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Schur algebras

k is a field of characteristic p > 0.

rTmMm = (/\/]®d)6d — (Sd(MV))V_

The Schur algebra S(n, d) is F? Hom, (k", k").

repS(n, d) is equivalent to the category of

polynomial representations of degree d of GL(n).

All categories and many functors will be k-linear or, in categorical
jargon, enriched in k-Mod.

An algebra is a k-linear category A with one object.

An A-module M is a k-linear functor from A to k-Mod.
Rep A is the category of A-modules.

rep A is the category of k-linear functors from A to k-mod.
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Schur category

The Schur category S(d) of degree d is the k-linear category
whose objects are finite dimensional vector spaces and whose
morphisms are given by

Homg4)(V, W) := MY Homy (V, W) =94 (VY @, W).

So the Schur category of degree d contains the Schur algebras
S(n, d) as full subcategories.

Composition satisfies f®9 o g®4 = (f o g)®¢.

One shows that the composition maps

Homs(d)(V, kn) Rk Homs(d)(k”, W) — Homs(d)(V, W)

are surjective for n > d.
From this it follows [arXivi1103.4580 that the restriction
repS(d) — repS(n, d) is an equivalence of categories for n > d.
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http://arxiv.org/abs/1103.4580

Functor category

Functor categories like rep S(d) come with a rich toolkit.

The Yoneda Lemma provides enough injectives and projectives in
rep S(d).

Adjunction between ‘sum’ and ‘diagonal’ allows to break up many
Ext groups. (keywords: exponential functors.)

To an element F of repS(d) one associates what Friedlander and
Suslin call a strict polynomial functor of degree d. It sends

f € Homg(V, W) to F(f®9). Their description is different. They
use functors between categories of finite dimensional vector spaces
enriched over a category of affine varieties.

Our notation often refers to the strict polynomial functors, but we
argue with rep S(d).

Composition of F € repS(d) with G € rep S(e) satisfies

(F o G)f®% = F(G(f®e)29).
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We will be interested in functors like ¥ Hom(—1, —2).
Let us write the category of such bifunctors as rep S(d)°PP @ S(d).
Here Homs(d)opp®5(d)((v, X), (VV7 Y)) =

r(Homy (W, V) ® M (Homy (X, Y)).
A bifunctor restricts to a S(n, d)-bimodule.
A key example is T9gI() : (V, W) — M (Hom,(V®D, w)).
It is of bidegree (pd, pd).
Here (1) denotes precomposition by the Frobenius twist functor
I := ker(SP — 'P) = coker(SP — I'P).
If one takes V = W in I (Hom,(V®), W), one gets the
representation ng[(l) of GL(V). It is needed in the proof of my
cohomological finite generation conjecture. This was my initial
reason to care about the representation/bifunctor ng[(l).
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Cohomology

Let dmV > d.

The functor from rep S(d)°PP ® S(d) to k-mod which sends F to
F(V,V)SHVY) is left exact and thus representable.

The representing object is the bifunctor [gl.

Using good filtration theory this implies an isomorphism

Ext'(Mgl, F) = H' (GL(V), F(V, V)).

That is why we put H(F) := Ext/(I'gl, F) and call it the i-th
functor cohomology of the bifunctor F.

Our theme is the interaction between cohomology and Frobenius
twist.

The main result will be a formality theorem implying that
Frobenius twist causes an extra grading on Ext groups.
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The Yoneda Lemma in rep S(d) takes the form
Homy (F(YY @ X), F(X)) = F(Y),

with notations analogous to

/7r f(x,y) dx = ¢(y).

=—T

So the bound variable X indicates with respect to which Schur
algebra/category the Hom is to be taken. The Yoneda Lemma
generalizes to Homx(I'Y(HY @ X), F(X)) ~ F o H where H is a
strict polynomial functor.

For F in rep S(d)°PP it becomes

Hom* (rd(H ® XY), F(X)) ~ FoH.
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Derived categories

Say A is an abelian category. For an object F of A we denote by
F[—n] the corresponding cochain complex ---—0—F —0---
concentrated in cohomological degree n.

We also view it as a graded object with F in degree n, or as an
object with G, action of weight n.

One has the following fundamental connection between Yoneda
classes and some morphisms in the derived category D(.A)

Homp(4)(F[-m], G[—n]) = Ext{""(F, G).

So some morphisms in the derived category can be understood as
extension classes and vice versa.
We call an object C of D(.A) formal if one is given an isomorphism

C @ H(C)[-1].
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Touzé classes

Antoine Touzé has constructed certain classes

c[d] € H24(T9(g1V)y).

The class c[1] corresponds with 0 — /(1) — P — TP — |(1) — 0
in Ext3 (XM, X)) =2 H2(gI(1),

For d > 1 the class c[d] lifts c[1]"9e H2(®%(gIV)).

Playing with the Yoneda Lemma Marcin Chatupnik showed that

H (r4(gi)) = Bxt’ (11 @ 10), 1401V @ 10)).

So now the c[d] define morphisms

r(Y @ IM[—n —2d] — T4V @ IM)[—n], or dually
cld] : SI(1V @ IM)[n] — S4(IV @ IW)[n 4 2d]

in D(rep 5(d)°PP @ S(dp)).

They can be composed [Yoneda], leading to morphisms
c[d]) - SV @ IM)[=2i]) = S9(1V & 1)

Wilberd van der Kallen Bifunctors and Formality



Chatupnik formality for Ext

Combining the c[d]’ for various values of d and i, one gets
as: S92V @ By @ XMWY = 592V @ X))

where £ := Ay 1= 5:01 k[—2i] may be thought of as a graded
vector space, or a G,-module, or an element of a derived category.
From this one constructs a morphism

Bs:SUY ®E ®ZY) = RHomx(TY(YY @ X1), 542" @ X))

which turns out to be an isomorphism in D(rep S(d)Y ® S(d)).
So RHomx (T(YY @ X)), 59(zV @ X)) is formal.

One now uses (s to show for F, G in rep S(d) that

Ext"(FU), ¢M) =@, Exty (F(X), G(X ® £1)).

Here G(X ® E1) is the weight j component for the G, action.
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Chatupnik formality for bifunctor cohomology

So Ext groups between Frobenius twisted representations break up
in terms of Ext groups between less twisted representations.
For a bifunctor B in rep S(d)°PP @ S(d) the result is similar

H" (B(_gl)’ _51))> = @i+j:n H (B(—l, —2® El)j)-

Here B(—1, —2 ® E1 ) is the weight j component of

B(—1,—2 ® Ej) for the G, action.

Chatupnik gives his results at the level of derived categories. So he
uses RHom instead of Ext, as one should. Thus

RHomy (F(X™M), G(X™M)) = RHomy (F(X), G(X ® E)),
and
RHom? (MP9gl(X, Y), B(XM), y(1))) =
RHom? (Fgi(X, Y), B(X, Y ® E1)) .

He also studies precomposition by /(1) as a functor with functors as
arguments.
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Formality with Hopf algebra objects

The existence of Touzé classes is equivalent to the formality
theorem for bifunctor cohomology. Indeed the weight space
H24(T9g1(1))2d maps isomorphically to H29(®? gI(1))Se.

As Touzé has more than one construction of ‘universal classes’
c[d], one must choose which classes to take.

We recommend the original construction.

In a category D([ [~ rep S(d)¥ @ S(d)) one gets with this choice
of c[d] an isomorphism of Hopf algebra objects

PsiyebnezY)
d>0

>~

RHomx | P ro(vY e xW), @ s9(z" @ xM)
d>0 d>0
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The End

Thank you !
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Scratch slides

From functor formality to bifunctor formality:

H(G(—gl), —gl))) is (co)homology of

RHomI (M (XY @ Y), (XM, y(1))) ~

RHom$ (M (XY @ Y), RHom?(I'Y(Z¥ @ XM), G(Z, Y))) ~
RHomé(rd(zv ® Y1), G6(Z, YD) ~

RHom%(I'(Z" ® X), RHomy (M (XY @ Y), G(Z, YV))) ~
RHom% (M (ZY ® X), RHomy (M (XY @ Y), G(Z, y ® E))) ~
RHom% (M (2" ® X), G(Z,X ® E;)) with (co)homology
H(G(—1,—2 ® E1)).
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We have a map as : S9(ZY @ E; @ X(DV) = §9(Z2V @ X(1Y).
We wish to show that the composite map

Bs: SUYRE®ZY) ~ RHomx(M(YV®X), SN2 E ®X)) =
RHomyx(I(YY @ XM), 5472V @ £ @ X)) —

RHomx (F'(YY @ X)), 59(Z¥ @ X)) is a quasi-isomorphism.
It probably induces the ¢ of Chatupnik.

First apply RHomx(F?(YY @ X), —) to the commutative diagram
[lifted classes property]

R4 2V ® B o XW) = ®4(2Y @ X))

| |

S92V @ B @ X)) 25 5d( 7V @ x(1)

in a derived category of multifunctors. (One always uses the
exponential property in such setting.)
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Then use the resulting square to construct a commuting square

®UY @ 1 ® Z¥) 22 RHomx (F(YY © XM), ®%(2" @ XV))

l |

SUY @ B ® Z¥) 25~ RHomx(F(YV @ XM), 59(2¥ & X)),

By the exponential property, the top arrow is a quasi-isomorphism.
The right arrow is surjective on cohomology by the collapsing
spectral sequence, for instance. See also Theorem 4.6 in [Touzé,
Troesch complexes . .. ], or section 6 of [Chatupnik, Extensions
...]. For given Y, Z the bottom arrow goes between objects with
the same dimension of cohomology. Done.
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Once one has the quasi-iso 85, one may compute like this, ignoring
sign issues.

RHomX(F(X ), G(X(M)) =

RHomX (GV(X(M), FV(XM)) =

RHomy (GY(X®), RHom Y (I'Y(YY @ X(M), FV(Y))) =
RHomy (F(Y), RHomx (MY @ X)), G(X(

RHomy (F(Y), RHomx (M (YV ®

XMWY, RHom?(GY(Z), 59(Z¥ @ XW)))) =

RHomy (F(Y), RHom?(G"(Z), RHomx (M (YV ®

X)), 59(27 @ X)) =

RHomy (F(Y), RHom?(GV(Z),S4(Y ® E; ® ZV))) =

RHomy (F(Y), G(Y ® Ei)))

And all this is functorial in F, G, so we may put in more variables
to get the result for bifunctors.
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As for sign issues, if C is a cochain complex define the differential
d" on CY to be given by dV¢ = (—1)?It1¢od.

(Think C¥ = RHomg(C, k).)

Then dVV = —d and Hom}(C, D) = Tot(D @, C).

Also Tot(C ®k D)¥ = Hom}(C, DV) = Tot(D" @« CV).

But Tot(C ®x D) ~ Tot(D ®x C) involves braiding signs (—1)" at
Cr® Ds.

When thinking about signs in multicomplexes the case of vector
spaces may serve as a guide.

The Yoneda lemma becomes

RHomx (F(YY @ X), F*(X)) = F*(Y), or dually

RHom* (F*(X),S9(Y ® X)) =~ (F*(Y))".
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Taking all this into account we compute
RHomX(F(X )), G(XM)) ~

RHomX (GVVY(XM), FV(Xx (1)) =

RHom”X (GVW( M), RHom " (RHomy (I (YV @
XW), FY(Y)) ~

RHomy (F(Y), RHomx (I C’(YV®X(1)) G(XM)Y)) =
RHomy (F(Y), RHomx (Y

X)), RHom?(6VVV(Z ),sd(zv®x<”))))
RHomy (F(Y), RHom (GVVV(Z), RHomx(I4(YV ®
X)), 59(2" & X(W)))) =
RHomy (F(Y), RHom?(GYVV(Z),S4(Y ® £ ® ZV))) =
RHomy (F(Y), G(Y ® Ei))), with some “extra braiding signs” at
the ~ steps.
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Now with notations as in my lectures on Bifunctors ...

Let R : repS(d) — k-Mod be a left exact functor. Then put

L(X) := R(S%). One has Homx(L#(X), S¢) = R(S¢) functorially
in 5\‘}. So R is representable.

Similarly, B — B(V, V)SMVY) is representable by L with

L#(X,Y) = Hom(T% V, S¢V)SHY) = Hom (T V, S¢V) =
S(XY) = S9gI(X, Y).

Wilberd van der Kallen Bifunctors and Formality



