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Longest Weight Vectors and Excellent Filtrations

Wilberd van der Kallen
Mathematisch Instituut, Budapestlaan 6, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands

Let B be a Borel subgroup in a connected simply connected semisimple algebraic
group G defined over an algebraically closed field k. We consider several homo-
logical properties of B modules in relation with the existence of certain filtrations
of such a module. In particular we show that the notion of an excellent filtration
(see Polo [P]) leads to an example of a highest weight category in the sense
of Cline, Parshall, Scott [CPS]. Another example, in some sense dual, is also
treated. (1.6 (ii)).

§1

1.1. Conventions. For unexplained notations, terminology etc. we refer to [J].
Fix a maximal torus T in B and a Weyl group invariant inner product (,)
on X(T)®zR. For a weight 4, we call (4, 1) its length. A weight vector v in
a B module M is called a longest weight vector in M if all other weights of
the B module generated by v are strictly shorter than the weight of v. Thus
a highest weight vector (i.e. a vector that generates a one dimensional B module)
is an example of a longest weight vector. Long M denotes the T module spanned
by the longest weight vectors in M and Long; M denotes the 4 weight space
of Long M. Thus Long is a functor from B modules to T modules.

1.2. In Jantzen’s book [J] the weights A for which ind§4 is not zero are called
dominant. Here we follow [P] instead and write P~ for the set of these weights.
Put P*={AeX(T)|—AeP~}. We order the weights according to what we call
the excellent order: A< if either (4, A)<(u, p) or A=wv, p=zv for some veP",
w,zeW with w<z (in the Bruhat order on W). Compare [De, Lemma 3.5].
We also define an antipodal excellent order for which A< u means that —A< —pu
in the excellent order. If = is a set of weights then we say that = is filled up
(“convenablement rempli” in [P], cf. “saturated” in [D]) if it is an ideal for
the excellent order, ie. if A<u and pern together imply Aen. We say that n
is round if there is some R=0 such that n={ieX(T)|(4, A< R}. Note that
if 7 is round, it is also filled up.

1.3. If Q is a subset of W then X, denotes the union (with reduced subscheme
structure) of the Schubert varieties X, in G/B with weQ. (We write X,, where
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[J] writes X (w)). If M is a B module, H,,(M) denotes the B module I'(X,,, £ (M))
where (M) is the usual vector bundle [J, 15.8]. Similarly H,(M) denotes
I'Xgq, Z(M)). Let weW. By dX,, we denote X, where Q={zeW|z<w}. If 1
is a weight, choose A" eP~ n WA and weW such that A=wA~ and such that
w is minimal with this property. (Given 4, the choice of A~ and w is unique
[BLIE, Ch. 5 §6 Cor.; Ch. 4 §1 Ex. 3]). Then put P(1)=H, (A7), a dual Joseph
module, cf. [P], and Q(A)=ker(P(A) - I'(0X,,, £(17))),a “minimal relative Schu-
bert module”. These modules P(4), Q(4) will be building blocks in what follows.
Both P(1) and Q(4) have one dimensional socles of weight 4. (Combine the
proof of [J, Prop. 112.2] with [J, I113.3]).

1.4. If E is a B module with Homg(E, E) one dimensional, then we say that
a B module M is isotypical of type E if M is a direct sum of copies of E.
(The number of copies may be zero, finite, infinite). Equivalently, M is isotypical
of type E if the evaluation map Homg(E, M)®; E — M is an isomorphism. An
excellent filtration of a B module M is a sequence of submodules O
=F,cF,McF,Mc... such that

(i) M is the union of the F, M.

(ii) For each i>1 there is a weight A so that FM/F,_; M is isotypical of
type P(4).
Replacing P(4) by Q(4) one gets the definition of a relative Schubert filtration
of M. Observe that our definition of an excellent filtration does not quite agree
with the literature [P]. This is because we want to allow arbitrarily large mod-
ules, not just those of countable dimension, and also because we prefer “canoni-
cal filtrations” as in [F, Th. 4]. For a B module M of countable dimension
(finite or infinite) one may argue as in [F] to see that if M has an excellent
filtration it also has one in which the F, M/F,_; M are indecomposable (or zero).
That is what is customarily required in definitions of this type (cf. good filtrations,
Weyl filtrations, Joseph filtrations, Schubert filtrations).

1.5. Let © be a set of weights. As in [CPS] we denote by ¥[n] the category
of all B modules all of whose weights are in 7. The right adjoint of the embedding
of ¢[n] into the category € of all B modules is known as O,, cf. [D]. Thus
0, M is the largest B submodule of M whose weights are all in #. Now recall
that a highest weight category structure on € consists of a partially ordered
index set 4 and a family {A(4)},., of B-modules with A4 (4) having (irreducible)
socle S(4) and injective hull I(4), such that certain axioms [CPS, 3.1] are satisfied.
We now list our theorems.

1.6. Theorem. (i) Endow the set A=X(T) of weights with the excellent order
(1.2) and choose for A(A) the dual Joseph module P(A) with socle A. (1.3). Then
this defines a highest weight category structure on the category of B modules.

(ii) Now endow A with the antipodal excellent order (1.2) and choose for A(A)
the minimal relative Schubert module Q(1) of 1.3. Again this defines a highest
weight category structure on the category of B modules.

1.7. Theorem. (a) Let M be a B module with excellent filtration.
(i) M is acyclic for Long
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(i) For every module N with relative Schubert filtration, the B module M@N
is B acyclic, i.e. H(B, M®N)=0 for i>0.

(i) If = is filled up (1.2) then M is acyclic for O, and O,M has an excellent
filtration (cf. [D]).

(b) Let M be a B module. Assume that one of the following is satisfied.

(i) R' Long M =0,

(i) For every module N with relative Schubert filtration H (B, M®N)=0,

(iii) If = is filled up then R* O,(M)=0, (cf. [D]).
Then M has an excellent filtration.

1.8. Corollary. (i) If 0»M'—>M —>M"—0 is an exact sequence of B modules
and M, M’ have excellent filtrations, then so does M".

(ii) If M is an inductive limit of modules with excellent filtration, then M
itself has an excellent filtration (cf. 2.1).
1.9. Theorem. (a) Let M have a relative Schubert filtration.

(i) If m is round (1.2) then M is acyclic for O, and O, M has a relative Schubert
filtration (cf. [D]).

(ii) If we W then M is acyclic for H,,.

(b) Let M be a B module. Assume that one of the following is satisfied.

(i) For every module N with excellent filtration H (B, MQN)=0,

(i) If = is round then R' O,(M)=0.
Then M has a relative Schubert filtration.
1.10. Of course 1.9 has a corollary that is analogous to 1.8.

1.11. Let Ch denote formal character. (Unlike [J] we allow a formal character
to be an infinite sum.)

Theorem. Let M be a B module whose weight spaces are finite dimensional. Then

Ch(M)<} dim(Long,(M)) Ch(P(4)
A

and equality holds if and only if M has an excellent filtration (cf. 3.8).

1.12. Remark. In particular, if M is a G module, this gives a criterion for the
existence of a good filtration. For a G module any longest weight vector is
of course a highest vector. To prove that a G module M with a given character
has a good filtration, it thus suffies to show that there are not too many highest
weight vectors, ie. that the B socle of M has the same T module structure
as in some module in characteristic zero with the same character as M.

1.13. Theorem. The affine algebra k[B] of B has a B x B module filtration which
is an excellent filtration when restricted to B x 1 and a relative Schubert filtration
when restricted to 1 x B. The layers in the filtration are the exterior tensor products
P(—2)XQ(A). Each occurs once.
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1.14. Remark. If A is a weight and m={u|(u, u)<(4, A)}, then the Weyl group
orbit W1 is a coideal in = for the excellent order. With this coideal corresponds
a derived category [CPS, Thm. 3.9]. It encodes the homological algebra of (the
incidence algebra of) a partially ordered set (Bruhat order). Contemplating this,
one invents the notion of a longest weight vector and the special choice of
§; in the proof of the key Theorem 2.12.

§ 2. Excellent Filtration of Injectives

2.1. Functors such as H, and O, are left exact and commute with inductive
limits. If M =1i_r)n M; is an inductive limit of B modules M, then its Hochschild

injective resolution M - M®k[B] - M ®k[B]®k[B] —... is an inductive limit
of resolutions of the M;. Therefore the higher derived functors R/ H,=H} and
RJ0, also commute with inductive limits (over filtered partially ordered index
sets), and thus they commute with infinite direct sums. Recall that the fact
that inductive limits of injectives are injective is intimately related with the
fact that B modules are unions of noetherian submodules [BALG, Ch. X §1
Ex. 21].

2.2. The following lemma relies on results of Ramanathan, obtained with the
method of Frobenius splittings. It also explains why we call 0Q(4) a minimal
relative Schubert module.

Lemma. Let S,, S, be B invariant reduced closed subschemes of G/B with S,<8,.
(Thus S; is a union of Schubert cells) Let AeP~. Then I (S;, Z(4) and
ker(I'(S,, L (A)) - I'(S,, £ (1) have relative Schubert filtrations. Thus a module
with excellent filtration also has a relative Schubert filtration.

Proof. Recall [R, Th.2] that I'(S,, £()—TI(S,, (%) is surjective. If
§, =8, <8;, write K;; for ker(I'(S;, L (A)-TI'(S;, £(A) when 1<j<i<3. The
sequence 0— K3, » K3, - K,,; —»0 is exact. Therefore it suffices to prove the
lemma for the case of K,, when S, is maximal among the B invariant reduced
closed subschemes of §,, distinct from S,. (S, may be empty.) We claim that
in this case K, is actually one of our minimal relative Schubert modules Q(4),
or zero. Namely, let X,, be the unique Schubert variety which is contained
in S, but not in §,. By [R, Th. 3] the scheme theoretic intersection of S 1 with
X, is reduced and must thus be dX,. But the union of X, with S, equals
S3, so any element of Q=ker(I'(X,,, £(1)-TI'(0X,, Z(4)) extends by zero
to an element of K,,. This shows that the restriction map K,, - Q is bijective.
Put py=wAi. If w is minimal among the ze W with u=z4, then Q=Q(u) by
definition. If not, choose z<w with zA=py and observe that 0 is a submodule
of the kernel of the surjection H, (1) — H,(4). Thus Q is zero by the following
lemma.

2.3. Lemma. For AeP~, we W, there is a natural isomorphism H,, (2)= P(w ).

Proof. Polo’s universal property [P, Cor. 2.4] of H,(4) depends only on w4,
not w. (That is why we introduced the P () notation).
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24. Let us elaborate on Polo’s universal property, which was the starting point
for our investigations. Let A be a weight. As P(—4) has socle —1, P(—A)*
is generated as a B module by a weight vector e, of weight 1. In fact P(—A)*
is the Joseph-Demazure module generated by e; in the Weyl module whose
highest weight lies in WA [P, 1.4].

Proposition (Polo, [P, 2.1, 2.4]). Let A be a weight and M a B module all whose
weights u satisfy (u, p)<(4, 1). Then fi—f(e;) defines an isomorphism of vector
spaces
Homg(P(—A)*, M)>M,.
Dually,
Homg(M, P(1))=(M,)*.

Proof. For the dual statement, view M as an inductive limit of finite dimensional
submodules N and use

Hompg(N, P(4))=~Hompg(P(1)*, N*).

2.5. Let R=(4, 1) and write ¥[R] for ¥[n] where n consists of the weights
p with (4, p<R.

Corollary (Polo, [P, Cor. 2.5]). In ¥[R] the module P(J)* is projective and the
module P(A) is the injective hull of A in €[R].

2.6. Lemma. Let A, u be weights of the same length. Then Homg(P(A), P(n)),
which is the dual of P(A), by 2.4, is non-zero if and only if p<A (in the excellent
order).

Proof. If p<A then the restriction map P(4)— P(u) is surjective. Conversely,
suppose ¢: P(4)— P(u) is non-zero. Then u is a weight of P(4) so that ue WA.
Choose ve P~ n WA and w, ze W minimal so that wv=4, zv=pu. We claim that
z=w. If not, consider a non-zero element s of the socle of P(u). As s is in
the kernel of P(u)—> P(¢) for <y, (€, £)=(u, p), we see as in 2.2 that s extends
by zero on X . That lifts s to a non-zero element of

ker(y: I'X,vX,, Lv)->TIX,,Z")

and the lifted element also has weight u. But the weight space I'(X,u X,,, & M)
is one dimensional (use [R, Th. 2]), and ¥ is surjective, so P(4),=0. Contradic-
tion. For another proof that z<w, one may dualize [Jo, 2.12], cf. [P, 1.4].

2.7. Denote the image of e; under P(— A)*— Q(— A)* also by e,.

Proposition. Let A be a weight and M a B module. Then fi—f(e,) defines an
isomorphism Hompg(Q(— A)*, M) - Long, M.

Proof. That f(e;) is a longest weight vector in M follows from the fact that
e, is one in Q(—A)*. Namely, if u is a weight of Q(—A)* of the same length
as A (longer is of course impossible), then —pu is a weight of P(—A), so we
may choose veP~, w, z minimal in W such that wv= —A, zv=—py, and find
z=w. (See proof of 2.6 If u+A1, then the composite of the surjections
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Q(—A)_,,—:—»P(—A)_”—-» rex,,, £(v))-,— P(—p)-, vanishes, which is impossi-
ble.

Conversely, if veLong; M, let ¢: P(—1)* > M be the corresponding map
and let N denote its image. (N is the B module generated by v) We must
show that ¢ factors through Q(—A)*. From the proof of 2.2 it is clear that
(P(—A)/Q(—A)* has a filtration with layers Q(—u)* where ueWAi, u+4 (and
in fact u>4). Now N,=0 for such u and Q(—p)* is generated by e,, so ¢
factors.

2.8. Now that we know that yu is the unique longest weight of Q(w), we can
be a little more specific about 2.2.

Corollary. In the relative Schubert filtration of K,, =ker(I'(S,, Z(4))
—I'(Sy, Z(4) in 2.2 a layer Q(u) occurs if and only if ue WA and p is a weight
of K,,. Its multiplicity is then one.

2.9. Corollary. Let A be a weight and let M be a B module with (u, W<(4, 1)
Jor each weight p of M. Then Ext}(Q(— A)*, M)=0.

Proof. If I(M) is an injective hull of M then Long, (I(M))— Long, (I(M)/M)
is clearly surjective.

2.10. Lemma (Compare [P, Cor. 2.6]). If A, u are weights, then H' (B, Q(A®P(n))
vanishes.

Proof. 1f (4, )=(u, p) then H'(B, Q(A)®P(u))=Ext}(Q(4)* P(u)) vanishes be-
cause of 2.5. (The category ¥ [R] is closed under extensions and 2.5 tells that
extensions of Q(4)* by P (u) split). If (4, 1) > (u, y) then the extensions split because
of 2.9.

2.11. Lemma. Let we W and let M be a B module with excellent filtration (F;M).
Then F, H,,(M)=H,,(F, M) defines an excellent filtration of H w(M).

Proof (Extracted from [A]). Recall [P, Prop. 1.4.2] that there is an associative
operation * on W such that H,ocH,=H,,,, and such that wxz=wz if Iw)+1(2)
=Il(wz).

We may thus assume that w is a simple reflection y. For any weight u
there is (by [J, Prop. II 14.15(e)]) a surjection H,(P(w)— P(p) and this implies
that P(u) is acyclic for H,, by [J, [114.2, Prop.15.12]. By induction on i one
sees that F;M is acyclic for H, and the rest is clear.

2.12. Our key result is

Theorem. Let N be an injective B module. Then N has an excellent filtration.

Remarks. This is part of Theorem 1.6(i). As Polo has reproduced an earlier
draft of the proof faithfully [P], the reader may now see how much the text
has deteriorated since.

2:13. Proof. Order the weights linearly, say &,, £,, ... such that isjif §;=¢;
in the excellent order. In other words, initial segments of the sequence (&) are



Filtrations 25

ideals in the excellent order. For i> 1, put F;=0,, where n(i)={¢;|j<i}. Thus
n(i) is filled up. We want to show that F,N/F,_, N is isotypical of type P(£).
We argue by induction and assume F;N/F;_; N has the desired form for j<i.
Take A in P nW(—¢;) and take we W minimal so that —&=wi. Put M
=N/F,_; N. The socle of F;M, if not zero, has weight —wA. Suppose veN_,;
is such that its image # in M is a non-zero element of the socle of FM. We
seek a copy of P(—wA4) in M that contains #. This will take many steps. First
let f: P(wWA)* > N map e_,,, to v as in 2.4. If u is a weight of the image of
f and (u, p)=(4, A), then —p is a weight of P(w4l) so that there is ze W with
—p=zA, z=<w. (Proof of 2.6.) Thus —wA=< —zA=y, which together with uen(i)
implies u= —wA. This means that v is a longest weight vector. Let ¢: Q(wi)* > N
be the corresponding map (Prop. 2.7). Let Q be the set of ze W with P(z4),,;=0.
Put §,=X,, S,=X,UX,, S3=G/B. In the exact sequence 0— K3, > Kj,
— K,; =0 of the proof of 2.2 we now have K,, =Q(w4), because z<w implies
zeQ (2.6). As N is injective, we may extend ¢: K%, =Q(wiA)*—> N to a map
K#%* —N. That in turn yields a map y from the Weyl module H°(A)*
=I(G/B, Z(A)* to N which vanishes on H,(4)* with zeQ. Note the weights
—z A with zeQ occur with multiplicity one in both H°(A)* and H,(4)*, so they
do not occur in the image of Y. We get

2.14. Lemma. The image of Y lies in F;N. If ze W is such that —z 1 is a weight
of image (), then —zA< —wA.

Proof. Let u be a weight of the image. If (u, p) <(4, 4) then pen(i). If (u, w)=(4, 1)
then u= —zA for some zeW, z¢Q. Then P(z4),,;+0, so wi<zA and —zA=<
—wA.

2.15. The G radical of the Weyl module H°(4)* is mapped by ¥ to a submodule
of F,_, N because its weights are strictly shorter than A. The composite of y
with the projection N —» M therefore factors through the irreducible G module
L(—A) of highest weight —A. We now have a map L(—4)—» F;M whose image
still contains #. We wish to extend it to P(—A4) and therefore now claim that
Ext}(P(— A)/L(— ), M) vanishes. In fact we claim that Ext}(R, M) vanishes for
every j=0 and every finite dimensional G module R all of whose weights are
strictly shorter than A. To prove this, it suffices — as is well known — to take
for R a Weyl module H®(u)* with ueP~, (1, p)<(4, 4). (Recall that one uses
long exact sequences for Ext and argues by induction on the length of the
longest weight in R and on the dimension of R). Now to see that Ext}(H®(u)*, M)
vanishes, one first observes that F,_; M =0 settles the case j=0. As N is injective,
it remains to show that Extj(H®(u)*, F._; N)=0 for j>0, (j>1 would do.) Now
F._ N has an excellent filtration, by induction hypothesis, so it suffices to make
Extj(H®(w*, H,(v)) vanish for veP~, zeW, j>0. But Extj(H°(u)*,v)
=H/(B, H*(W®v)=H/(G, H°(1)® H°(v)) vanishes for j>0, u, ve P~ by Cline,
Parshall, Scott [J, I14.13], and the result follows by induction on I(z). (Apply
[J, Prop. 14.5], using the acyclicity of the P(zv) for the induction functors H,,
which was discussed in 2.11.)

2.16. Now that we have the vanishing of Ext}(P(—A)/L(—4), M), we use it to
extend the map L(—A)—>FM to a map P(—4)—> M. As the weights of
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P(—A)/L(—A) are strictly shorter than A, we actually still land inside F; M. But
what we really want is a map P(—wA) — F, M, so we must show that P(—1)—-> M
factors through P(—w4). Consider the image of K=ker(P(—4)— P(—wA4)) in
F, M. If this image is not trivial, consider a weight p of its socle. As F,_; M =0,
1 must be equal to —wA and thus K, ;#+0, contradicting the definition of K.
This means that K must have image zero and that P(— 1) - F, M factors through
P(—wi).

2.17. For every ¢ in the socle of FM (if F;M=+0), we thus have a map
P(—w4)— F;M with © in the image. Moreover P(—wA1) — F,M is injective (if 0+ 0)
because it is injective on socles. In the category €[R] of Corollary 2.5 we see
that ;M contains an injective hull of its socle (which is of weight —wA) so
that F;M is isotypical of type P(—wA). Theorem 2.12 follows.

2.18. Remark. What did we use about N? We did not use the full force of
injectivity, but only that Ext}(K%,, N)=0 in 2.13 and that Exth(P(—21)/
L(—A), N/E,_{N) vanishes in 2.15. Before we can weaken these conditions
further, we must first exploit the theorem.

2.19. Proof of Theorem 1.6. (i) Let &;, F; be as in 2.13 and consider the excellent
filtration {F;(I(£;))} of an injective hull of &;. As the socle of I(&)) is &; [J, 13.17],
we must have F;(I(£;))=0 for j<i and F(I(£;))=P(&). (This could serve as the
definition of P(¢;) and follows from 2.5 and the fact that F. sends I(&;) to the
injective hull in €[n(i)] of £;.) We still have to see that F ;(I(£))/F;—,(I(&)
is finite dimensional for each j. But that is an obvious consequence of the
fact that I(¢;)~ind%(¢)) has finite dimensional weight spaces [J, 114.8].

(ii) Let A be a weight and let I(A) be an injective hull of 1. Put R=(4, 1)
and 7={u|(u, y)<R}. As in part (i) we find O,(I(4))=P(2) and I(4)/P(4) has
an excellent filtration with layers that are isotypical of type P(v) with (v, v)>R.
If we refine the excellent filtration from (i) of I(1) we thus get layers of P(1)
as in 2.8 followed by layers of type Q(v) with (v, v)>R. The very first layer
is Q(4) (because of socles) and after that we get the other Q(u) with P(1),%0,
ue Wi, hence with u=> 2 in antipodal excellent order, cf. 2.6. Finish as in part
(@)

2.20. We are also ready to prove Theorem 1.7 (a) (ii).

Theorem. (i) Let M have an excellent filtration and N a relative Schubert filtration.
Then M®N is B acyclic.

(ii) If M and N both have excellent filtrations, then M®N is B acyclic.

Comment. By 2.2, part (ii) is a special case of part (i). Part (i) was used in
[P, Prop. 2.11] and that proposition suggested the more general part (i).

Proof. We show by induction on j, j=1, that H/(B, M®N)=0 for M, N as
in (i). The case j=1 follows from 2.10 by dévissage (and of course a limit argu-
ment, cf. 2.1). Assuming the result for 1<j<n, where n=1, we consider an
injective hull I (1) of some A and use the exact sequence

H"(B,(I(3)/P(A)®N) - H"* ' (B, P()@N)—~H"* (B, I()®N)
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to see that H"*'(B, P())@N) vanishes. (Note that I(4)/P(4) has an excellent
filtration and that I(A)®N is injective [J, Prop. 13.10]). The induction step fin-
ishes by dévissage. (This reasoning is of course standard for highest weight
categories.)

2.21. Next we prove 1.7(a) (i).
Corollary. A module with excellent filtration is acyclic for Long.

Proof. Ri Long; M =Exti(Q(— A)*, M)=H'(B, Q(—)®M)=0for i>0 and 4 any
weight, by 2.7 and 2.20.

2.22. Let us prove 1.7(a) (iii) and thus finish the proof of 1.7(a). The following
theorem actually corresponds with a general fact about highest weight categories.
(One must take = to be an ideal in 4.)

Theorem. If 7 is filled up and M has an excellent filtration, then M is acyclic
for O, and O, M has an excellent filtration (cf. [D]).

Proof. Let us prove by induction on i, i=1, that R'0,(M)=0 whenever M has
an excellent filtration. As in 2.20 we consider an injective hull I(1) of P(4)
for some weight .. We may choose the sequence &, &5, ... in 2.13 such that
7 is one of the initial segments and it is then clear that O,(I(4)) = O.(I(4)/P())
is surjective. That shows R'O,(P(4)=0 and starts the induction. It finishes
as in 2.20. That O,M has an excellent filtration then follows from the fact
that O, sends the isotypical module F;M/F;_; M to itself or to zero.

2.23. Exercise. Let w, ye W with y simple. Use Lemma 2.11, Theorem 2.12 and
the proof of 2.11 to set up a Grothendieck spectral sequence [J, Prop. 14.1]
H™(H%,(M)=Hy,}(M). Use it to prove by induction on I/(w) that a module
with excellent filtration is acyclic for H,,. (Andersen proved this, using Leray
spectral sequences, in [A], as he explained in a lecture at Durham.) Compare
also [P, Prop. 1.4.2].

2.24. We now wish to apply the same reasoning as in the exercise to prove
Theorem 1.9 (a) (ii). We start with an analogue of [P, Prop. 2.10].

Proposition. Let y be a simple reflection and let S, S,, A be as in 2.2.

(i) H,(I'(S;, ZA)=T(y*S;, L(4)), where y*S; denotes the union (with
reduced subscheme structure again) of the X, ,, with X,,=S;.

(i) H,(I'(Sy, £ (A)—= H,(I(Sy, L (A)) is surjective.
Proof (cf. [P]). Part (i) follows from part (i) by [R, Th.2]. We prove part
(i) by induction on the size of §;. Thus let S, be non-empty and such that
H,(['(So, £ (A)=T(y*So, Z(4)) whenever S, is properly contained in S,. As

in 2.2 we may choose S, and w such that S,=5,VX,, S nX,=0X,. We
get an exact sequence

0 TI'(S;, (W)~ I(X,, LA)SI(Sy, £ (A) - I'(0X,, £(2)-0.
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By the induction hypothesis, and [R, Th. 2] again, this yields an exact sequence

0 H,(I'(S2, ) = L(y* X, Z(A)DI(y*S,, £ ()
> T(y*dX,, Z (1) 0.

Asin [P] we have (y*X,)n(y*S,)=y*0X,,, scheme theoretically, and (i) follows
for S,.

2.25 As H; vanishes for i=2 by [J, Prop. 15.12], the proposition shows, when
applied to S,=X,, S;=0X,, that Q(u) is acyclic for H, and that H,(Q(u))
has a relative Schubert filtration. (u any weight.) Theorem 1.9 (a) (ii) follows as
in exercise 2.23.

§3. Cohomological Criteria

3.1. Let us prove case (ii) of Theorem 1.7 (b).

Theorem. Let M be a B module such that H'(B, LQ M) vanishes for every B
module L with relative Schubert filtration. Then M has an excellent filtration.

Proof. (For another proof see exercise 3.6). Note that Theorem 3.1 is stronger
than Theorem 2.12. We now explain how to modify the proof of 2.12 so as
to get the present theorem. If F;_; M has an excellent filtration, then M/F,_, M
also satisfies the conditions of the theorem, by the long exact sequence and
Theorem 2.20. We may therefore assume F,_; M =0 and must then prove that
F;M is isotypical of type P(£;). The distinction between M and N in 2.13 should
be ignored now. The module K5, of 2.13 has a relative Schubert filtration (2.2)
so Ext}(K%,, M)=H'(B, K;,®M) vanishes by hypothesis. Remains to show
(2.18) that Ext}(P(—A)/L(—A), M) vanishes, where AP~ n W(—¢,). We claim
that in fact both Ext3(R, M) and Extj(R, M) vanish for every G module R
(say finite dimensional for simplicity) all of whose weights are strictly shorter
than A. To see this, we first observe as before that the vanishing of F,_, M
implies the Ext° statement. Next if ue P* with (i, u) <(4, A), consider the simple
G module L(u) of highest weight u as a submodule of P(u) and use the exact
sequence

Homy((P(u)/L(1))*, M) > Exty(L(w)*, M) — Exty(P(u)*, M).
The first term vanisiles, as does the third, because P(u) has a relative Schubert
filtration. Finish by dévissage.
3.2. Corollary (Case (ii) of Theorem 1.7 (b)).
If R* Long M =0 then M has an excellent filtration.

Proof. For each A the group R! Long; M = H!(B, Q(4)® M) vanishes. Therefore
the hypothesis of 3.1 is satisfied.

3.3. Now let us do case (iii) of Theorem 1.7 (b), thereby finishing the proof Theo-
rem 1.7.

Theorem. Let M be a B module such that R'0,(M)=0 whenever n is filled
up. Then M has an excellent filtration (cf. [D, 2.1d]).
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Proof. As in 3.1 we may assume F,_, M =0 and must then show that FM
is isotypical of type P(&). Let I(M) be an injective hull of M. Then 0> F,_; M
— F,_; I(M) - F,_,(I(M)/M) >0 is exact. If F,_, I(M) is not zero, then its socle
is contained in the socle of I(M), hence of M, hence of F,_{ M, which is zero.
So F,_, I (M) vanishes and F,_, (I(M)/M) vanishes. Now suppose that F;(I(M)/M)
is not zero. Its socle is then of weight &;, as is the socle of F,I(M). Consider
the exact sequence 0 » F,M — F,1(M)— F,(I(M)/M)—0. Take v in F;1(M) such
that its image # in F,(I(M)/M) is a non-zero element of the socle. In the B
module generated by v the socle S has the same weight as #, so its image
contains 7. On the other hand, S is contained in M, hence in F;M, and therefore
has trivial image in F,(I(M)/M). Contradiction. This means that F;M equals
F, I(M) which is indeed isotypical of type P(&)).

Remark. The result holds in any highest weight category which shares the follow-
ing property with the category of B modules. The injective hull of an irreducible
has that irreducible only once as a composition factor.

3.4. Corollary 1.8 being obvious, we now turn to Theorem 1.9(a) (i). But that
one is also clear, as it is another case of the “general fact” in 2.22, which
is proved like Theorem 2.22. This finishes the proof of 1.9(a). Of course 19(b)
is a somewhat different story. (Compare 1.14.)

3.5. Theorem. (Case (i) of Theorem 1.9(b)). Let M be a B module such that
H'(B, M®N)=0 whenever N has an excellent filtration. Then M has a relative
Schubert filtration.

Proof. Now choose a linear order 7, 7,, ... of the weights so that the initial
segments of (1;) are ideals for the antipodal excellent order. Put =(i)= {n;li i}
and F,=0,, just like in 2.13. As in 3.1 we may assume F,_; M =0 and we
must show that F,M is isotypical of type Q(y;). Put A=n; and R=(4, 4). Let
I(M) be an injective hull of M. If u is a weight, then 0— Homg(P(p)*, M)
— Homyg(P(u)*, I(M)) » Homg(P(u)*, I(M)/M)—0 is exact, so that by 2.4 the
socle of I(M)/M has no weight —u with (u, p) <R. (Compare proof of 3.3,
Suppose F(I(M)/M) is not zero and let u be a weight of its socle. Choose
a non-trivial homomorphism P(—p)*—I(M)/M, lift it to a map ¢:
P(—p)*— I(M) and consider a weight v in the socle of the image of ¢. This
v is a weight of the socle of M, so if v+ 4, then v does not precede 4 in the
sequence (7;). But u precedes A and v is a weight of P(—u)*, so v precedes
u. Thus A=p=v and the image of ¢ is contained in F;M. But that contradicts
the choice of P(—pu)*—I(M)/M. As in 3.3 we have seen that FM=FI(M),
which is isotypical of type Q(n;). (Use 1.6(ii).)

3.6. Exercise. Taking the above proof as a model reprove 3.2 and derive 3.1
from it.

3.7. To finish the proof of Theorem 1.9 we show

Theorem. Let M be a B module such that R'0,(M)=0 whenever © is round.
Then M has a relative Schubert filtration.

Proof. Again we may assume F,_; M =0 and must show that F;M is isotypical
of type Q(,), where F, is as in 3.5. Using n={u|(4, p) <(n;, 1)}, which is round,
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show that I(M)/M has no weights of length strictly shorter than #; in its socle,
and proceed as in 3.5, using 2.5 and surjectivity of Oriry [ (M) = Oy (1(M)/M)
where n[R]={u|(u, W) <(n;, m,)}-

3.8. Theorem 1.11 does not depend on Theorem 2.12 and could therefore have
been proved a lot earlier. As the sum in the right hand side of 1.11 may “diverge”,
let us first elaborate on the intended meaning. We reformulate 1.11 as follows.

Theorem. Let M be a B module whose weight spaces are finite dimensional and
let p be a weight. Then

dim M, <Y dim(Long, M)-dim(P(4),).
A

If equality holds for all p, then M has an excellent filtration (and conversely).
Remark. If the right hand side in this theorem diverges, so much the better.
3.9. We need the following lemma for the proof of 3.8.

Lemma. If = is filled up, then 0 —Long O,M — Long M — Long(M/0, M) —0
is exact.

Proof. 1f v is a longest weight vector of weight A in M/O, M, lift it to a weight
vector v in M and observe that A¢n. Hit v with a map P(—1)* - M and consider
a weight p of the image with (4, y)=(4, ). If p+ A then pen but also A<y
(use 2.6), which is impossible.

3.10. By the lemma, both sides of the inequality in 3.8 are additive over exact
sequences 0 —» 0, M - M — M/O, M — 0. Therefore we may reduce to the case
where Long M =Long; M for some A. Then M is an object of the category
%[R] of Corollary 2.5 and Long M is also the socle. The result is now obvious
from Corollary 2.5.

3.11. Remains to prove Theorem 1.13, and some conjectures [P]. We let B x B
act on k[B] through the formula ((g, h) f)(x)=f (g~ 'xh), cf. [J, 13.3]. As k[B]
is an injective 1 x B module, we may filter it so that F,k[B]/F,_, k[B] is isotypi-
cal, as a 1 x B module, of type Q(,), where (n,) is as in 3.5.

Theorem. The F;k[B] are B x B submodules and F,k[B]/F,_, k[B] is isomorphic
with the exterior tensor product of B modules P(—n,)XQ(n,). Compare [J, Prop.
114.20].

Proof. The Hochschild-Serre spectral sequence H™(B, H"(1 x B, M))=> H™*"(B
x B, M) for M =(P(4)X P(1))®k[B] degenerates and shows that

H"™(B x B, M)=H"(B, H’(1 x B, (P(4) R P (1)®k[B]))
=H"(B,P(A)@P(u)=0 for m>0.
So k[B] has a relative Schubert filtration of B x B modules. Applying F, to
this filtration collects some of its layers, cf. 2.22, so the F,k[B] are B x B modules

with relative Schubert filtration. To find the multiplicity of Q(A)XQ(u) in the
finer filtration one computes H°(B x B, (P(—A)XP(—u)®kL[B]) and uses
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Prop. 2.7, Lemma 2.10. The result is that Q(4)X1Q(u) occurs at most once and
that it occurs if and only if (4, A)=(u, #) and P(—u),+0 (use Prop. 2.4). Thus
FE.k[B]/F,_, k[B] has a filtration whose layers are the Q(1)XQ(n, with (4, 1)
=(n;, n;) and P(—n;),*0. To find the socle of Fk[B]/F,—, k[B] if suffices to
determine Long(F, k[B]/F,_ k[B]), because this happens to be one dimensional
of weight —#;Xln;. Namely, the only possible longest weight vectors are at
weights A[Xn; with (4, A)=(n;, n;) and P(—n;);+0. Such a longest weight vector
gives a non-trivial element of

H°(B x B,(Q(— A X P(—n))®(F;k[B]/F; - k[B])).
Now

H'(Bx B,(Q(—A)RP(—n)®F_, k[B])
vanishes as does

H°(Bx B,(Q(—= )R P(—n)@k[B)=H°(B, Q(—A@P(—n)) if A% —n;.

This only leaves room for a longest weight vector at the weight —#;[X]#;, which
has multiplicity one. We may therefore embed F,k[B]/F,_, k[B] into the injec-
tive hull I(—n,)XI(n,) of its socle. In that hull the submodule P(—n,)X Q(n;)
is the only B x B submodule with the correct layers (cf. 2.19).

3.12. The Joseph filtration conjecture (C2) of [P, 1.5] may be recast as follows.

Conjecture. Let M be a B module that is acyclic for O, whenever = is round.
Let AeP~. Then A®@ M is also acyclic for O, whenever = is round.

Acknowledgements. 1 have profited greatly from communications with P. Polo and H.H. Andersen.
I thank them heartily.
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