

Columbus,
Ohio, 2015

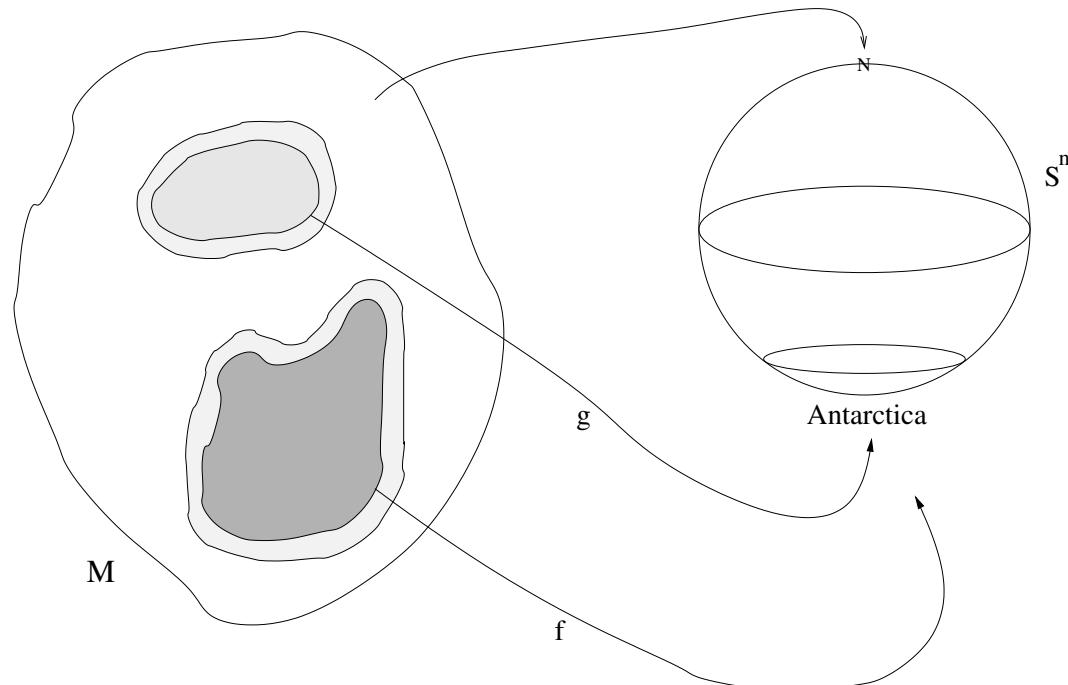
Universiteit Utrecht

Extrapolating an Euler class

Wilberd van der Kallen

Borsuk addition on the cohomotopy group

$[M, S^n]$, for $\dim(M) = d \leq 2n - 2$.



One must arrange that $f^{-1}(\text{Antarctica})$ and $g^{-1}(\text{Antarctica})$ are disjoint.

The Borsuk representative of $[f] + [g]$ then agrees with f on $f^{-1}(\text{Antarctica})$ and with g on $g^{-1}(\text{Antarctica})$.

It sends nothing else to Antarctica and sends most of M to the North pole.

[Borsuk 1961/62, 1937]

Let us shrink Antarctica towards the South pole. We may assume f is smooth around the fiber of the South pole and that the South pole is a regular value.

To know the homotopy class of f , it suffices to know the map from the normal bundle of $f^{-1}(\text{South pole})$ to the tangent space at the South pole. So the class of f is given by a *trivialization of the conormal bundle of a codimension n subvariety*.

The weak Mennicke symbol group

$WMS_{n+1}.$

Let R be a commutative noetherian ring of Krull dimension d , $d \leq 2n - 2$. Think of R as the ring continuous real valued functions on M . (The analogy is that both R and this ring of functions satisfy certain Bass' stable range conditions. We say they have stable range dimension at most d .)

Think of an element of $\text{Um}_{n+1}(R)$ as a map from M to $\mathbb{R}^{n+1} \setminus \{0\}$ and contract $\mathbb{R}^{n+1} \setminus \{0\}$ to the n -sphere.

Think of an element of the orbit set $\text{Um}_{n+1}(R)/E_{n+1}(R)$ as a homotopy class of maps $M \rightarrow S^n$.

One shows that given two homotopy classes (orbits) there are respective representatives

$(a_1, \dots, a_{n+1}), (b_1, \dots, b_{n+1})$ so that

$$a_1 + b_1 = 1 \text{ and } a_i = b_i \text{ for } i > 1.$$

One defines the sum of the two orbits to be the orbit of $(a_1 b_1, a_2, \dots, a_{n+1})$. (*Weak Mennicke symbol rule.*)

One is still waiting for a *nice* proof that this is well-defined. It is well-defined [vdK 1989], and it defines an abelian group structure on $WMS_{n+1}(R) = \text{Um}_{n+1}(R)/E_{n+1}(R)$.

Conceptually the addition agrees with Borsuk,
thanks to the

Lemma (Ofer Gabber) [Paris, at lunch]

If $x + y = 1$, then x and y are not both
negative. □

Thus for representatives as above, the two
inverse images of Antarctica are disjoint, and
the Borsuk sum is easily seen to be the
homotopy class given by $(a_1 b_1, a_2, \dots, a_{n+1})$.

EULER CLASS GROUPS.

From now on assume $3 \leq d \leq 2n - 3$,

cf. [Bhatwadekar-Sridharan 2000].

The n -th Euler class group $E^n(R)$ is defined by a presentation.

Generators

Pairs (J, ω_J) where J is a height n ideal in R equipped with a surjective map $(R/J)^n \rightarrow J/J^2$. Think of a codimension n subvariety

with trivial conormal bundle together with a trivialization of said bundle.

Relations

- **Disconnected sum relation**

Let (J, ω_J) be a generator. If $J = KL$ with K, L comaximal ideals of height n , then $R/J = R/K \times R/L$ and $J/J^2 = K/K^2 \times L/L^2$, so that $\omega_J = \omega_K \times \omega_L$. The relation is

$$(J, \omega_J) = (K, \omega_K) + (L, \omega_L).$$

- **Complete intersection relation**

Let (J, ω_J) be a generator such that ω_J lifts to a surjection $R^n \rightarrow J$. Then

$$(J, \omega_J) = 0.$$

- **Elementary action relation** (implied by the above relations, already when $2 \leq d \leq 2n - 1$.)

Let (J, ω_J) be a generator and let $g \in E_n(R/J)$. Then

$$(J, \omega_J) = (J, \omega_J \circ g).$$

The problem

Proposal of Jean Fasel.

Given a unimodular row (a_1, \dots, a_{n+1}) for which the ideal $J = (a_1, \dots, a_n)$ has height n , attach to it the Euler class of (J, ω_J) , where ω_J is given by $(\bar{a}_1, \dots, \bar{a}_{n-1}, \bar{a}_n \bar{a}_{n+1})$.

Question Does this define a homomorphism $WMS_{n+1}(R) \rightarrow E^n(R)$?

Theorem Yes, if R contains an infinite field F .

Remark. There are several related results in the literature [Bhatwadekar-Sridharan 2000; Das-Zinna 2015]. Our proof relies on the

Known Fact [vdK 1977]

Every Zariski open subset of $SL_m(F)$ is path connected for walks in which a step is right multiplication by an elementary matrix.

Sketch of proof of the Theorem

Let us call the unimodular row (a_1, \dots, a_{n+1}) *generic* if both a_n and a_{n+1} avoid every minimal prime ideal. Let Um_{gen} be the set of such rows.

Consider $(a_1, \dots, a_{n+1}) \in \text{Um}_{\text{gen}}$. After adding suitable multiples of a_{n+1} to a_1, \dots, a_{n-1} the rule of Fasel gives an Euler class denoted $\phi(a_1, \dots, a_{n+1})$.

If instead we add suitable multiples of a_n to a_1, \dots, a_{n-1} , and subsequently interchange a_n, a_{n+1} , we get another Euler class. These two classes can be added by the disconnected sum relation and the result vanishes by the complete intersection relation. It follows that $\phi(a_1, \dots, a_{n+1})$ is well-defined.

We now wish to extend ϕ from Um_{gen} to all of $\text{Um}_{n+1}(R)$.

One checks by computation that ϕ is constant along walks that stay inside Um_{gen} .

Using the Fact above, one sees that every $SL_{n+1}(F)$ -orbit in $\text{Um}_{n+1}(R)$ intersects Um_{gen} in a path connected subset. So now ϕ can be extended to all of $\text{Um}_{n+1}(R)$ by requiring that ϕ is constant on $SL_{n+1}(F)$ -orbits. One checks that if P is a path component of Um_{gen} , then the union of the $SL_{n+1}(F)$ -orbits of elements of P is an $E_{n+1}(R)$ -orbit.

So we get a map $WMS_{n+1}(R) \rightarrow E^n(R)$. It is a homomorphism by the disconnected sum relation. □

We needed the assumption $d \leq 2n - 3$ to stay in the range where Bhatwadekar and Sridharan have defined $E^n(R)$.

If we simply define $E^n(R)$ for $d \leq 2n - 1$ by the same presentation as above, then we

get a map $\text{Um}_{n+1}(R)/E_{n+1}(R) \rightarrow E^n(R)$ for $3 \leq n \leq d \leq 2n - 1$.

But for the group structure on the orbit set one needs $d \leq 2n - 2$, just like Borsuk.

The map $WMS_{n+1}(R) \rightarrow E^n(R)$ will be a homomorphism if $3 \leq n \leq d \leq 2n - 2$.

Our reasoning fails for $n = d = 2$.