the present trickledown. At that point bk is itself
isotropic and we increase isodim by one and pass to a new ( , )mix. After
subtracting suitable multiples of bj with j < i from bi for all i we arrive at
the situation where |µi,j| ≤ 1/2 and we leave trickledown with k = 2 (or
k = max(isodim, 2)) and with kmax increased by one.

6



7 Estimates during trickledown

We look in more detail. Upon entering trickledown we freeze the old
isodim, kmax and the b∗i , even though the bi will change. We also do
not change ( , )mix. Let µi,0 stand for (ekmax+1, bi) and let µi,j stand for
(b∗j , bi)mix/(b

∗
j , b

∗
j)mix if j > 0. Note that initially |µi,j| ≤ 1 for i ≤ kmax ,

0 ≤ j ≤ kmax . We will estimate |µi,j| as k descends.
Say k > isodim + 1 and modulo Rv the vector bk is linearly dependent on

the bi with i < k. Let us compute with bk, bk−1 modulo V = Rv+
∑k−2

i=1 Rbi.
We have bk ≡ µk,k−1b

∗
k−1 and bk−1 ≡ b∗k−1 modulo V . With the extended

euclidean algorithm of [C] we find an integer matrix

(
α β
γ δ

)
of determinant

one so that

(
α β
γ δ

)(
1

µk,k−1

)
=

(
0

−1/rk

)
where rk is the index of Z in

Z+Zµk,k−1. More specifically, one has

(
δ −β
−γ α

)(
0

−1/rk

)
=

(
1

µk,k−1

)
so β = rk and α = −rkµk,k−1. By [C] we have |γ| ≤ |µk,k−1rk| and |δ| ≤ rk.
(Here we assume for simplicity that µk,k−1 is not zero.)

Now put ck−1 = αbk−1 + βbk and ck = γbk−1 + δbk. The algorithm will
tell us to replace bk with ck and bk−1 with ck−1. We want to estimate the
resulting new µi,j, which we call νi,j. For i different from k, k − 1 nothing
changes. Further |νk−1,j| = |αµk−1,j + βµk,j| ≤ rk|µk,k−1µk−1,j|+ rk|µk,j| and
|νk,j| = |γµk−1,j+δµk,j| ≤ rk|µk,k−1µk−1,j|+rk|µk,j|, which is the same bound.

Remark 7.1 During trickledown the di are repeatedly replaced by divi-
sors. As we are recording the µi,j with j > isodim as fractions with a de-
nominator dj−isodim , this means that one has to update the numerators too.
By remembering the rk one can postpone all this updating until the end of
trickledown, processing the product of the corrections, rather than each
correction separately.

Lemma 7.2 As k descends we have

1. |µi,j| ≤ 1 for k > i > j ≥ 0,

2. |µk,j| ≤
√
B(
√
n(B + 1))n/2

∏kmax+1
i=k+1 (2ri) for k > j ≥ 0,

3. |µi,j| ≤ 2nnn/4(B + 1)n for k ≤ i > j ≥ 0.

7



Proof

Initially we have k = kmax + 1 and we estimate |µk,j|2 ≤ B(b∗j , b
∗
j)

−1
mix ≤

B(
√
n(B + 1))n. Now assume the estimates are true for the present k.

We get |νk−1,j| ≤ rk|µk,k−1µk−1,j| + rk|µk,j| ≤ 2rk maxj |µk,j| which takes

care of |νk−1,j|. As
∏kmax+1

k=isodim+2 r
2
k is the ratio by which drank drops during

trickledown, it is at most Brank . So |νk,j| ≤
√
B(
√
n(B+1))n/22nBrank/2. 2

Remark 7.3 Experiments show it is wise to insert a reduce step to make
that |µk,j| ≤ 1/2 for j 6= 0.

7.4 Increasing isodim

When k has reached isodim + 1 it is time to increase isodim by one and pass
to a new ( , )mix. But first use the estimates of the µi,j to estimate (bi, bi)mix

and (µi,0ekmax+1, µi,0ekmax+1)mix, next (bi − µi,0ekmax+1, bi − µi,0ekmax+1) by
means of Lemma 5.2, and finally (bi, bi).

Now change isodim, kmax , ( , )mix. We have to compute the new
µj,isodim . They can be estimated, as we have an estimate for (bj, bj) and
for (b∗isodim , b

∗
isodim)−1

mix.
Finally we reduce to the case |µi,j| ≤ 1/2 for i > j. During this reduction

the maximum of the |µi,j| gets at most 2n as large by the argument in [LLL].
We have seen that all the integers that are encountered have bit length

O(n log(nB)).

8 Implementation in Mathematica

(*:Name: NumberTheory‘LLLalgorithm‘ *)

(*:Summary: The extended Lenstra Lenstra Lovasz algorithm finds *)

(* a lattice basis consisting of "short" vectors, *)

(* together with a transformation that relates the new *)

(* basis with the original set of generators. Instead of *)

(* giving a generating set directly, one may also give *)

(* its Gram matrix. When the generators are linearly *)

(* dependent, a reduced basis of the lattice of relations *)

(* ("null space lattice") is also obtained. *)

8



(*:Author: Wilberd van der Kallen, 1998 *)

(*:Mathematica Version: 3.0 *)

(*:Package Version: 1.111 *)

(*:Warnings: *)

(* For us a lattice in euclidean n-space need not be of full rank n. *)

(*:Sources: For the original LLL paper, see *)

(* Mathematische Annalen 261, 515-534 (1982). *)

(* For the case of dependent vectors, see *)

(* M. Pohst, A modification of the LLL-algorithm, *)

(* Journal of Symbolic Computation 4 (1987), 123--128. *)

(* Much of the code below relies on: *)

(* Henri Cohen, A course in computational Algebraic Number Theory, *)

(* Graduate Texts in Mathematics 138, Springer 1993. *)

(* :Discussion: This version is a rather minimal version with few *)

(* options. It may serve to document the algorithm. *)

(* *)

(* We add ExtendedLatticeReduce and GramLatticeReduce to the *)

(* builtin function LatticeReduce. *)

(* *)

(* ExtendedLatticeReduce[matrix] *)

(* *)

(* computes a reduced basis of two lattices. One is the row space *)

(* lattice spanned by the rows of the matrix, the other is the null *)

(* space lattice, consisting of vectors v that have integer entries *)

(* and satisfy v.matrix=0. (Contrary to the function NullSpace, we *)

(* are concerned with multiplication from the left here.) *)

BeginPackage["LLLalgorithm‘"]

ExtendedLatticeReduce::usage:=

"ExtendedLatticeReduce[{v1, v2, ...}] gives

{reduced basis,transformation}

where the transformation is an integral matrix T of determinant plus or

minus one such that the rows of T.{v1, v2, ...} form a reduced basis,

9



possibly preceded by zero vectors. These zero vectors occur if the

integral vectors vi are linearly dependent. In that case the

corresponding top part of T is a reduced basis of the ‘null space

lattice’.";

GramLatticeReduce::usage:=

"GramLatticeReduce[{{vi.vj}}] gives {rank of lattice,transformation}

where the transformation is an integral matrix T of determinant plus or

minus one such that the rows of T.{v1, v2, ...} form a reduced basis,

possibly preceded by zero vectors. These zero vectors occur if the

vectors vi are linearly dependent.\n

The Gram matrix {{vi.vj}} should have rational entries.";

RatioLLLCondition::usage:="RatioLLLCondition is an option in

ExtendedLatticeReduce and in GramLatticeReduce.

It tells which ratio to use in the criterion for an LLL

reduced basis. The default is 3/4, but for some applications one should

take it closer to one.\n

RatioLLLCondition->{3/4,19/20,99/100} causes

three passes, with ratios 3/4, 19/20, 99/100 respectively."

(*:Examples:

In[1]:= <<LLLalgorithm.m

In[2]:= generatingset={{1,2,3},{4,5,6},{7,8,9},{10,11,12}};

In[3]:= {reducedbasis,transformation}=ExtendedLatticeReduce[generatingset]

Out[3]= {{{2, 1, 0}, {-1, 1, 3}},

> {{1, -1, -1, 1}, {1, -2, 1, 0}, {-1, -1, 1, 0}, {2, 1, -1, 0}}}

In[4]:= transformation.generatingset

Out[4]= {{0, 0, 0}, {0, 0, 0}, {2, 1, 0}, {-1, 1, 3}}

In[5]:= Take[%,-Length[reducedbasis]]

10



Out[5]= {{2, 1, 0}, {-1, 1, 3}}

In[6]:= %==reducedbasis

Out[6]= True

In[7]:= GramLatticeReduce[generatingset.Transpose[generatingset]]==

{Length[reducedbasis],transformation}

Out[7]= True

In[8]:= reducedbasisnullspace=Take[transformation,Length[transformation]-

Length[reducedbasis]]

Out[8]= {{1, -1, -1, 1}, {1, -2, 1, 0}}

In[9]:= reducedbasisnullspace.generatingset

Out[9]= {{0, 0, 0}, {0, 0, 0}}

*)

Unprotect[ExtendedLatticeReduce,GramLatticeReduce];

Options[ExtendedLatticeReduce]={RatioLLLCondition->3/4};

Options[GramLatticeReduce]={RatioLLLCondition->3/4};

Begin["LLLalgorithm‘Private‘"]

(* The following will be local to this Private block:

answer m

b mat

basis matextendedgcd

bbb moreratios

coefficient n

coefficientiso

11



cond notLLLcond

d notLLLcondiso

diso post

px

error py

extendedLLL q

finished r

four rank

gcd rat

gram ratiolist

gramLLL red

gramorg rules

i setratio

incGS swap

init swaptail

inner swaptailiso

integerbody t

isodim testgramm

testLLLcondition

j testm

k three

kmax trickledown

l v

la val

LLLbranch w

LLLratio x

LLLratiolist y

*)

(* MAIN INTERFACE *)

ExtendedLatticeReduce[m_,rules___Rule]:=

(

LLLratio=(RatioLLLCondition/.{rules}/.Options[ExtendedLatticeReduce]);

extendedLLL[m]

)

GramLatticeReduce[m_,rules___Rule]:=

12



(

LLLratio=(RatioLLLCondition/.{rules}/.Options[GramLatticeReduce]);

gramLLL[m]

)

extendedLLL[m_]:=

CheckAbort[(

testm[m];

integerbody;answer={Take[b.basis,-rank],b}

)

,$Failed

]

gramLLL[m_]:=

CheckAbort[(

testgramm[m];

integerbody;answer={rank,b}

)

,$Failed

]

(* SUBROUTINES *)

(* ----- Purpose of testm:

Test if main argument of ExtendedLatticeReduce is legal.

Compute gram matrix.

------- *)

testm[m_]:=

(

basis=m;

(* begin check argument *)

error:=(Message[ExtendedLatticeReduce::argint,basis];Abort[]);

If[MatrixQ[basis],

Map[(If[ #[[0]]===Integer,,error])&,basis,{2}]

,

error

];

13



(* end check argument *)

gram=basis.Transpose[basis];

If[MatrixQ[gram],,error]

(* To catch "matrices" like {{}}, whose transpose is not a matrix. *)

);

(* ----- Purpose of testgramm:

Test if main argument of GramLatticeReduce is legal.

(But positive semi definiteness will have to wait.)

Remove denominators in gram matrix.

------- *)

testgramm[m_]:=

(

gramorg=gram=m;

(* begin check argument *)

error:=(Message[GramLatticeReduce::argrat,gram];Abort[]);

If[MatrixQ[gram],

Map[(If[ #[[0]]===Integer || #[[0]]===Rational,,error])&,gram,{2}]

,

error

];

If[Length[gram]!=Length[gram[[1]]],error];

If[Length[Union@@(gram-Transpose[gram])]>1,error];

(* end check argument *)

If[Count[gram,_Rational,{2}]>0,

gram=LCM@@(Union@@(Map[Denominator,gram,{2}]))gram

];

);

(* ----- Purpose of integerbody:

Body of integer arithmetic algorithm.

------- *)

integerbody:=

(

For[init;

,

14



moreratios

,

moreratios=(LLLratiolist=!={})

,

For[setratio,!finished,,testLLLcondition]; (* main loop *)

];

post;

)

(* ----- Purpose of init:

Initializing for integer arithmetic.

------- *)

init:=(

n=Length[gram]; (* Number of vectors *)

b=Hold@@(IdentityMatrix[n]); (* Will be the transformation matrix *)

d=Hold@@(Range[n+1]); (* Will be a list of denominators *)

la=Hold@@(Table[0,{i,n},{j,i-1}]); (* Will be list of numeratos *)

(* The Hold wrapper is used here because Part does not have Attribute *)

(* HoldFirst. We want to use Part frequently, without re-evaluating *)

(* all entries each time. This starts to matter when n gets large. *)

diso=d; (* Will also be a list of denominators *)

rank=isodim=0;(* isodim is dimension of isotropic subspace *)

LLLratiolist=ratiolist[LLLratio];(* The quality ratios. The default is 3/4. *)

moreratios=True;

kmax=0;(* Number of vectors for which tables are filled. *)

k=1; (* The index of the vector on which attention is focussed *)

incGS;

);

(* ----- Purpose of ratiolist:

Interface for the option RatioLLLCondition.

------- *)

ratiolist[r_Rational]:={r};

ratiolist[{r__Rational}]:={r};

15



ratiolist[r_]:=(Message[RatioLLLCondition::argrat,r];Abort[]);

(* ----- Purpose of setratio:

Process the option RatioLLLCondition and help initializing.

------- *)

setratio:=(

LLLratio=First[LLLratiolist];

If[(1/4<LLLratio<1)

,

three=Numerator[LLLratio];

four=Denominator[LLLratio];

LLLratiolist=Rest[LLLratiolist];

,

Message[RatioLLLCondition::argrat,LLLratio];Abort[]

];

k=2;

finished=False;

If[(k<=n)

,

incGS

,

finished=True

]

);

(* ----- Purpose of post:

Removing the Hold wrapper.

------- *)

post:=

(

b=List@@b;

)

(* ----- Purpose of incGS:

If b[[k]] is new, extend tables.

If existence of other isotropic vector is detected, go find it and

16



reorganize, changing "everything".

------- *)

incGS:=

(

If[k>kmax

,

kmax=k;

Do[coefficient[k,j]

,{j,isodim+1,k}

];

Do[coefficientiso[k,j]

,{j,isodim}

];

If[d[[k+1]]<=0,trickledown,rank++]

];

);

(* ----- Purpose of inner:

The inner product described by the gram matrix.

------- *)

inner[v_,w_]:=v.gram.w;(* used only in one place *)

(* ----- Purpose of coefficientiso[k,j]:

Computes la[[k,j]] or diso[[k+1]] assuming tables are up to date for smaller

indices. It assumes j<=isodim, as it works with the euclidean inner product

on the rows of the transformation matrix b.

------- *)

coefficientiso[k_,j_]:=

(

q=Dot[b[[k]],b[[j]]];

Do[q=(diso[[i+1]]q-la[[k,i]]la[[j,i]])~Quotient~diso[[i]],{i,j-1}];

If[j<k,la[[k,j]]=q,diso[[k+1]]=q]

);

(* ----- Purpose of coefficient[k,j]:

17



Computes la[[k,j]] or d[[k+1]] assuming tables are up to date for smaller

indices. It assumes j>isodim, as it works with the inner product given

by the gram matrix.

------- *)

coefficient[k_,j_]:=

(

q=inner[b[[k]],b[[j]]];

Do[q=(d[[i+1]]q-la[[k,i]]la[[j,i]])~Quotient~d[[i]],{i,isodim+1,j-1}];

If[j<k,la[[k,j]]=q,d[[k+1]]=q]

);

(* ----- Purpose of testLLLcondition:

After straightening b[[k]] with respect to b[[k-1]], move to testing

the relevant LLL condition, if any.

------- *)

testLLLcondition:=

(

red[k-1];

If[k>isodim+1

,

LLLbranch[notLLLcond];

,

LLLbranch[(k!=isodim+1)&&notLLLcondiso]

]

);

(* ----- Purpose of LLLbranch[cond]:

Depending on cond, take branch in LLL algorithm.

------- *)

LLLbranch[cond_]:=(* given k *)

If[cond

,

swap;

k=Max[2,k-1]

,

18



For[l=k-2,l>0,l--,red[l]];

k++;

If[k<=n,incGS,finished=True]

];

(* ----- Purpose of notLLLcond:

Tell if the LLL condition is violated for the inner product given by the

gram matrix.

----- Purpose of notLLLcondiso:

Tell if the LLL condition is violated for the euclidean inner product

on the rows of the transformation matrix b.

------- *)

notLLLcond:=(* given k *)

four*d[[k+1]]d[[k-1]]<(three*d[[k]]^2-four*la[[k,k-1]]^2);

notLLLcondiso:=(* given k *)

four*diso[[k+1]]diso[[k-1]]<(three*diso[[k]]^2-four*la[[k,k-1]]^2);

(* ----- Purpose of red[l]:

Subtract appropriate multiple of b[[l]] from b[[k]] and update table la

accordingly.

------- *)

red[l_]:=(* given k *)

(

t=If[l>isodim,d[[l+1]],diso[[l+1]]];

If[Abs[2la[[k,l]]]>t

,

q=Quotient[2la[[k,l]]+t,2t];

b[[k]]=b[[k]]-q b[[l]];

la[[k,l]]=la[[k,l]]-q t;

Do[la[[k,i]]=la[[k,i]]-q la[[l,i]];,{i,l-1}]

]

);

(* ----- Purpose of swap:

19



Swap b[[k-1]] with b[[k]] and update tables la, d, diso

accordingly.

------- *)

swap:=(* given k *)

(

{b[[k]],b[[k-1]]}={b[[k-1]],b[[k]]};

Do[{la[[k-1,j]],la[[k,j]]}={la[[k,j]],la[[k-1,j]]},{j,k-2}];

q=la[[k,k-1]];

If[k>isodim

,

swaptail

,

swaptailiso

]

);

(* ----- Purpose of swaptail:

Finish updating tables la and d in a swap.

------- *)

swaptail:=(* given k, q *)

(

bbb=(d[[k-1]]d[[k+1]]+q^2)~Quotient~d[[k]];

Do[

t=la[[i,k]];

la[[i,k]]=(d[[k+1]]la[[i,k-1]]-q t)~Quotient~d[[k]];

la[[i,k-1]]=(bbb t+q la[[i,k]])~Quotient~d[[k+1]]

,{i,k+1,kmax}

];

d[[k]]=bbb

);

(* ----- Purpose of swaptailiso:

Finish updating tables la and diso in a swap.

------- *)

swaptailiso:=(* given k, q *)

20



(

bbb=(diso[[k-1]]diso[[k+1]]+q^2)~Quotient~diso[[k]];

Do[

t=la[[i,k]];

la[[i,k]]=(diso[[k+1]]la[[i,k-1]]-q t)~Quotient~diso[[k]];

la[[i,k-1]]=(bbb t+q la[[i,k]])~Quotient~diso[[k+1]]

,{i,k+1,kmax}

];

diso[[k]]=bbb

);

(* ----- Purpose of matextendedgcd[x,y]:

Compute the gcd and the matrix implicit in the euclidean algorithm.

------- *)

matextendedgcd[x_,y_]:=

({gcd,{px,py}}=ExtendedGCD[x,y];{{-y~Quotient~gcd,x~Quotient~gcd},{px,py}});

(* ----- Purpose of trickledown:

To compute another vector which is isotropic with respect to the inner product

given by the gram matrix and to put it before the nonisotropic vectors.

To adapt b, isodim, k, la, d, diso to the new situation.

------- *)

trickledown:=

(

(* *)

If[d[[k+1]]<0,Message[GramLatticeReduce::neg,gramorg];Abort[]];

rat=Hold@@(Table[1,{kmax}]); (* Hold@@ is not essential, cf. comment below *)

Do[

k--;

mat=matextendedgcd[d[[k+1]],la[[k+1,k]]];

rat[[k+1]]=mat[[1,2]];

{b[[k]],b[[k+1]]}=mat.{b[[k]],b[[k+1]]};

Do[{la[[k,j]],la[[k+1,j]]}=mat.{la[[k,j]],la[[k+1,j]]},{j,k-1}];

For[l=k-1,l>0,l--,red[l]];

,

{rank}

21



];

isodim++;(* "null space part" = isotropic part of b is increased *)

rat=Rest[FoldList[Times,1,rat]]; (* cumulative volume ratios *)

(* Only now do we update d and la *)

Do[

d[[k+1]]=(d[[k]])~Quotient~(rat[[k]]^2);

q=rat[[k]]rat[[k-1]];

Do[la[[j,k]]=Quotient[la[[j,k-1]],q],{j,k+1,kmax}];

,

{k,kmax,isodim+1,-1}

];

d[[isodim+1]]=1;

Do[coefficientiso[k,isodim],{k,isodim,kmax}];

Do[red[l],{k,isodim,kmax},{l,k-1,1,-1}];

k=Max[isodim,2]

);

(* MORE OF THE INTERFACE *)

ExtendedLatticeReduce[m__,{rules___},more___]:=

ExtendedLatticeReduce[m,rules,more]

ExtendedLatticeReduce[___]:=(

Message[ExtendedLatticeReduce::argw,val];$Failed);

GramLatticeReduce[m__,{rules___},more___]:=

GramLatticeReduce[m,rules,more]

GramLatticeReduce[___]:=(

Message[GramLatticeReduce::argw];$Failed);

(* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *)

(* Error messages. *)

22



ExtendedLatticeReduce::argint:=

"Argument ‘1‘ of ExtendedLatticeReduce should be a matrix with integral

entries."

ExtendedLatticeReduce::argw:="ExtendedLatticeReduce called with wrong

number of arguments. One argument is expected.";

GramLatticeReduce::argrat:=

"Argument ‘1‘ of GramLatticeReduce should be a symmetric matrix

with rational entries."

GramLatticeReduce::argw:="GramLatticeReduce called with wrong number of

arguments. One argument is expected.";

GramLatticeReduce::neg:="Gram matrix ‘1‘ has negative eigenvalue; it should

be positive semi definite."

RatioLLLCondition::argrat:=

"Value ‘1‘ of RatioLLLCondition should be a rational number

between 1/4 and 1, or a list of such numbers."

(* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *)

End[]

Protect[ExtendedLatticeReduce,GramLatticeReduce,RatioLLLCondition];

EndPackage[]

Null

23



9 Implementation in GP/PARI

\\ \\

\\ Extended Lenstra Lenstra Lovasz algorithm. \\

\\ \\

\\ NAME extendedlll \\

\\ \\

\\ DESCRIPTION \\

\\ \\

\\ By default extendedlll computes LLL reduced bases of both the lattice \\

\\ L spanned by the generating set and the lattice R of integer \\

\\ relations between the generators. It is an extended algorithm in \\

\\ that it returns the needed transformation as second entry. \\

\\ \\

\\ SYNOPSIS \\

\\ \\

\\ extendedlll(m[,isgram[,reducecolumnspaceoff[,reducerelationsoff]]]) \\

\\ \\

\\ Here isgram, reducecolumnspaceoff, reducerelationsoff are 0 or 1. \\

{\

\\ PROGRAM \\

extendedlll(X,\

\\ X is matrix with integer entries \\

\\ OPTIONS \\

isgram,\

\\ isgram is an option to indicate, \\

\\ by means of value 1, \\

\\ that the matrix X should be understood \\

\\ as Gram matrix. If isgram is 0 or absent, \\

\\ then the columns of the matrix X are \\

\\ understood as generators of the lattice L. \\

reducecolumnspaceoff,\

\\ option to indicate if nonreduced basis of \\

\\ the lattice L is acceptable. \\

24



reducerelationsoff,\

\\ option to indicate if nonreduced basis of \\

\\ the relation lattice R is acceptable. \\

\\ LOCAL VARIABLES \\

B,\

\\ table of denominators \\

Gram,\

\\ Gram matrix \\

H,\

\\ transformation matrix \\

Lam,\

\\ table of numerators \\

R,

\\ table of volume ratios \\

A,C,D,Matr11,Matr12,Matr21,Matr22,Q,Q2,T1,T3,Tmp,Tmp2,V1,V3,\

isodim,k,kk,kmax,l,ll,n,nxt,notfinished,rnk,s,s1,s2)\

\\ LOCAL LOOP VARIABLES ii,j \\

=\

\\ INITIALIZATION \\

\\ Check matrix argument. \\

if(type(X)!="t_MAT",print("extendedlll: argument is no matrix");1/0,);

Q2=matsize(X);

k=Q2[2];

for(ii=1,Q2[1],\

for(j=1,k,\

if(type(X[ii,j])!="t_INT",\

print("extendedlll: matrix entry is no integer");1/0\

,\

)\

)\

);

\\ Get Gram matrix. \\

25



if(isgram,\

Gram=X;

if(Gram==Gram~,\

,\

print("extendedlll: Gram matrix is not symmetric.");1/0\

\\ Actually one may wish to use that the entries below the diagonal do \\

\\ not affect the computation, and thus forget the symmetry requirement. \\

);

,\

Gram=(X~)*X\

);

s1=if((1-reducecolumnspaceoff),1,0);

s2=if((1-reducerelationsoff),1,0);

notfinished=1;

n=matsize(Gram)[1];

H=matid(n);

\\ The array B must be long enough to keep the isotropic part separate. \\

B=vector(n+2,ii,1);

Lam=H;

rnk=0;

isodim=0;

kmax=0;

k=1;

kmax=k;

\\ Gram Schmidt coefficients of first generator. \\

B[k+2]=(H[,k]~)*Gram[,k];

s=sign(B[k+2]);

if(s<=0,\

\\ It is a relation. The rank of the lattice R of relations increases. \\

isodim=isodim+1;

if(s,\

print("extendedlll: Gram matrix is not positive semi-definite.");1/0\

,\

);

B[isodim+2]=1;

\\ Gram Schmidt coefficients of relation. Here the ordinary inner \\

\\ product is relevant, not the one given by Gram. For the \\

\\ latter, relations are isotropic. Whence the name isodim. \\

26



B[k+1]=(H[,k]~)*(H[,k]);

,\

\\ It is not a relation, and rank of lattice L increases. \\

rnk=rnk+1\

);

nxt=0;

k=2;

if((k<=n),nxt=1,notfinished=0);

\\ MAIN LOOP \\

while(notfinished,\

if(nxt,\

if(k>kmax,\

\\ Add generator. \\

kmax=k;

\\ Gram Schmidt coefficients of new generator. \\

for(j=isodim+1,k,\

Q=(H[,j]~)*Gram[,k];

for(ii=isodim+1,j-1,Q=(B[ii+2]*Q-Lam[k,ii]*Lam[j,ii])/B[1+ii]);

if(j<k,Lam[k,j]=Q,B[k+2]=Q)\

);

s=sign(B[k+2]);

if(s<=0,\

\\ New relation expected. \\

if(s,\

print("extendedlll: Gram matrix has negative eigenvalue.");1/0\

,\

);

R=vector(kmax,ii,1);

\\ Push generator down into subspaces. \\

for(ii=1,rnk,\

k=k-1;

\\ Extended Euclid. \\

A=B[k+2];C=Lam[k+1,k];Matr21=1;D=A;

if(C,\

V1=0;V3=C;

while(V3,\

Q2=divrem(D,V3);Q=Q2[1];T3=Q2[2];

T1=Matr21-Q*V1;Matr21=V1;D=V3;V1=T1;V3=T3\

27



);

Matr22=(D-A*Matr21)/C;

,\

Matr22=0\

);

Matr11=-C/D;Matr12=A/D;

\\ Matrix which pushes generator one down is \\

\\ Matr=[Matr11,Matr12;Matr21,Matr22]; \\

\\ To estimate its 11 entry, note \\

\\ Matr11 == - (C/A)*Matr12 \\

\\ Volume ratio between old and new sublattice. \\

R[k+1]=Matr12;

\\ Push one down. \\

Tmp=Matr11*H[,k]+Matr12*H[,k+1];

H[,k+1]=Matr21*H[,k]+Matr22*H[,k+1];H[,k]=Tmp;

\\ Update part of Lam. \\

for(j=1,k-1,\

Q=Matr11*Lam[k,j]+Matr12*Lam[k+1,j];

Lam[k+1,j]=Matr21*Lam[k,j]+Matr22*Lam[k+1,j];Lam[k,j]=Q\

)\

);

\\ Add new relation. \\

isodim=isodim+1;

\\ Cumulative volume ratios. \\

for(ii=2,kmax,R[ii]=R[ii]*R[ii-1]);

\\ Only now do we update B and Lam. \\

\\ Thus we avoided a lot of updating. \\

forstep(k=kmax,isodim+1,-1,\

B[k+2]=(B[1+k])/(R[k]^2);

\\ These are integers, implying a bound on R[k]. \\

Q=R[k]*R[k-1];

for(j=k+1,kmax,Lam[j,k]=(Lam[j,k-1])/(Q));

);

B[isodim+2]=1;

\\ Gram Schmidt coefficients of new relation. \\

for(k=1,isodim,\

kk=isodim;ll=k;Q=(H[,kk]~*(H[,ll]));

28



for(ii=1,ll-1,Q=(B[ii+1]*Q-Lam[kk,ii]*Lam[ll,ii])/B[ii]);

if(ll<kk,Lam[kk,ll]=Q,B[kk+1]=Q)\

);

\\ B[isodim+1] <= (order kmax leading minor of matid(n)+Gram) \\

for(k=isodim+1,kmax,\

kk=k;ll=isodim;Q=(H[,kk]~)*(H[,ll]);

for(ii=1,ll-1,Q=(B[ii+1]*Q-Lam[kk,ii]*Lam[ll,ii])/B[ii]);

if(ll<kk,Lam[kk,ll]=Q,B[kk+1]=Q)\

);

k=max(isodim,2)\

,\

\\ It is not a relation, and rank of lattice L increases. \\

rnk=rnk+1\

)\

,\

);

nxt=0\

,\

\\ Test for swap. \\

\\ First reduce generator k with generator k-1. \\

l=(k-1);A=if(l>isodim,B[l+2],B[l+1]);

if(abs(2*Lam[k,l])>A,\

Q=((2*Lam[k,l]+A)\(2*A));

H[,k]=H[,k]-Q*H[,l];

Lam[k,l]=Lam[k,l]-Q*A;

for(ii=1,l-1,Lam[k,ii]=Lam[k,ii]-Q*Lam[l,ii])\

,\

);

\\ Compute if condition for swap is satisfied. \\

cond=if(k>isodim+1,\

\\ Test involves no relations. \\

s1&&(4*B[k+2]*B[k]<(3*B[1+k]^2-4*Lam[k,k-1]^2))\

,\

\\ Test involves relations. \\

s2&&((k!=isodim+1)&&\

4*B[k+1]*B[k-1]<(3*B[k]^2-4*Lam[k,k-1]^2))\

);

if(cond,\

29



\\ Swap. \\

Tmp=H[,k-1];H[,k-1]=H[,k];H[,k]=Tmp;

for(j=1,k-2,Q=Lam[k,j];Lam[k,j]=Lam[k-1,j];Lam[k-1,j]=Q);

Q=Lam[k,k-1];

if(k>isodim,\

\\ More Gram Schmidt coefficients to be updated. \\

u=(B[k]*B[k+2]+Q^2)/B[1+k];

for(ii=k+1,kmax,\

A=Lam[ii,k];

Lam[ii,k]=(B[k+2]*Lam[ii,k-1]-Q*A)/B[1+k];

Lam[ii,k-1]=(u*A+Q*Lam[ii,k])/B[k+2]\

);

B[1+k]=u\

,\

\\ Gram Schmidt coefficients that involve relations. \\

u=(B[k-1]*B[k+1]+Q^2)/B[k];

for(ii=k+1,kmax,\

A=Lam[ii,k];

Lam[ii,k]=(B[k+1]*Lam[ii,k-1]-Q*A)/B[k];

Lam[ii,k-1]=(u*A+Q*Lam[ii,k])/B[k+1]\

);

B[k]=u\

);

k=max(2,k-1)\

,\

\\ No swap required. Reduce generator k with \\

\\ generators k-2 down to 1. \\

forstep(l=k-2,1,-1,\

A=if(l>isodim,B[l+2],B[l+1]);

if(abs(2*Lam[k,l])>A,\

Q=((2*Lam[k,l]+A)\(2*A));

H[,k]=H[,k]-Q*H[,l];

Lam[k,l]=Lam[k,l]-Q*A;

for(ii=1,l-1,Lam[k,ii]=Lam[k,ii]-Q*Lam[l,ii])\

,\

)\

);

\\ Go up. \\

30



k=k+1;

if(k<=n,nxt=1,notfinished=0)\

)\

)\

);

[if(isgram,\

\\ If isgram is 1, then the first entry of the output is the rank of L. \\

rnk,\

\\ Otherwise the columns of the first entry form a basis of L. \\

\\ This basis is reduced unless reducecolumnspaceoff is 1. \\

vecextract(X*H,\

vector(matsize(X)[1],ii,ii),\

vector(rnk,ii,n-rnk+ii))\

)\

,\

\\ The second entry of the output is the required transformation, \\

\\ as acting on the matrix whose columns span L. \\

H

]}

References

[C] H. Cohen, A course in computational Algebraic Number Theory,
Graduate Texts in Mathematics 138, Springer 1993.

[LLL] A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász, Factoring poly-
nomials with rational coefficients, Math. Ann. 261 (1982), 515–
534.

[P] M. Pohst, A modification of the LLL-algorithm, J. Symb. Comp.
4 (1987), 123–128.

31


