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1. Introduction

Let R be a regular ring essentially of finite type over a field of positive
characteristic. For g>n> 1 we compute the image of K;(R[¢]/(t™)) in K5(R[r]/(¢9),
(t" mod ¢9)) under the boundary map 3 in the long exact K-theory sequence as-
sociated with the ideal (+" mod ¢9) in R[t]/(¢t?). This computation extends earlier
work of the second author and confirms his conjectures (see [8]). The main result
is obtained via convenient presentations for related K,-groups.

2. A presentation with few generators

2.1. In this section we give a presentation for the relative K, of a rather special type
of radical ideal. This type has universal properties that make it relevant in later sec-
tions. The treatment is more general than is necessary for the rest of this paper.

2.2. Let k be a perfect field of characteristic p>0. Let r and s be integers with
l<r<s, and let I be a proper ideal in the polynomial ring k[#....,7] with the
following properties:

(i) 7 is generated by monomials that lic in the subring k[s,...,7,].

(ii) For each j with 1=<j<r some power of ¢; is in /.
In later sections we will only need r=1, s=2. Put

A=Klt),...,t;}/1L.

We will abuse notation and write the image of 7, in A4 also as ¢;; more generally we
often do not.make any notational distinction betwz:n an element and its residue
class. We call an element of A a monomial if it is the image of a monomial.

0022-4049/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)



278 W. van der Kallen, J. Stienstra

2.3. let M be the nilradical of A. Observe: M=(f),...,t,) and A/M=K[¢,, ..., 1].
It follows that K,(A, (1), ...,1)) = K5(A, M). One has a presentation for K,(A4, M)
in terms of Dennis—Stein symbols:
generators: (a, b), one for every pair (a,b)e A XMUM X A;
relations: {a,b) = —<{b,a), {a,b)+{c,b)={a+c—abc,b),
{a, bc) ={ab,c) + {ac, b) for (a,b,c0)e AXMXAUMXAXM.

(see '8] for a more detailed discussion).
We shall give a presentation with fewer generators and fewer relations. With this
more efficient presentation the word problem becomes easy.

2.4. Theorem. The relative K-group K,(A, M) has a presentation as an abelian
grovup with
generators: {f,t;) where 1<i<s and (f,1;)e AXMUMXA;
relations: (1) {f, ;) +{g, t;)={f+g-fat,t}) if t,f,t,ge M.
@) Ift*=e"- ...t e M,a;20 for every j, and f(X)€eKk[X], then:

E a,; Syt ... 1%t =0
where the summation is taken over all i with a;=1.
2.5. In order to formulate some corollaries we introduce some more notation. Let

Z, be the set of non-negative integers. Let ¢ =(0,...,0, 1, 0,...,0) be the ith basis
vector in Z°,. For aeZ’, one writes 1®=t{-...-t%; so: t* =t,. Put

A={aeZ’ |t"el},
A={(a,i)eZ’ x{1,...,s} |e;=1 and t*e M }.

Note that, if § is in 4, then +¢' is also in 4 for i=1, ...,s.
For (a,i)€ A set:

fo,il=min{meZ|ma—-ceA},
w(a, i)=min{weZ, |p*=[a,il}.

Observe that [a, i]<[a,j]+1 if both (@, i) and (e, /) are in A.
If ged(p, s ..., ) =1, let

[e] =max{[e, ]|/ such that &;%0 mod p}.
Put

AY={(a,iye A|ged(ay, ..., a,)=1 and i#min{/|a;#0 mod p, [a,j]=[a]}},
A°={(ma, i)e A|ged(m, p)=1 and (a, i) € A%},
For f(X)ek[X] and (a,i)e A put
I, 1= Xf(X) = (fu)e %, 1)
For glty,....1)=th(t, ..., 1yeVI=radical (1,,...,1,) of 1, put
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l';(l “g(tl, ...,ts)): (h(fl, ...,ts), t,)

Thus I, ;(1 - Xf(X)) equals I;(1 —¢t*f(t?)) for f(X)ek[X].

If 1si<r, hence t;eVl, I, induces a homomorphism from the multiplicative
group (1 + k[t ..., 6)/6:1)* to Ky(A, M). If r<i<s, then I'; induces a homomor-
phism from (1+¢VI/t;)* to Ky(A,M). And, if (&, i)eA, then I, induces a
homomorphism from (1 + Xk[X]/(X!*))* to K,(A4, M).

2.6. Corollary. The [, ; induce an isomorphism

K(A,M)= @ (1+XK[X]/(X!*)*

(. )e 4™

2.7. Corollary. l.er .4 be a basis of k as a vector space over F,. Then K-(A, M) has
a presentation, as an abelian group, with

generators: {(bt° %, t,y where be 4, (¢,i)e A%,

relations: p™*"(bt* ¢ 1)) =0.

2.8. To prove these results we start with some observations (see also the first section
of [8]). As k* is p-divisible and (1+M)* is a p-group, {k* 1+ M} vanishes in
Ky(A, M)CK3(A). In particular, (a, ) ={a,1 —af} =0 for aek*, fe M. Using this
it is easy to see that K,(A4, M) is generated by elements (f, ;) with t,fe M. In other
words, the images of the I; generate K>(A4, M). For 1 <i<s the image of I} is a p-
group generated by elements (ar* ¢, ;) with ack, (&, i)eA. Thus K»(A, M) is a
p-group and we may view it as a module over 7, ={mn" 'e@Q|ged(p, n)=1}.

Let 4 denote the group for which the presentation in Theorem 2.4 is valid. We
want to obtain a map %, — K,(A, M). Therefore we need to check that the relations
(1) and (2) hold in K,(A, M). Relations (1) are known. Incidentally, they also ex-
press that I; induces a homomorphism. To prove relations (2), first reduce by
means of relations (1) to the case where Xf(X) is a monomial, but not a pth power.
Then write Xf(X)=aX" with aek and ged(p, m)=1. We have Ya{at™ *,1,)
=m~(a, 1™*) =0 and this proves relations (2). Note that relations (2) may be writ-
ten as ¥, ;=0. Thus, if @;#0 mod p, such a relation tells how to express the
image of I, ; in terms of the I, ; with i#. Together with pI, ;=T ; this explains
how the generators {ar® *,t;) with (a,i)eA but (a,i)¢ A" can be eliminated.
Also the generators of Corollary 2.7 are seen to correspond to a generating set tor
K>(A, M) and we have a surjective homomorphism 43 = K,(A, M), where 73 is the
group for which the presentation in 2.7 is valid. If 4 denotes ti:e right-hand side
of 2.6, then we also have a map 4 — K-(A, M), induced by the I ..

We have to show that the surjective maps % — K.(A, M) are injective. We will
give a proof of the injectivity for 43— K>(A, M). The other two wilil then follow,
because 3 = K>(A, M) factors through 4, — K>(A, M) with s — 4 surjective for
i=1,2. To test injectivity we produce maps from K,(A, M) to computable targets.
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2.9. First assume /= ({y, ..., t,)" for some N> 1. Thus 4 is equal to {a e Z*, |, + - +
a,zN}. Put C;=klxy,....x;x7 ", ..., x7 1/ OY) for j=0,...,s. Now fix (a,i)€
A% Letl= mm{/ la;#0 mod p and [a, j] = [a]}. Recall that (a, ¢ A%, so that the
corresponding generators (ar"®” ¢ , ) are those we have chosen to eliminate. We
map K,(A4, M) via K,(A) to K,(C,) by means of the substitution

(* t,—yxj» for j#l, f oxPxy @ x ).

Observe that the factors x; cancel, so that the variable x; is redundant. By the fun-
damertal theorem we may decompose K,(C)), fer 1=j<s, as

KoC, DONTKNC;_ VDN Ky (C;_ )DK(C;_ ).

Here the A,-summand is embedded in K,(C;) by the rule g - {g, x;} and
N* Ky(C;_ ) =ker(Ko(C;_ 1 Ix;])) = K5(C;_ ) with x;— 0,
N7 KxHC;_y) =ker(K5(Cj_yIx; ') = Ko(C;_ D) with x; ' = 0

(see [3, 7]). Thus K,(C,) is decomposed in many pieces. The piece we are interested
in is the K,(Cy) summand of the K;(C;_;) summand of the K,(C;) summand of
KxC,). 1t consists of the elements {g, x;} = ((1 ~g)x; !, x;> with ge C}. Composing
the homemorphism K,(A4, M) — K,(C;), induced by (*), with the projection onto
the summand K,fC,) we get a homomorphism

04,02 Ko(A, M) = K((Co) =k*x (1 + yk[y)/(¥M)*

One checks that g, ; annihilates (bt~ 1) for bek, (B,/)€A°, unless j=i and
f € Za. In the remaining case one has

Pa, i(btnm‘c" t,') — (l _bymia",)a.

with |a| =a, + ... + a,. This shows that ¢, ; detects (b %, ;) if N>mla| (recall
o #0 mod p). The idea is now to detect a given expression by taking N sufficiently
large.

2.10. We return to arbitrary I as in 2.2. We wish to show that the map
43— Ky(A, M) is injective (see 2.8). Suppose it is not and let

S= Y Y hybtF 70
g’ be 7
be a2 non-zero element in tae kernel, with O<hy b<p""”‘” and all but finitely
many /g, equal to zero. Choose (@,i)eA%, n=1, aek, so that h,,, ,#0.
Choose N>n|alp*™", so that (t,,...,1,) CI. Put A=k[t,,...,1)/(t), ...,1,)" and
let M be its nilradical. By 2.9 we have the homomorphism g, ;: Ky(A, M) = K,(Cp)
which detects {(at™ ¢,¢t). In fact 9, ; also detects the expression
= Y hy, (b ¥ 1 in Ky(A, M), which maps to the element S of Ky(A, M),
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that we want to detect. Therefore we want to know what happens to the kernel of
n:Ky(A, M)~ Ky(A, M) under g, ;.
The kernel of n is described by the following lemma.

2.11. Lemma (see [6]). Let J be an ideal contained in the Jacobson radical of the
commutative ring D. Let H be another ideal of D. Then the homomorphism
Ks(D,J)—> K5(D/H, J+ H/H) is surjective and its kernel is generated by elements
{a, b) with (a,b)e ((JOH)YxDYU(J X H).

2.12. The homomorphism ¢, ;:K,(A, M)—=K\(C,) induces a test map
Ve, it Ky(A, M) = K((Cy)/ @y ; (ker m). Using the Iemma one sees that ker m is
generated by the elements (bt# 7, i;) with bek,f—-¢e'eA.

2.13. Lemma. ¢, j(ker m)C (1 +(y!* 1)),

Proof. We must compute all ¢, (brP %, 1) with p—¢/e A, bek. If §is not a
multiple of a, then the computation yields zero. Let f#=ma, m=1. First consider
the case j=1, with 1 as in 2.9. We get

bty =~ ' Y a bty
g=l

with each term of the right-hand sum also in ker =; indeed, either [a, g} <[a. 1],
hence ma—¢7e A4, or [a, g]1>[a, 1], in which case pla, and the term in question is
a multiple of (bPrP™*~ 1.5, while pma—¢9eA. Therefore we may further
assume j#l. If j+#i, the computation yields zero again and if j=/ one gets
(1 = by™ehy with m=[a,i]l. O

2.14. As in [8] we denote by (g) the class of 1-g in K,(C,), for ge C, with
1—-geCy. From 2.9 we obtain ¢, ;S= ¥ A, i son<by™™ ), where the summation is
over be # and m prime to p. Therefore y, ;S=0 implies that the highest p-power
P(Myg, i ) that divides Ay, ; p satisfies mla|P(h,, ; p) =minV, [, ille)), whenever
Apme, i b is nON-zero. In particular,

n|e| P(h,q, i o) = min(nle|p™" ", [a, il]al).

Now recall 4, ; ,<p™"*". So we must have nP(l,q ;q)=le. i], and hence
nP(hy,  Jo—g'eA. It follows that P(h,, ; )=[ne,i], hence P(hyq ; )zp™""
>N, i o This is absurd.

We have proved Theorem 2.4 and its two corollaries.

2.15. Remark. The test map y, ; of 2.12 is basically just the projection onto the
(o, i)-component in 2.6 (replace X by y'® and multiply by the invertible factor ).

2.16. In 2.7 we decomposed the summands of 2.6 by choosing a basis .4 of k. There
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is a more functorial decomposition of (1 + Xk[X]/(X'®))*, involving the ring of
Witt vectors W(k) of k. Namely, recall ([8,(3.1.2)] or [1,7 §3]) that (1 + XK[[X]])*
is an infinite product, indexed by the positive integers m prime to p, of copies
Wik),, of W(k). One can show that the kernel of the projection onto
(1 + Xk[X)/(X'® ) * is the product of the ideals (p*“"® ) in the discrete valuation
rings W(k),, (observe that w(ma, i) =0 for m=[a, i]). Thus (1+ XKk[X]/(X*))*is
isomorphic with

n W(k)/(pw(nm. i))'

m prme o p

We get:

2.17. Corollary. K:(A,M)= @ W(k)/(p**9).

(e, fye A"

2.18. Here are some simple examples, not all new.

(a) If s=1, then K5(A,M)=0.
(b) Ky(klty, ...,/ (g, ..., 1,)) = K>, (K) @K'~ D72,
(©) Kaoklty, 51/(t8, ) =K,k @k if p#2,
=K,K)®K® if p=2 K'=k®KkDK).
(d) Ka(kit, 61/, 1) = K, (W @k* if p#2,3,
=K)(k)®k® if p=3,

=K,(k) DK@ W(k)/(p?) if p=2.

3. Computation of K,(k[t]/(t7),(t" mod 19))

3.1. From Theorem 2.4 and Lemma 2.11 one may derive a presentation for
Ky(R[t)/(¢), (1" mod 19), or Ky(R[t]1/(t%),(t")) for short. We now give some
details.

3.2. Theorem. Let k be a perfect field of charac.cristic p>0. Let g=n= 1. Then the
group K,(k{t}/(19), (t")) has a presentation as an abelian group, with

generators: {f(t)t", t) with f(t)ek[t];

relations:

(h T, 0+ g, 1) = SO +8() — 1" f()gON ", 1),
2) U™y Nty =0 if 2ls, ptm, mp*'=2n,
U™y P gy =0 if 24s, ptm, mps—1"2>p,
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) S, 1y=0
with f(X), g(X) ek[X].

3.3. If g=n, the theorem is trivial. We henceforth assume g>n.

3.4. For m prime to p put
v(m)=min{s|mp*>n},
w(m)=min{s|mp*>q or s even with mp*>=2n
or s odd with mp® "==n},

Observe that w(m) is independent of q if g=max(pn®—1,4n*-1). Let I denote
the homomorphism from (1+X"*'k[X1/(X9* ) * to K,y(k[t]/(t7), (t")) given by
(A =Xx"*1£(X)) = {f(£)t", ). The theorem tells what the kernel of I'is. If we view
(1+ X" Tk[X]/(X7* ) * as a subquotient of (1+ XKk[[X]])* in the obvious way,
then we may also identify K,(k[£]/(¢9), (t")) with a subquotient of (1 + Xk[[X]])*,
hence of [],, W(k),, (see (2.16)). The subgroup (1 + X" *'k[[X]])* corresponds with
1" "™ W(K),, and K,(k[t]/(t9, (")) with [[,,p*"" ¥ (K),,/p*" WK),,.
We get:

3.5. Corollary. K,(k[t]/(t?),(t™)) is isomorphic with the product, over the
positive integers m prime to p, of the groups W(k)/(p*" "), For g=
max(pn® - 1, 4n*— 1) this is also isomorphic with

(1 + £k[t]/(t*)*/{(1 + at" mod 1*")|aek)}.

Sketch of proof. To see that ¥=(1+k[t]/(t*"))*/{1 +at"|aek} is isomorphic
with the product of the W(k)/(p*" ~**) one shows, under the hypothesis on g,
that w(m) — v(m)=min{s|mp®=n or mp*=2n} and identifies » with a quotient of
(1+kllz]D)*, hence of [],,W(k),. U

3.6. In 3.5 we found, for g sufficiently large, an isomorphism A, {rom
K (k[£1/(e*), () /{<at™y|aek} = (1 + tk[t]/(¢t>" N */ {1 +at" |a ek}

to K,(k[t]/(¢9), (t")). This map 4, is the same as the map A, of [5]. So the con-
jecture of [5, p. 412}, stating that 4,, is an isomorphism, has herewith been proved.

3.7. Let us prove the theorem. We have a surjective homomorphism
o :k[t, ul/(u?)—>k[t]/(t?) sernding ¢ to r, u to t". Lemma 2.11 describes the kernel
of the surjective map n: Ky(k{s, u}/ (1%, (1)) = K>(k[t]1/(t9), (™)), induced by ¢, and
Theorem 2.4 describes the source of 7. Let % be the group for which the presenta-
tion of Theorem 3.2 is valid. First we check that the re’ations (1), (2), (3) hold in
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K,(k[r1/(19), (t™). Relations (1) are known and relations (3) are obvious. To prove
(2) first use (1) and (3) to reduce to the case where f is a monomial; then apply
lemma (1.10) of [8] and 2.8. So there is a homomorphism ¢&: % — K,(k[r}/
(i?), (™).

3.8. In order to show that £ is an isomorphism we construct a surjective homomor-
phism t: Ky(k[z, u}/(u?), (u)) = %, such that 7=¢&o 7 and ker 7 Cker 7. We use the
result of 2.6 and define for (a,i)e A® the corresponding component of ,
(1 + Xk[ X}/ (X®)*— 4, by (write a=(1, h) for simplicity)

—(ml+h—=n)FE™ M-y =1,
(f(tnl+h)tnl+h-l’ () lf l=2

Observe thai this does indeed define a homomorphism.

u+xm<»~{

3.9. Lemma. Let i=n,mi=2n,ack. Then i{at"™ "', ty vanishes in %,.

Proof. It suffices to show that P(i){at™ !, t) = (aPO¢™PDO-1 1y vanishes, where,
as in 2.14, P(i) denotes the highest power of p dividing i. If P(m)=p?, an even
power of p, then our element vanishes because mip~"=2n, and if P(m)=p**!, an
odd power of p, then our element vanishes because mip~""'=n. O

3.10. Remark. in Theorem 3.2 one may replace the relations (2) by the relations
iat™ ', 1y =0 of the lemma (i=n, mi=2n,aek).

3.11. We check n=¢&o 1. It suffices to compare the images of the generators of 2.7.
A generator of the form (bu™t™ -1ty with be #, (m,p)=1 and (L, h),2) e A%,
goes to (pr™™+mh-1 4y both ways. For a generator <(bu™ 't™ ). with be 4,
(m,p)=1 and ((,h},1)e A% the desired equality is provided by the following
compnutation in K,(k{t]/(t9), (t™):

(blmnl-t-mh—n, l") - (bf”, tmnl+mh‘n)

= — (mnl+ mh - n)(bt'”"”'""‘ 1’ 0

= —(nl+h—n)(pt™+mh-1 4y (use 3.9 for m=2).

3.12. Remains to show that ker 7 contains ker 7. The ideal ker o equals (79, u — t")
and its intersection with («) equals (ur9~", u?>— ut™). However, it is inconvenient to
apply Lemma 2.11 directly. Instead we will use:
Lemma. The kernel of n is generated by the elements
at' 'ty with j=1,i=q~nj+ 1,aek,
<at'’ ' uy with j=1,i=gq, aek,

Cat" YWty —Cat' Tty with j=2,i=1, aek,
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2

Cat'' N uy —(ar't "W ot u)  with j=2,i=0, caek.

Proof. On the one hand these elements are clearly in ker n, on the other hand one
can use them, exploiting the nilpotence of u, to break down the elements suggested
by 2.11. For instance, an element of type {(:"—w)uf(t, u), g(t, u)) is first broken
up into pieces with f and g monomial; next into pieces with f monomial and
g(t, u)=t or u. Such a piece can be written as a sum of elements listed in the lemma
(the third type if g =1, the fourth type if g =) because 1 — (¢" — w)ufg is a product,
in (k[t, u]/(u?)*, of elements (1 —at'uY(1 —at™*"u/"""1. [

3.13. Lemma.

wWat' "' ty=Cat' " 1y,

wat'w " uy=—(i+jn—n)at'*’"" ' 1> ifaek, i, j=1.

Proof. The first formula results directly frcm the definition of 7 if / = mh, j= ml and
(1, h), 2)e A%, Now suppose i=mh, j=ml and (I, h), 1) € A%, Then (h, p)=1 and
Cat'™ "Wty = —1h~ Yat'’ ', u) by (2.4); whence

at" "W, ty = —th 'e¢at'v ', u)
=lh~'(nl+h—n)at" "1 1)
=(1+h 1= D@ +h))ar' "Y1y
=(at™" 1y, by 3.9.
Similar arguments prove the second formula in the lemma.
3.14. Now we have to check that the elements listed in Lernma 3.12 are in ker 7.

For the first three types this is clear. For the fourth type with ;= 1 it is equally trivial.
Lemma 3.9 shows that

t(Caw! " uy = Cat™d "2 ud)=1(— Cat"w 2 uy)=n( - Dar’" L 1y

vanishes for j=2 and aek.
We have proved Theorem 3.2.

3.15. Examples (for g sufficiently large; see 3.5).
(a) Ky(k[t]/(t), (1*) =k* if p#3,
=W(K)/(p?) if p=3.
In particular, K>(F3[t1/(t%), (t%)=Z/(9), with generator {I-,1}.
(b) Ky(k[t1/(t9), (t})) =Kk* if p#2, 5,
=WEK)/(F)®Pk if p=2,
= WK/ (p)®K* if p=5.
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3.16. Via the exact sequence
3
Kiy(k[e]/(t™), (1)) Kp(k[11/(£9), (£7) — Ky(k[£]/(¢9), (1)) =0

the computation of K,(k[]/(t9), (")) provides a lower bound for Ky(k[¢]/(t"), (1)).
For example one gets a surjection from K3(IF2[t]/(t3), (1)) onto Z/(8Y®Z/(2).

4. The image of 4
4.1. Let R be a (commutative) [F-algebra. Let g=n=1. We are interested in the
image of 9 in the long exact sequence
d
<= K3(R[1)/(1™) — Ky (R[t)/(t9), (t™) — Ky(R[t)/(t9)— -
In other words, we are interested in the kernel of K,(R[t]/(¢9), (t"))— Ky (R[t])/
(t%). Or, what amounts to the same thing, we are interested in the image of 9 in

e Ky(R[1)/(t™), (1))—8’K2(R[t]/(f"), (") Ky(RI1)/ (9, (1))— -+

(The last sequence is a summand of the first. Although the source of d is not the
same, the image and the target are.)

In section 3 of [8] a homomorphism A4, has been constructed from
K\(R1e1/(2*"), (1))/{<at"y|a e R}

to the image of 9 (recall that (at") denotes the class of the unit 1-at”). The image
of A, is the subgroup of imd generated by the elements (a” ~'t"7, a) +
m{a”t"™ -1ty with aeR,m,r,seZ such that O<s<r ged(m,p}=1,mp =
n,mp **>n [8, theorem (3.5)(1)]. Conjecture (4.1) of [8] is ncw a theorem:

4.2. Theorem. Let R be a domain of characteristic p>0. Let n cud q be positive
integers with q=max(pn*—1,4n>—1). Then the homomorphism

A, K (R[E)/(82M), (0)/{<at"Y|ae R} = K>(R[t]/(t9), (t"))
is injective.

Proof. By (4.2) of [8] this follows from the previous section. [

4.3. Theorem. Let R be a regular ring, essentially of finite type over a field of
characteristic p>0. Let g=n=1. Then
im 4,=im 9.

In oiher words, im 0 is generated by the elements (a” "~ 't™, a) + m¢a” 1™ "'~ 1)
with ae R,0<s<r, gcdim,p)=1,mp"=n, mp"**=n+1.
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Remark. In the proof 4, will not be needed. One may simply read im A4, as a nota-
tion for the subgroup generated by the listed elements.

4.4. Corollary (cf. [1, p. 236, theorem (4.1)]; [8, p. 430]). Let R be as in Theorem
4.3, n=1. Then ker(Ky(R[t]/(t"* l))-*I\{Z(R[t]/(t”))) is isomerphic with

Q. if n#0, —1 (mod p),
QL ®R/RY ifn=mp -1, ged(m,p)=1,r=1,n=2,
Qkys/Dy g if n=mp’,gedm,p)=1,r=1.

Here D,  is the subgroup of Qk,; generated by the forms a” ~‘da with 0<j<r (it
is also the kernel of the rth power of the Cartier operator [2}).
If n=1 and p=2, then there is an exact sequence of F, vector spaces

0— R/R?* - Ky(R[11/(12), (1)) = Qk,, — 0.

Of course, this sequence splits, but i; does not split naturally.

Proof of the corollary. For the case n=2 and the case p=3 see remark 2 following
theorem (2.5) of [8]. For n=1 and p =2 the same argument yields the exactness of

R/R* > K>(R[11/(t%), (1)) = QL,, = 0

To see the first map in this sequence is injective, compute its composite with the test
map dlog: K,(S, (t))— Q%,,, dloga, by =(1—-ab) 'dandb, S=R[t]/(*). Then
recall that R2=ker(R—>Q,'W) (see [2, p. 196]). We leave it to the reader to show
that there is no natural splitting i.e. none that is functorial in R. ]

4.5. Let us prove Theorem 4.3. It has been proved in [8, §2] for the following case:
R is smooth of finite type over a perfect field k of characteristic p and R can be lifted
to a smooth W(k)-algebra [8, (2.5)]. First we wish to globalize this result using the
sheaf properties proved by Vorst for functors like NK; (see [9, §1]).

Thus let R be smooth of finite type over a perfect field k of characteristic p.
Locally R can be lifted to a smooth W(k)-algebra (cf. [4, p. 69]. If Sis a k- alg:_bra
write 85 for the boundary map K3(S[t]/(t"))LK;(S[I]/([") (t")) and write A4,
for the corresponding map

K (S[t]1/(t*), (1))/{<at"y|lae S} —im d5.

Using notations as in [9, p. 35], let a(f)eim d%. We have to show that it lies in
im AX. Following Vaserstein as in [9], we put

I={reR|a(tX)-a(X+rY)eim AF* "1},

This is an ideal in R. Suppose it is a proper ideal. Choose a maximal ideal M around
it and choose de R\ M, so that R[1/d] (= R[d '] is liftable. Then (the image of)
a(t) in im 9RU9 is contained in im ARU'9. Choose a polynomial ring
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B=F,[A, ..., Ap, D] and a homomorphism ¢:B— R with ¢(D)=d, so that in im
™41 the element a(?) is the image, under the homomorphism induced by ¢, of an
element A() of im 48U/P). Choose an integer f so large that B(tX) — B(tX + tDy)
lies in the image of K,(B{X, Y1[t1/(#%, (t™) in Ky(B[1/D]LX, Y1[t)/(t9), (+")) (this is
possible because S(1X)--B(X + tD’y) is a sum of elements of the type ( YF, G);
one may also use more genera! results of [9]). The fundamental theorem [3] shows
that the map

K>(BLX, Y[t)/(t%) — KBID™ 11X, Y1[11/ (%))

is injective. Therefore B(tX) — B(tX + tD’ Y) lies actually in the image of im 351*- Y1,
hence of im 42X Y], because B[X, Y] is smooth over F, and liftable. Say y(t, X, Y)
in itn AXXY) has image B(tX)—B(tX +¢tD’Y) in im 9B/PIX Y1 [t has the same
image in im 3RVINX Y] a5 (1 X) — a(tX + td” Y). Using lemma (1.4) of [9] one finds
g=1 so that y(t, X,D8Y)-y(1,X,0) has the same image in imaR* " as
a(X)-a(X+td’*8Y). Thus d’*8eICM, contradicting the choice of d. It
follows that /=R. Consequently, a(tX)—a(X+tY) is in im ARX Y Now
substitute X:=1and Y:=-1.

We have proved Theorem 4.3 for R smooth of finite type over a perfect field of
characteristic p.

4.6. Next let R be a regular local ring, essentially of finite type over a field of
characteristic p. Then R is a limit of subrings that are regular and of finite type over
F, (see, for instance, [10, p. 408]). These subrings are smooth over [, (see [5, p.
99]j, so that the theorem holds for them by 4.5. It follows that the theorem holds
for R. We may use essentially the same arguments as in 4.5 to globalize to the
general case of Theorem 4.3 (use R,, instead of R[d™ '] or view R, as a limit .{
subrings R[d™']).
The proof of Theorem 4.3 is now complete.

4.7. It seems possible that the conclusions of Theorem 4.3 and its corollary hold for
any normal ring R of characteristic p. On the other hand, the following exercise
shows that some hypothesis on R is needed. It provides an example of a (non-
normal) domain R of characteristic 2 for which the map R/R*— K,(R[t]/(t%), (1))
is not injective (no such example can exist with R normal, by the proof of Corollary
4.4). 1t also provides an example of a non-normal domain R of characteristic 3 for
which the map R/R*— K,(R[t]/(t3), (t)), sending a to <at? t), is not injective.

4.8. Exercise. Put
44 ={FP[XI’ Xz,X3, X4, Xs, X6’ leX5-p, X{Xs—p, X£X6_p, X4pX6_p],
F=X,X,X;', G=X,X,X;', R=A[F+G).

Then R is a subring of F,(X,,...,X,), but not normal:
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F,[F, GINR = (F,[F, GINA)[F+G]
=F,[FF, FP* L FP*2 LGP, GP*,GP*2, . |[F+Gl.
In Ky(R[t]/(¢P), (1)) every element is annihilated by p and for fe R[f] one has:
(FPtf) =(XP XS XS, tf) = XP X5 P, XPtfy =(X; P XP, XPUfy,
(FP, tfy = ((XT X5 D) XE(XE X5 P), tf)
={XT X5 P, X5tf) +(X§ X%, XPtfy,

whence (F?, tf) =0.
If p=2 put a=FPG”. Then ae R\ R" and

at, ty=((F+ G, ty +(F?t) + (GP, 1y =0.
If p=3 put a=F®G?”+ FPG?*. Then ae R\ R” and
(at®, 1y ={(F+G)P, 1) + (= FP, 1y + ( = GP, ) + (FPGP, t?)
+(F¥, 1% +(G?,t*) =0.
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