
Computing some KL-polynomials for the poset
of B ×B-orbits in group compactifications

Wilberd van der Kallen

October 2, 2002

In [3], Springer studies a poset V which depends on a Coxeter group W
with generating set S. If W is a finite Weyl group, then V indexes the B×B-
orbits in the wonderful compactification of the adjoint semi-simple group G
with Weyl group W . In that case Springer shows for instance that one has
positivity results for the analogues cx,v of Kazhdan-Lusztig polynomials. But
the poset V is much more complicated/larger than W , so that computing the
cx,v by hand is only attractive when S has one element. Therefore we wrote
Mathematica code to get access to some more examples. Once the code was
available we could experiment with the analogues cinv

x,v of inverse Kazhdan-
Lusztig polynomials and also with Coxeter groups that are not finite Weyl
groups. In our experiments we saw positivity properties for the cinv

x,v. And
the other Coxeter groups behaved just like finite Weyl groups.

As already mentioned, V is much bigger than W . For instance, when
W is of type B3, the size |V | of V is already 7056, while |W | is only 48.
Therefore we further assume W is so small that we do not have to worry
about its size.

Our reason to choose Mathematica is that Mathematica provides a pow-
erful high level language with which we are familiar. Our primary task was to
code new combinatorics reliably for very small W . Speed was no issue at this
prototype stage. Everything could be developed from scratch without any
need for libraries of fast specialized tools. Thus the fact that Mathematica
is quite ignorant about Coxeter groups was no obstacle at all.

Let us now digress and recall that Mathematica is optimized for replace-
ment rules based on pattern matching. We did find this attractive because
it allows to use very simple and transparent code for reducing words in small

1

Coxeter groups. To illustrate, we give the complete code for reducing words
to normal form in the Coxeter group (W, S) of type H3. (We define the nor-
mal form of a group element to be the lexicographically first reduced word
that represents it.)

s/: s::usage := "s[1,2] is the product of reflections 1 and 2"

reduce[s[a___, c_, c_, b___]] := reduce[s[a, b]]

(* The next six rules are generated by the program *)

reduce[s[a___, 3, 1, b___]] := reduce[s[a, 1, 3, b]]

reduce[s[a___, 3, 2, 3, b___]] := reduce[s[a, 2, 3, 2, b]]

reduce[s[a___, 3, 2, 1, 3, b___]] := reduce[s[a, 2, 3, 2, 1, b]]

reduce[s[a___, 2, 1, 2, 1, 2, b___]] := reduce[s[a, 1, 2, 1, 2, 1, b]]

reduce[s[a___, 3, 2, 1, 2, 3, 2, b___]] := reduce[s[a, 2, 3, 2, 1, 2, 3, b]]

reduce[s[a___, 3, 2, 1, 2, 1, 3, 2, 1, 2, 1, b___]] :=

reduce[s[a, 2, 3, 2, 1, 2, 1, 3, 2, 1, 2, b]]

reduce[other_] := other

reduce/: reduce::usage :=

"reduce[s[...]] gives normal form of s[...]"

Note that most of these rewriting rules were actually generated by the
program. So we did not need to know finite automata for H3. Mathematica
even tells us the braid relations. All the other relations are also clearly
correct. To get started we had to provide three matrices representing the
three elements of S in a faithful representation of the group W . (Here faithful
has to be taken in an algorithmic sense. Matrix coefficients have to lie in
a ring in which equality is recognized.) To check that a list of rewriting
rules is sufficient, one simply generates a full list of non-rewritable words and
checks that it has the same size as the group W . Indeed we did this check for
the above code. When the list of rewriting rules is still too small, one may
discover a new rule by finding two non-rewritable words that represent the
same matrix. This is how the rules were found with a systematic search. The
search looked for the first non-rewritable word that is not in normal form,
sorting words by length and sorting lexicographically for given length. The
process stops when a length is reached for which all words are rewritable.
Of course we do not recommend such a naive approach for larger Coxeter
groups. This ends the digression.

2

Having reduction of words under control, we can implement the length
function ` on W . Before telling more about implementing, we have to recall
some conventions from [3].

Let (W, S) be an arbitrary Coxeter group (with a finite set of generators
S). For I ⊂ S let WI be the subgroup generated by I and W I the set of
distinguished coset representatives for WI , i.e. the set of x ∈ W with xs > x
for all s ∈ I. Observe that we could write `(xs) > `(x) instead of xs > x. In
other words, the length function suffices and the partial order on W is not
needed to compute W I . A similar remark applies to the following description
of the R-polynomials of [1]. (Our δ is always a Kronecker δ.)

The R-polynomials satisfy the following recursive relations (where x, y ∈
W , s ∈ S). Together with the boundary conditions Ry,1 = δy,1 these relations
define the R-polynomials uniquely.

Ry,sx =

{
Rsy,x, if sx > x, sy < y;
(u2 − 1)Ry,x + u2Rsy,x if sx > x, sy > y.

(1)

As we need the R-polynomials anyway, and W is small, we compute and
remember all the Ry,x. Then we use them also for getting the Bruhat order
on W for free. (Recall that Ry,x 6= 0 if and only if y ≤ x.) By the way, our
actual code uses a more elaborate boundary condition:

Ry,x = 0 if `(y) > `(x),
Ry,y = 1.

(2)

The same strategy can be followed for the poset V . As a set, V is the
set of triples [I, x, w] with I ⊆ S, x ∈ W I , w ∈ W . We compute V in the
obvious way and remember it. We do not recall the partial order on V now,
as it will ‘come for free’ again. The analogue of the length function ` on W
is the ‘dimension function’ d on V defined by

d([I, x, w]) = −l(x) + l(w)+ | I | .

It may be negative.
The analogue of Rx,y is called bw,v, but we will work with the Laurent poly-

nomials b̃w,v := u−d(v)+d(w)bw,v instead. They satisfy the following boundary
conditions, of which the middle one was actually discovered using an earlier
version of our program.

3

b̃v,v = 1,

b̃[I,a,b],[J,x,1] =

{
0, if I 6⊆ J or b 6∈ WJ ,
(u−1 − u)|J |−|I|(−u)`(x)+`(b)−`(a)Rxb,a(u

2) else.

b̃[I,a,b],[J,x,y] = 0 if I 6⊆ J or `(b)− `(a) > `(y)− `(x) or x 6≤ a.

(3)

Together with these boundary conditions the following recursive relations
define the b̃-polynomials uniquely (where I, J ⊆ S, s ∈ S, a ∈ W I , x ∈ W J ,
b, y ∈ W).

b̃[I,a,b],[J,x,sy] =

{
b̃[I,a,sb],[J,x,y], if sb < b, sy > y;

(u−1 − u)b̃[I,a,b],[J,x,y] + b̃[I,a,sb],[J,x,y] if sb > b, sy > y.
(4)

This is how we compute the b̃v,w. The partial order on V is then obtained
from

v ≤ w ⇐⇒ b̃v,w 6= 0. (5)

As V is often too big, we do not compute the b̃v,w with remembering. But
we may choose a part of V and remember b̃v,w when v, w are in that part.

Springer has conjectured1 that the following duality relation, which holds
when W is a finite Weyl group, holds more generally for Coxeter groups.∑

v≤z≤w

(−1)d(v)−d(z)b̃v,z b̃z,w = δv,w. (6)

Compare with the case of R-polynomials in [1, 2.1(ii)]. One can test (6) by
first computing a segment

[v0, v1] = { z ∈ V | v0 ≤ z ≤ v1 }

in V and, if it is not too big, then try all v, w in the segment. Recall that
by [3, 6.5] (and its proof) each segment is a subset of a known finite set.
Therefore one can compute such segments even when W is infinite. (In that
case we do not first compute all of V , just the known finite set.) Within the
segment we would compute b̃v,w with remembering. So far the conjecture has
held up. As a check on the code, one may also check duality on a segment
of V when W is a finite Weyl group.

1Added in print: Now proved in preprint by Yu Chen and Matthew Dyer, On the
combinatorics of B×B orbits on group compactifications, submitted to Journal of Algebra.

4

Now we come to the main task, which was to compute the analogues cx,v

of the Kazhdan-Lusztig polynomials. We will work with the polynomials
c̃w,v(u) := ud(v)−d(w)cw,v(u

−2) instead and compute cw,v in terms of c̃w,v. Let
us first assume W is a finite Weyl group, so that we know the c̃w,v exist. For
v 6= w the polynomial c̃w,v(u) has no constant term, so that it equals minus
the polynomial part of the Laurent polynomial c̃w,v(u

−1)− c̃w,v(u). Thus the
c̃w,v are determined by the recursive relation [3, 4.4 (15)]

c̃w,v(u
−1)− c̃w,v(u) =

∑
w<y≤v

b̃w,y(u)c̃y,v(u), (7)

together with the boundary condition [3, 4.4(a)]

c̃v,v = 1.

When computing the right hand side of (7) we first determine the set

{ y ∈ V | y ≤ v }

by means of (5). If W is a finite Weyl group, then we know from [3, 4.2, 4.6]
that, if x ≤ v, then cx,v is a polynomial with constant term one and with
positive coefficients. Even if W is no finite Weyl group, we compute c̃w,v for
w < v as the polynomial part of the right hand side of (7). But then we
should check that this actually solves (7), as the existence of solutions is not
given.

We computed the cx,v for all x, v when W is an irreducible finite Weyl
group of rank two, and for v = B = [D, 1, 1] when W is irreducible of rank
three. We also explored segments [v0, v1] for affine Weyl groups and a few
more Coxeter groups that are not finite Weyl groups. We always found that,
if x ≤ v, then cx,v is a polynomial with constant term one and with positive
coefficients.

If the cx,v exist and duality (6) holds, as it does when W is a finite
Weyl group, then one also has analogues cinv

x,v of the inverse Kazhdan-Lusztig

polynomials Qa,b. We write c̃inv
x,v(u) for ud(v)−d(w)cinv

w,v(u
−2). For v 6= w the

polynomial c̃inv
x,v has no constant term, so that it equals minus the polyno-

mial part of the Laurent polynomial c̃inv
w,v(u

−1) − c̃inv
w,v(u). Thus the c̃inv

w,v are
determined by the recursive relation

c̃inv
w,v(u

−1)− c̃inv
w,v(u) =

∑
w≤y<v

c̃inv
w,y(u)b̃y,v(u), (8)

5

compare [2, 3(f)], together with the boundary condition

c̃inv
v,v = 1.

We always found that, if x ≤ v, the cinv
x,v(u) are polynomials with constant

term one and with positive coefficients. (Clearly they vanish when x 6≤
v.) The coefficients of the cinv

x,v(u) may range over a different interval of
integers than the coefficients of the cy,w(u). For instance, for the dihedral
group W of order |W | = 14 the nonzero terms in the cy,w(u) fill the set
{1, q, 2q, 3q, 4q, 5q, 6q, 7q, 8q, 9q, 10q, q2, 2q2, 3q2, 4q2, 5q2, 7q2, 9q2, q3, 2q3, 3q3,
q4, 2q4, q5}, where q means u2, but the terms of the nonzero cinv

x,v(u) fill only
{1, q, 2q, q2, 2q2, q3, 2q3, q4, 2q4, q5}.

The latest Mathematica files are available on our web site. See
http://www.math.uu.nl/people/vdkallen/kallen.html

There one also finds some output, most of it in Mathematica InputForm,
some of it in PostScript.

References

[1] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke
algebras. Invent. Math. 53 (1979), 165–184.

[2] G. Lusztig, Nonlocal finiteness of a W -graph. Represent. Theory 1
(1997).

[3] T. A. Springer, Intersection cohomology of B ×B-orbits in group com-
pactifications, to appear in Journal of Algebra

6

http://www.math.uu.nl/people/vdkallen/kallen.html
http://www.math.uu.nl/people/vdkallen/ickl/ickl.pdf

