Modnli of sheaves (general)
ξ
X prof schamel $h=\bar{k}$
Ox (II very amph lone bat.
Def. For B base scheme; a flaz family of ioheriut
sliquas our B is a colerint stiat F on $X \times B$ s.t. F is B-flat.

DNA. LCA ε be a coh-sheof on X;

$$
\begin{aligned}
P_{\varepsilon}(t) & :=x(x, \varepsilon(t)) \\
& =\sum_{i=0}^{d} \frac{1}{i!} \alpha_{i}(\varepsilon) t^{i} \\
\text { whec } \quad & \alpha_{A}(\varepsilon) \neq 0
\end{aligned}
$$

$P_{\text {g }}(t)$ is the fillert pon, of E.
Reduced Mils. poly.

$$
\begin{aligned}
& p_{\varepsilon}(t)=\frac{p_{\varepsilon}(t)}{\alpha_{d}(\varepsilon)} \\
& \text { Facts: } * d=\operatorname{dim}(\{) \\
& \therefore=\operatorname{dim} \operatorname{Supp}(\varepsilon) \\
& \operatorname{Supp}\left(\left\{\int:=\left\{x \in X: \varepsilon_{x} \neq 0\right\}\right.\right. \\
& \text { * F B-flat fanilg } \\
& \text { then } \\
& \left\{P_{F_{b}}(t) \mid b \in B\right\} \\
& \text { localy } \\
& \text { constant. } \\
& \mathcal{F}_{b}:=\left.F\right|_{X \times\{b\}}
\end{aligned}
$$

Nod \quad inin... M : Schi $1^{0}-$ role

Me: modede fincto.
\& Spelion can: $B=\operatorname{spec} A$
wr $A \in \operatorname{Artin} / C$
locan Artonicu K-alg.
w resichn field k

$$
\begin{aligned}
& \text { Actin } / h_{c} \xrightarrow{D}(\varepsilon) \text { Sets } \\
& \left.A \longmapsto\left\{[f] \in \mathcal{M}_{n}(\operatorname{spec}(A))\right)\right\}
\end{aligned}
$$

for some $\varepsilon \in \underline{M}_{p}(\operatorname{spec}(k)$
$\theta_{\lceil\varepsilon]}$: deformation functor.
First intritans can:

$$
\begin{aligned}
& A=\frac{k[\epsilon]: D}{\left(\epsilon^{2}\right)}: \text { then } \\
& D_{[\varepsilon]}(D) ; \text { first och } \\
& \|_{\text {deformaticur. }} \text { fact } \\
& E^{x} t_{X}^{\prime}(\varepsilon, \varepsilon)
\end{aligned}
$$

sketch of pf":
Given \mathcal{F} is ord def.;

$$
0-, \underline{E}, 0{ }^{e u_{0}} k_{0}-10
$$

$$
\text { apply } \quad-\bigotimes_{D}^{\Theta}{ }^{\top} \quad 0 \rightarrow(\epsilon) \rightarrow D \geqslant D /(\epsilon)^{+1}
$$

T

$$
\begin{aligned}
& \cong \mathcal{E}
\end{aligned}
$$

Given: s.e-s.
jer \mathcal{j} to le a $0_{x} \otimes G$ modih : dejpone E : F-JF $\alpha \circ \beta$
Higher ords:
small extinsion
$0 \rightarrow G \rightarrow A^{\prime} \rightarrow A \rightarrow 0$ sel.
whire $A, A^{\prime} \in \operatorname{Arta} / L$

- $\sigma \cdot m^{\prime}=0$, n proncopar

Q1: Givin $F \in Q_{[\varepsilon]}(A)$

$$
\exists_{F^{\prime}} \in \mathcal{D}_{\Gamma \Sigma)}\left(A^{\prime}\right\rfloor: \quad F^{\prime}(\mathbb{A}, A \cong \mathcal{F} ?
$$

Q2: if lifts coost, can we dassify then?
Q2: (f act)
$\{$ lifts $\{\underset{x}{\operatorname{Ext}}(\varepsilon, \varepsilon) \otimes \sigma$ torsor.
Q1: $\exists_{\text {ob }} \in \operatorname{Ext}_{x}^{2}(\varepsilon, \varepsilon) \varphi_{k} \sigma$
$0 l_{f}=0 \quad \Leftrightarrow$ lifts exist.
"Sketch": ε simph (End $(\varepsilon) \approx \xi)$
Givin: $F \in \mathcal{D}_{\varepsilon}(A)$

$$
0 \rightarrow G \rightarrow A^{\prime} \rightarrow A \rightarrow 0
$$

sman uxtinsion
We have:

$$
\begin{aligned}
& 0 \rightarrow m \rightarrow A \rightarrow k-10 \\
& 0 \rightarrow m \cdot A^{\prime}-k-10 \\
& 0 \rightarrow a \rightarrow A^{\prime}-, A-10
\end{aligned}
$$

is short wact sequenh of

$$
\begin{gathered}
\left.\left.A \equiv A^{\prime} / \sigma \quad-\bmod \right\} s\right) \\
\left(b / c \quad o \cdot n^{\prime}=0\right)
\end{gathered}
$$

(7):

$$
\left.-\operatorname{Ext}_{x}^{2}(\varepsilon, \varepsilon) \notin q\right)_{y}{\underset{\sim}{o b}=0}^{\sim}
$$

* : sppls $\quad F_{A}^{\otimes}-$

$$
\begin{aligned}
& 0-1 F \otimes m \rightarrow F \rightarrow \quad \Sigma \\
& \text { ws: appla } \operatorname{Hom}(-, \text { equal }
\end{aligned}
$$

$0 \rightarrow F \theta_{A} \pi-F_{A} m^{\prime}-F_{A}$

Mushat: if olf $=0$, then $\exists_{0 \rightarrow\left[G_{k}\right.} F^{\top} \rightarrow, F \rightarrow u$
mapping to ξ
Fact: \mathcal{F}^{\prime} can $b l$ wach orto Gn $A^{\prime}-m \cdot d_{a} h$.
(Artambin)
\oint
Def. Givin a contrauaroatt

$$
\text { funotun: } M:(s c h / k)^{0} \rightarrow \text { sets }
$$

we say that $\underline{\mu}$ il represewtqbh $7 \ldots$
(i)

$$
\begin{aligned}
& M \in J c h / h \\
& \bar{\Phi}: M \stackrel{y}{\sim} \\
& \text { nation transf. }
\end{aligned}
$$

If so: * M fine module space for M

\[

\]

$$
\begin{aligned}
& { }^{\forall} \mathcal{F} \in M(B) \exists!\quad f: B \rightarrow M:
\end{aligned}
$$

Elg. 1) $\quad \operatorname{Gr}(r, V), \operatorname{dim}_{r} V=n$ fanilics: B :

$$
\underset{k}{\otimes}{\underset{B}{B}}^{\rightarrow} \rightarrow \underset{\substack{\xi \\ \text { locous frue }}}{ }
$$

w/ foscos of
diom. u-r

Grothendirch, $Q \operatorname{uot}(\{, P)$

$$
\begin{aligned}
& \text { 1) } \varepsilon \in \cos (X), p \text { sion polg. } \\
& \text { Quotx }(\varepsilon, P):= \\
& \left\{[\varepsilon \rightarrow Q] \mid \quad P_{Q}=P\right\} / \cong \\
& \text { famine (B): } \\
& \text { con } X<B J \\
& \varepsilon \otimes O_{B} \longrightarrow Q \\
& \text { 13-flot, } \\
& P_{Q_{b}}=P \quad \forall b \in B .
\end{aligned}
$$

i) a proj. scherul.

We are interestid on Mp.
lt i) not raprosmunsh!
E.S.

$$
\left.\begin{array}{l}
\left.X=\text { speck, } \quad P=\begin{array}{r}
r>1 \\
M_{p}(B)=\{[F]
\end{array} \begin{array}{c}
f \text { locank frec } \\
\text { our } B, \text { of } \\
\text { rh }
\end{array}\right\}
\end{array}\right\}
$$

Talke \mathcal{F} indecomposabh lere freh shoof of rh $/ B$. Suppor Mp is represectash:

$$
\underline{M} p(S p c c k)=214.13-53
$$

Note: on B:

$$
\begin{aligned}
& \left.{\underset{P}{P}}^{M}(B) \underset{\Phi_{B}}{\sim} \operatorname{Hom} B, M\right) \\
& \Phi_{B}\left(\Gamma O_{B}^{r} J\right): B \rightarrow M \\
& \Phi_{B}([F]):
\end{aligned}
$$

lit $h_{\alpha} \subseteq B$ open lour-:

$$
\begin{aligned}
& \left.F\right|_{n_{\alpha}} \cong G_{n_{\alpha}}^{n} \text {, thin }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \Phi_{B}([F))=\Phi_{B}\left(\left\lceil G^{n}\right]\right) \\
& =1 \quad F \cong G_{B}{ }^{n}
\end{aligned}
$$

Def. Givin: $\underline{\mu}:(S C h / k)^{2}-S_{(S t)}$
$\underline{\mu}$ is co-mprosimash if
J

$$
\Phi: M \Rightarrow \operatorname{Hom}(-, M)
$$

s.t. fa- ary $\Phi^{\prime}: M=M H \operatorname{mom} M^{\prime}$,

系! $\mu^{\mathcal{f}} \mu \mu^{\prime}$:
$\underline{M} \xlongequal{\text { 雨 }} \operatorname{rrom}(-, M)$

If so: we coll M a coarse modnci space.
M i) unorque up to nuigue iro. Suppor: $\quad \varepsilon^{\prime}, \varepsilon^{\prime \prime} / X$
$\eta \in \operatorname{Ext}_{x}^{\prime}\left(\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right) \mid \cong$
$0 \rightarrow \underbrace{\prime} \varepsilon \rightarrow \varepsilon^{\prime \prime} \longrightarrow 0$

tak. Anc itu $0, \xi$:
\cdots flot fanity F our A^{\prime} :

$$
\begin{aligned}
& F_{0} \cong \Sigma^{\prime} \otimes \Sigma^{\prime \prime} \\
& F_{b} \cong \Sigma \quad \forall b \in A^{\prime}(0
\end{aligned}
$$

if M_{p} i) uripr.

$$
\begin{aligned}
& \text { i.c. } \Phi: \underline{-}_{p} \approx \text { Homt, } M \text {) } \\
& \text { supporer }^{\Phi_{\text {speck }} \text { lij. }} \\
& \Phi_{A^{\prime}}: \mu_{p}\left(\mathbb{A}^{\prime}\right) \longrightarrow \operatorname{Mom}\left(\mathcal{A l}^{\prime}, \mu\right) \\
& \mathcal{F} \rightarrow \infty \quad \mathbb{\Phi}_{A_{1}}(F): A_{f}^{\prime} \underset{+}{\sim p h}
\end{aligned}
$$

$$
\begin{gathered}
f(b)=[\varepsilon] \quad \forall b \neq 0 \\
f(0)=\left\lceil\varepsilon^{\prime} \Phi \Sigma^{\prime \prime}\right] \\
\text { contonuity }=\delta \cong \Sigma^{\prime} \otimes \Sigma^{a} .
\end{gathered}
$$

