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Summary. We give a new proof of Vaserstein's Pre-stabilization
theorem. This theorem describes GLn(A) N E(A) when n is just
below the stable range for GLm(A)/Em(A). The new proof works
only for commutative rings (or ideals in such rings) but it
does not need assumptions on Krull dimension, like the old
proofs did. All one needs is the relevant stable range con-
dition. The new ideas in the proof come from Vaserstein's

recent treatment of the case n = 2. (See preceding paper).



§2 Statement of the result

2.1. We mostly follow the notations and terminology of Vaserstein's
paper [3]. Thus let B be a commutative two sided ideal in the ring A.
As the notation suggests, one thinks of B as a ring without unit. The
reader is advised to take B = A on first reading. We now introduce a
subgroup E;r= E;(A,B) of GLn(B), n 2 2. It is generated by

En(A,B), [En(A), GLn(B)] and the matrices of the form (I+XY)(I+YX)_1
where X and Y are n X n matrices over B and A respectively such that

I+ XY € GLn(B) and Y is a diagonal matrix of the form (g g), y € A,

Here and elsewhere I denotes an identity matrix of size n-1, n or n+1.
Recall that for n 2 3 one knows (cf.[1](2.2),(3.30)) that En(A,B)
contains [En(A), GLD(B)]. Also recall that I + XY € GLn(B) implies

I+ YXE GLn(B)- CL2 ),

THEOREM Let n 2 2 and let B be a commutative ideal in A with sr(B) < n.

Then GL_(B) N E(4,B) = E;(A,B).

EXAMPLE Let B = A be commutative with noetherian maximal spectrum of

dimension at most n-1. Then sr(B) < n. Now compare with [1],[2],[3].

§3 The proof

3.1. As in §7 of Vaserstein's paper we may assume A is commutative and
sr(A) < n. Let T: GLn+1(A) g GLn+1(A/B) and let N be the subgroup

1 0 0
of GLn+](A/B) consisting of matrices (i I *) . (They have "N shape").
0 1

For technical reasons we will work within HwT(N). That is, all our

matrices are n+!1 by n+1 and lie in WHI(N) (or sometimes N).
1 0 1

Thus in (z I O) the I denotes 1
q 0 1

If B = A, then 7 () is simply GL

i 1 By s
o and in (* I) it denotes 1n.

+1(A). Throughout n 2 2.



3.2, If a,s € GLn(B), we let M(a,s) denote the set of g € ﬂ—1(N) that
can be written as 2 =l D /I * Here our convention 3.1 dictates
0 1A* A0 s/ ) ’

for instance, that the first * is a column of length n whose top co-

ordinate is in B.

~

3.3. LEMMA. If M(a,s) intersects M(a',s'), then (a')-ias(s')n1 & E

(a,a',s,8' € GLn(B)).

PROOF. Multiplying g € M(a,s) N M(a',s')from left and right by suitable
factors, we reduce to the case a' = s' = I,

1 0 O
_f(a 0)1 01 =*\ _ (I b Y
= (0 1)(* I)(O s) = (O 1)(3 é ?) . Dividing from the left by

1 0 0
I 0| and reorganizing, we further reduce to the case z = 0.
0 1 :

z
0
Here we assumed that the reader knows how to multiply or conjugate

matrices in upper or lower triamgular block form, and is willing to

1 0 0.\-1 I b 1 0 0 1
apply this frequently. For instance, (z I O) (O 1)(z I 0) = (O

0 0 1 0 0 1
Also, we changed the values of a and b and used that fﬂ contains

[En(A), GLD(B)]. Such details will be left implicit. Look at m(g) and

you see b has its entries in B. We may now apply lemma 2.14 of [1] to

1 0 0 -
. _(a O 1 * ; ~ (a 0\10\_(ao0
write g = (0 1)(2 g ?)(O 31) with as, € En’(O 1)(* I) = (* 1) :

— 1 0 O
2y a 0\-1_ _ 1T %\ _ (1 0y1 =
We have to show as € En. Now (0 1) g = (2 I 0)<0 Si) = (* I)(O g

0 1

Comparing first columns we see s = S¢s SO that as € %%Vindeed.

1 0 0
3.4. LEMMA. Let (0 T c) Em 1(N), a,s € GL (B), g € M(a,s).
0 0 1 "
T 1 0 O 10
Let (0,x,,...,x ) be the last column of |0 I ¢ .
1 n 0 s
0 0 1 .
Then for y € Ax] s AR Axn_1 there are a' € éﬁn, s' € E;s, with
n+1,1 i ij . .
gy € M(a',s'). (Recall y * denotes the elementary matrix with

y in the j-th entry of row 1i).




=~

1 % qy,1 0 0
*
PROOF. Write g = | & 1 0¥y oo 1 c)! ©). we need
0 IA* INg o Ng o (/\O s

an element h' of En(A,B) with first column T(1+qyxn,~x1q,...,—xn_1q)
. 2 2 .
t + ‘e . .
and first row of the form (1 qyx X ¥ z1q, XY zn_iq) with z. €A
To construct it one may first use bare hands or use lemma 3.22 of [1] to
get the first column right, next substract suitable multiples of the
first column from the other omes. Using h' one easily constructs

o B " T _ Z B 2
h" € E with first column (1+qyxn, X QYK e ee TR 44y xn).

. . . 1 oOyh" 0y _(k O
(We are using that A is commutative). Now (xy I)(G 1) = (* 1)

where k has the first column T(1+qyxn,x1y,...,xn_1y), so that

1oy o\t 0 v ooyl 9 Ovgow
xy INO 1 DT B 1=t "RNo =) -
0o 0 1/VY X 1
1 0 ¢q 0 0
10\ _ /1 oyn" o 1 % .
wweee (01 0y 1) m Gy The N0 7 o) lo 1) s e che wian

* -
hand side equals (h 0)<1 0)(1 ) for some h € En’f & GLn(B).

o H

% O =
=
(=]

0 1/\* IO £

As the left hand side is in M(I,I) we must have f € En by lemma 3.3.

1 * 0v,1 0 q
*
We get gyn+1’1 = (S 1)(1 g)(o I 0)(0 I 0)(;y 2>/
0 0 170 0 1

O -
H

\g o 1/\0 s
*
0 1 # I OJO I O 0 1hx tho « 0 I ¢ 0 s
0 0 19 * | 0 0 1
1 0 0v,1 * 0 1 0 0
&t * - -
G G Ry R (I (R EE R WL
0 0 173 * 1 0 0 1 8 - n n

Remembering which entries must be in B, one further simplifies to
+ vo% % ; o ~
gyn L L (g 1)(; 2)(8 s') with a' € a En’ s' € E s.

3.5. LEMMA. Let a,a',s,s' € GLn(B), g € M(a,s),y € A.

(1) Let further h € M(a',s'). There are z € A, a, € éﬁn,s € E s,

1 1 n

! - S R n+1,1 ¢

aj € a En’sl € Ens such that gz M(a1,s1),

h(z-n) " Te Meal,s.

5 n+1,1 F i ~ o~
(ii) If gy € M(a',s'), there are a, € aEn,s1 € Ens with

| i1 o~

(a") a1s1(s ) €E_ .



PROOF .

(i) Let T(S1,...,Sn) be the last column of s and T(s;,...,s;) the

last column of s'. Because A is commutative,

(31,...,sn_1,s;,...,séu1,sns£) is unimodular. Further sr(A) < an < 2(n-1),

so that there are d,,...,d ,d',...,d' in A such that d_ =4d' =0
1 n’ 1 n n n

1 1 ] 1 1 1 T 1
and (S1+d1 snsn""’Sn—1+dn—1snsn’s1+disnsn""’Sn—1+dn—lsnsn)
is unimodular. Put ¢, = diSA’ ci = disn’xi = s.*c.s , x{ = s£+c£s;.
i
Then T(O,x1,...,xn) is the last column of
1 0 0 1 0 T
(O I c) (0 s) and (O,x;,...,xé) is the last column of
0 0 1
1t 0 0 .
(1O _ i T O 1
(g é ? )(0 st ) where c¢ (C1""’Cn—1)’ c' = (c1,...,cn_1).

As (x1,...,xn_1,x',...,x;_1) is unimodular, we may write y = z + (y-z)

with z € Ax, + ... + AXn— With such a

1

choice for z we may apply lemma 3.4 twice to obtain (i).

_ 1 '
1 and y-z € Ax1 +...+Axn_1.

(ii) Now put h = gyn+1

''s! as in (i). Because

1771

it follows from lemma 3.3 that (a;)_1a

and choose Zy8458,, &

o+, g1

..-1 ~
— o 1
h(z 15;1(31} EEn.

=1 Wl
We get (a') a131(s y Y E_.

3.6. LEMMA. Let g € ﬂ—1(N). There is vy € A, a € GLn(B), s € En such that

yn+1,1 € M(a,s).

PROOF. Choose ¢ € A so that the lower left entry of &y 7 gcn+1’1 is

congruent to 1 mod B, say equal to 1+b with b € B. If the bottom row
of g, is (1+b,x1,...,xn), then (1+b,x1,...,xn_1;bxn) is unimodular, so

we may find LR ERRRE L € A such that (1+b+t0bxn,x1+t1bxn,...,xn_1+tn_1bxn)

is unimodular. Take u = (c,0) + (tgb,...,t _,b) and observe that g, = g(i ?)

has a bottom row of the form (y1,...,yn+1) with (y1,...,yn) unimodular and

-1 € B. Choose (I v)EZkerlT such that the lower right entry of

Yo+ 0 1
_ I v I 0 =1
8y 1= 8 (O 1) equals 1. Then choose (w 1) €r (N) so that

1 0 O
*
g E Y- {e * I 0} with a € GL_(B).
3 \w 1 0o 1 0 0 1 n




__6_

1 0 0
I *\ V1 oY1 -vY1 0) .
Summarizing, we have = (a (* I 0 , which
: e=lo 1)y & O+ 1o aj\x 1) vEECR A

1 0 0O
z a *\1 01 =* .
be rewritten as g = o 1N\x 1tho s \.0 I 0} with y € A and
-y 0 1

1,1 € M(a,s).

s € En(B) = %;. Clearly gyn+

3.7. DEFINITION. For g € ﬂ-1(N) choose y € A, a € GLH(B), s € E;, (as in

Tigy

n+ ~
3.6), so that gy € M(a,s) and put F(g) = aEn. We claim this

; =1 ~ 3
defines amap F : m (N) GLn(B)/En. (It is actually a homomorphism,
but at this stage we even do not know that En is normal, so that we must

view GLn(B)/E; as a set). To prove the claim, suppose we also have

n+1,1

y' €A, a' € GLD(B), s' € %n with g(y") € M(a',s"). We must

show that éﬁn = a'ﬁn. Now part (ii) of 3.5 tells that gyn+1’1(y‘—y)n+1’1

€ M(a',s'") implies the existence of a, € ak , s, € E_s with
1 n’ "1 n

-‘l —1 ~ : . ~ i~ ~
1 1 1 ! — —
(a") a1si(s b = E_. But now s,s,,s' are in E_, so that a'E = a E ak .

1

3.8, LEMMA. Let g € T (N).
4 {1 = _
(i) Ifh={, 1 EZGLn+1(B), then F(hg) = F(g)
i g 1 0
Ciik Bf B =4 4 T GEGLn+1(A), then F(kg) = F(g).
PROCF.
(i) is very easy.
i oe n+1,1
(ii) is also very easy if k = (* I 0) . Remains the case k = t > with
0 0 1

t € A.

A il

Choose vy € A, a € GLn(B), s Elﬁn with kg yn € M(a,s) and choose

n+1,1

wEA, a'c€ GLn(B), s' € En with gw € M(a',s'). By 3.5(i) there are

),

n+l,1 n+l,1
z

z € A, al,a' € GLn(B), s,,8! € %; so that kg y € M(a1,s

1+

. 1 1
€M(a1,s1

1 1

gwn+1’1(z~(w—y))
1

T ). In other words, we get

n+i,1

kg(y+z)n+1’ € M(aa,sj) and g(y+z) € M(a;,s;).

1

~ o :
En = a En’ while we know

1 1
£ *

kg(y+) ™01 = (01 1)(l g)(é :1) B k(z; T)(l 2)(5 :;)°

We have to show that a




_7_

1 0 0 1 0 0
Multiplying from the left by (* I 0) and from the right by (0 I *)
0 0 1t 0 0 1

and changing notation, we reduce to the situation

GO @G EY) G NE Y@

t

where b has coefficients in B (and a1,a'1 are again in GLn(B), 31,5{,
are in & ).
f /1 0o
All factors are now in 7 (0 L 0) , so that we may argue as in [3],
0 1
proof of lemma 5: Take transposes, conjugate by the extraneous matrix
001\
(O 1 OJEfGLn+1(Zi) and change notation again. This translates our
1 0 0

problem into the following one: Prove Ena = Ena' when

a,a' € GLn(B),s,s' € %; and

CHEIWD-C NI

But 3.5(ii) does just that: It provides s

1
such that s_1s a .51_1 €E , hence Ea=Ta =Fa'.
171 n n n 1 n

€ s’%ﬁ =E ,a, €E a’

3.9. LEMMA. Let g € ﬂ_1(N), p € En 1(A,B). Then F(pg) = F(g).

+

PROOF. The subgroup of W_1(N) consisting of the x with F(xg) = F(g)
contains the h of 3.8(i) and the k of 3.8(ii). Therefore it contains

En+T(A’B)’ by [1] lemma 2.2 (take transposes).

3.10 PROOF OF THE THEOREM. We now view GLm(B) as a subgroup of GL(B)
in the usual way.m > 1. By stability for K1([2]) we have
E(A,B) N GL (B) = E__ (A,B) N GL (B). Further ¥ is contained in
n n+1 n n
E(A,B) by [2]. Let p € E__ (4,B) N GL_(B). Then ”E’n = F(I) = F(p) = pE

by 3.9, so that p € En'
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