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Borsuk addition on the cohomotopy group

[M,Sn], for dim(M) = d ≤ 2n− 2.
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One must arrange that f−1(Antarctica) and

g−1(Antarctica) are disjoint.

The Borsuk representative of [f ] + [g] then

agrees with f on f−1(Antarctica) and with g

on g−1(Antarctica).

It sends nothing else to Antarctica and sends

most of M to the North pole.

[Borsuk 1961/62, 1937]



Let us shrink Antarctica towards the South

pole. We may assume f is smooth around the

fiber of the South pole and that the South

pole is a regular value.

To know the homotopy class of f , it suffices

to know the map from the normal bundle of

f−1(South pole) to the tangent space at the

South pole. So the class of f is given by

a trivialization of the conormal bundle of a

codimension n subvariety.



The weak Mennicke symbol group

WMSn+1.

Let R be a commutative noetherian ring of

Krull dimension d, d ≤ 2n − 2. Think of R as

the ring continuous real valued functions on

M . (The analogy is that both R and this ring

of functions satisfy certain Bass’ stable range

conditions. We say they have stable range

dimension at most d.)



Think of an element of Umn+1(R) as a map

from M to Rn+1\{0} and contract Rn+1\{0}

to the n-sphere.

Think of an element of the orbit set

Umn+1(R)/En+1(R) as a homotopy class of

maps M → Sn.

One shows that given two homotopy classes

(orbits) there are respective representatives



(a1, . . . , an+1), (b1, . . . , bn+1) so that

a1 + b1 = 1 and ai = bi for i > 1.

One defines the sum of the two orbits to

be the orbit of (a1b1, a2, . . . , an+1). (Weak

Mennicke symbol rule.)

One is still waiting for a nice proof that this

is well-defined. It is well-defined [vdK 1989],

and it defines an abelian group structure on

WMSn+1(R) = Umn+1(R)/En+1(R).



Conceptually the addition agrees with Borsuk,

thanks to the

Lemma (Ofer Gabber) [Paris, at lunch]

If x+ y = 1, then x and y are not both

negative. �

Thus for representatives as above, the two

inverse images of Antarctica are disjoint, and

the Borsuk sum is easily seen to be the

homotopy class given by (a1b1, a2, . . . , an+1).



EULER CLASS GROUPS.

From now on assume 3 ≤ d ≤ 2n− 3,

cf. [Bhatwadekar-Sridharan 2000].

The n-th Euler class group En(R) is defined

by a presentation.

Generators

Pairs (J, ωJ) where J is a height n ideal in

R equipped with a surjective map (R/J)n →

J/J2. Think of a codimension n subvariety



with trivial conormal bundle together with a

trivialization of said bundle.

Relations

• Disconnected sum relation

Let (J, ωJ) be a generator. If J = KL with K,

L comaximal ideals of height n, then R/J =

R/K ×R/L and J/J2 = K/K2×L/L2, so that

ωJ = ωk × ωL. The relation is

(J, ωJ) = (K,ωK) + (L, ωL).



• Complete intersection relation

Let (J, ωJ) be a generator such that ωJ lifts to

a surjection Rn→ J. Then

(J, ωJ) = 0.

• Elementary action relation (implied by the

above relations, already when 2 ≤ d ≤ 2n−1.)

Let (J, ωJ) be a generator and let g ∈ En(R/J).

Then

(J, ωJ) = (J, ωJ ◦ g).



The problem

Proposal of Jean Fasel.

Given a unimodular row (a1, . . . , an+1) for

which the ideal J = (a1, . . . , an) has height n,

attach to it the Euler class of (J, ωJ), where

ωJ is given by (ā1, . . . , ān−1, ānān+1).

Question Does this define a homomorphism

WMSn+1(R)→ En(R)?



Theorem Yes, if R contains an infinite field

F .

Remark. There are several related results in

the literature [Bhatwadekar-Sridharan 2000;

Das-Zinna 2015]. Our proof relies on the

Known Fact [vdK 1977]

Every Zariski open subset of SLm(F ) is path

connected for walks in which a step is right

multiplication by an elementary matrix.



Sketch of proof of the Theorem

Let us call the unimodular row (a1, . . . , an+1)

generic if both an and an+1 avoid every

minimal prime ideal. Let Umgen be the set

of such rows.

Consider (a1, . . . , an+1) ∈ Umgen. After adding

suitable multiples of an+1 to a1, . . . , an−1

the rule of Fasel gives an Euler class denoted

φ(a1, . . . , an+1) .



If instead we add suitable multiples of an to

a1, . . . , an−1, and subsequently interchange

an, an+1, we get another Euler class. These

two classes can be added by the disconnected

sum relation and the result vanishes by the

complete intersection relation. It follows that

φ(a1, . . . , an+1) is well-defined.

We now wish to extend φ from Umgen to all

of Umn+1(R).



One checks by computation that φ is constant

along walks that stay inside Umgen.

Using the Fact above, one sees that every

SLn+1(F )-orbit in Umn+1(R) intersects Umgen

in a path connected subset. So now φ can be

extended to all of Umn+1(R) by requiring that

φ is constant on SLn+1(F )-orbits. One checks

that if P is a path component of Umgen, then

the union of the SLn+1(F )-orbits of elements

of P is an En+1(R)-orbit.



So we get a map WMSn+1(R) → En(R). It

is a homomorphism by the disconnected sum

relation. �

We needed the assumption d ≤ 2n− 3 to stay

in the range where Bhatwadekar and Sridharan

have defined En(R).

If we simply define En(R) for d ≤ 2n − 1

by the same presentation as above, then we



get a map Umn+1(R)/En+1(R) → En(R) for

3 ≤ n ≤ d ≤ 2n− 1.

But for the group structure on the orbit set

one needs d ≤ 2n− 2, just like Borsuk.

The map WMSn+1(R) → En(R) will be a

homomorphism if 3 ≤ n ≤ d ≤ 2n− 2.

Our reasoning fails for n = d = 2.


