Comparison O

Isomorphism classes of polarised abelian varieties and Drinfeld modules over finite fields

Valentijn Karemaker (Utrecht University) Joint work with Bergström – Marseglia (IMRN, 2023) and Katen – Papikian (arXiv 2209.15033)

NCTS Number Theory Seminar

11 January 2024

Abelian varieties over finite fields: set-up

Definitions

An **abelian variety** is a connected projective group variety. The **dual variety** A^{\vee} of an abelian variety A over a field K is such that $A^{\vee}(\overline{K}) = \operatorname{Pic}^0(A_{\overline{K}})$. A **polarisation** of an abelian variety A is an isogeny $\mu : A \to A^{\vee}$ such that there exists an ample line bundle \mathcal{L} on $A_{\overline{K}}$ such that $\mu_{\overline{K}}$ equals $\varphi_{\mathcal{L}} : A \to A^{\vee}, x \mapsto [t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}]$.

Abelian varieties over finite fields: set-up

Definitions

An **abelian variety** is a connected projective group variety. The **dual variety** A^{\vee} of an abelian variety A over a field K is such that $A^{\vee}(\overline{K}) = \operatorname{Pic}^{0}(A_{\overline{K}})$. A **polarisation** of an abelian variety A is an isogeny $\mu : A \to A^{\vee}$ such that there exists an ample line bundle \mathcal{L} on $A_{\overline{K}}$ such that $\mu_{\overline{K}}$ equals $\varphi_{\mathcal{L}} : A \to A^{\vee}, x \mapsto [t_{x}^{*}\mathcal{L} \otimes \mathcal{L}^{-1}]$.

When $K = \mathbb{F}_q$ is a finite field, abelian varieties over K are partitioned into isogeny classes.

Important open problem

Describe and compute (polarised!) isomorphism classes within a fixed polarised isogeny class.

Comparison O

Preliminaries: Complex multiplication

Definitions

A **CM-field** L/\mathbb{Q} is a totally imaginary quadratic extension L/L' of a totally real extension L'/\mathbb{Q} . It has a canonical involution $x \mapsto \overline{x}$. A **CM-algebra** is a finite product of CM-fields. A **CM-type** for a CM-algebra L is a subset $\Phi \subseteq \text{Hom}(L, \overline{\mathbb{Q}})$ so that

 $\operatorname{Hom}(L,\overline{\mathbb{Q}}) = \Phi \prod \overline{\Phi}.$

Comparison O

Preliminaries: Complex multiplication

Definitions

A **CM-field** L/\mathbb{Q} is a totally imaginary quadratic extension L/L' of a totally real extension L'/\mathbb{Q} . It has a canonical involution $x \mapsto \overline{x}$. A **CM-algebra** is a finite product of CM-fields. A **CM-type** for a CM-algebra L is a subset $\Phi \subseteq \text{Hom}(L, \overline{\mathbb{Q}})$ so that

$$\operatorname{Hom}(L,\overline{\mathbb{Q}}) = \Phi \coprod \overline{\Phi}.$$

An abelian variety A over K of dimension g has CM (by (L, Φ)) if

 $L \subseteq \operatorname{End}^{0}(A) := \operatorname{End}(A) \otimes \mathbb{Q}.$

Comparison O

Preliminaries: Complex multiplication

Definitions

A **CM-field** L/\mathbb{Q} is a totally imaginary quadratic extension L/L' of a totally real extension L'/\mathbb{Q} . It has a canonical involution $x \mapsto \overline{x}$. A **CM-algebra** is a finite product of CM-fields. A **CM-type** for a CM-algebra L is a subset $\Phi \subseteq \operatorname{Hom}(L, \overline{\mathbb{Q}})$ so that

 $\operatorname{Hom}(L,\overline{\mathbb{Q}}) = \Phi \coprod \overline{\Phi}.$

An abelian variety A over K of dimension g has CM (by (L, Φ)) if

 $L \subseteq \operatorname{End}^{0}(A) := \operatorname{End}(A) \otimes \mathbb{Q}.$

Fact

Every abelian variety over a finite field has CM.

Polarised abelian varieties over finite fields

Drinfeld modules over finite fields

Comparison O

Complex uniformisation

Consider an abelian variety A over \mathbb{C} of dimension g. By **complex uniformisation**, we have

$$A(\mathbb{C})\simeq \mathbb{C}^g/\Lambda, \qquad \Lambda\simeq_{\mathbb{Z}} \mathbb{Z}^{2g}.$$

Complex uniformisation

Consider an abelian variety A over \mathbb{C} of dimension g. By **complex uniformisation**, we have

$$A(\mathbb{C}) \simeq \mathbb{C}^g / \Lambda, \qquad \Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}.$$

When A has CM by (L, Φ) , we can say more: There exists a fractional ideal I in L such that $A(\mathbb{C}) \simeq \mathbb{C}^g / \Phi(I)$. Then also $A^{\vee}(\mathbb{C}) \simeq \mathbb{C}^g / \Phi(\overline{I}^t)$, where t is the trace dual. Hence,

$$\operatorname{Hom}_{L}(A, A^{\vee}) \leftrightarrow (\overline{I}^{t} : I) := \{x \in L : xI \subseteq \overline{I}^{t}\}.$$

Comparison O

Complex uniformisation

Consider an abelian variety A over \mathbb{C} of dimension g. By **complex uniformisation**, we have

$$A(\mathbb{C}) \simeq \mathbb{C}^g / \Lambda, \qquad \Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}.$$

When A has CM by (L, Φ) , we can say more: There exists a fractional ideal I in L such that $A(\mathbb{C}) \simeq \mathbb{C}^g / \Phi(I)$. Then also $A^{\vee}(\mathbb{C}) \simeq \mathbb{C}^g / \Phi(\overline{I}^t)$, where t is the trace dual. Hence,

$$\operatorname{Hom}_{L}(A, A^{\vee}) \leftrightarrow (\overline{I}^{t} : I) := \{ x \in L : xI \subseteq \overline{I}^{t} \}.$$

Definition/construction

Let A be a g-dimensional abelian variety over a p-adic field K and with CM by (L, Φ) . Form $A_{\mathbb{C}} = A \otimes \mathbb{C}$; then $A_{\mathbb{C}}(\mathbb{C}) \simeq \mathbb{C}^g / \Phi(I)$. Write $\mathcal{H}(A) := I$. Then $\mathcal{H}(A^{\vee}) = \overline{I}^t$ and

 $\mathcal{H}(\mathrm{Hom}_{L}(A, A^{\vee})) := \mathrm{Hom}_{L}(\mathcal{H}(A), \mathcal{H}(A^{\vee})) = (\overline{I}^{t} : I).$

Polarisations in characteristic zero

Let
$$\mathcal{H}(A) = I$$
, so $\mathcal{H}(A^{\vee}) = \overline{I}^t$ and $\mathcal{H}(\operatorname{Hom}_L(A, A^{\vee})) = (\overline{I}^t : I)$.

By definition, { polarisations of A } \subseteq Hom (A, A^{\vee}) .

Polarisations in characteristic zero

Let
$$\mathcal{H}(A) = I$$
, so $\mathcal{H}(A^{\vee}) = \overline{I}^t$ and $\mathcal{H}(\operatorname{Hom}_L(A, A^{\vee})) = (\overline{I}^t : I)$.

By definition, { polarisations of A } \subseteq Hom (A, A^{\vee}) .

Proposition

Let A be a g-dimensional abelian variety over a p-adic field K and with CM by (L, Φ) . An L-linear isogeny $\mu : A \to A^{\vee} \in \operatorname{Hom}(A, A^{\vee})$ is a polarisation if and only if:

- $\mathcal{H}(\mu) = \lambda \in L$ is totally imaginary (i.e. $\overline{\lambda} = -\lambda$);
- λ is Φ -positive (i.e. $\operatorname{Im}(\varphi(\lambda)) > 0$ for all $\varphi \in \Phi$).

Polarised abelian varieties over finite fields

Drinfeld modules over finite fields

Comparison O

(towards) Polarisations in characteristic p

Goal

Describe and compute polarisations of abelian varieties over finite fields $K = \mathbb{F}_q$.

Every A/\mathbb{F}_q has a Frobenius endomorphism π_A with characteristic polynomial $h_A(x) \in \mathbb{Z}[x]$, which is an isogeny invariant: By Honda-Tate theory, { isogeny classes } \leftrightarrow { char. poly's h_A }. Polarised abelian varieties over finite fields

Drinfeld modules over finite fields

Comparison O

(towards) Polarisations in characteristic p

Goal

Describe and compute polarisations of abelian varieties over finite fields $K = \mathbb{F}_q$.

Every A/\mathbb{F}_q has a Frobenius endomorphism π_A with characteristic polynomial $h_A(x) \in \mathbb{Z}[x]$, which is an isogeny invariant: By Honda-Tate theory, { isogeny classes } \leftrightarrow { char. poly's h_A }.

Idea

Give analogous construction to \mathcal{H} for abelian varieties in characteristic *p*, to describe Hom(A, A^{\vee}) \supseteq { polarisations of *A* }.

We will use the Centeleghe-Stix equivalence.

Categorical equivalence of Centeleghe-Stix

For this, we need to restrict to abelian varieties A_0 over \mathbb{F}_p such that h_{A_0} is squarefree ($\Leftrightarrow \operatorname{End}(A_0)$ is commutative).

Categorical equivalence of Centeleghe-Stix

For this, we need to restrict to abelian varieties A_0 over \mathbb{F}_p such that h_{A_0} is squarefree ($\Leftrightarrow \operatorname{End}(A_0)$ is commutative).

C-S equivalence

Fix an *h* as above, or equivalently an isogeny class AV_h . Let $L := \mathbb{Q}[x]/(h) = \mathbb{Q}[F]$ and V := p/F. Any $A_0 \in AV_h$ has $End(A_0) \supseteq \mathbb{Z}[F, V]$. Choose $A_h \in AV_h$ with $End(A_h) = \mathbb{Z}[F, V]$. Then the functor

 $\mathcal{G} : \operatorname{AV}_h \to \{ \text{ fractional } \mathbb{Z}[F, V] \text{-ideals } \}$ $A_0 \mapsto \operatorname{Hom}(A_0, A_h), \text{ embedded into } L$

is an equivalence of categories.

Properties of the equivalence

We have the equivalence

$$\mathcal{G} : \mathrm{AV}_h \to \{ \text{ fractional } \mathbb{Z}[F, V] \text{-ideals } \}$$

 $A_0 \mapsto \mathrm{Hom}(A_0, A_h), \text{ embedded into } L$

There are some choices involved here:

- Choosing A_h : these form a $\operatorname{Pic}(\mathbb{Z}[F, V])$ -orbit;
- Choosing an embedding into L.

Properties of the equivalence

We have the equivalence

$$\mathcal{G} : \mathrm{AV}_h \to \{ \text{ fractional } \mathbb{Z}[F, V] \text{-ideals } \}$$

 $A_0 \mapsto \mathrm{Hom}(A_0, A_h), \text{ embedded into } L$

There are some choices involved here:

- Choosing A_h : these form a $\operatorname{Pic}(\mathbb{Z}[F, V])$ -orbit;
- Choosing an embedding into L.

Choosing well, we can ensure that $\mathcal{G}(A_0^{\vee}) = \overline{\mathcal{G}(A_0)}^t$ and hence

$$\mathcal{G}(\operatorname{Hom}_{L}(A_{0},A_{0}^{\vee})):=(\mathcal{G}(A_{0}):\mathcal{G}(A_{0}^{\vee}))=(\mathcal{G}(A_{0}):\overline{\mathcal{G}(A_{0})}^{t}).$$

Compare: $\mathcal{H}(\operatorname{Hom}(A, A^{\vee})) = (\overline{I}^t : I).$

Comparison O

Properties of the equivalence

We have the equivalence

$$\begin{aligned} \mathcal{G} : \mathrm{AV}_h \to \{ \text{ fractional } \mathbb{Z}[F, V]\text{-ideals } \} \\ \mathcal{A}_0 \mapsto \mathrm{Hom}(\mathcal{A}_0, \mathcal{A}_h), \text{ embedded into } L. \end{aligned}$$

Assume that $\mathcal{G}(A_0^{\vee}) = \overline{\mathcal{G}(A_0)}^t$.

Comparison O

Properties of the equivalence

We have the equivalence

$$\begin{split} \mathcal{G} : \mathrm{AV}_h &\to \{ \text{ fractional } \mathbb{Z}[F, V]\text{-ideals } \} \\ \mathcal{A}_0 &\mapsto \mathrm{Hom}(\mathcal{A}_0, \mathcal{A}_h), \text{ embedded into } L. \end{split}$$

Assume that $\mathcal{G}(A_0^{\vee}) = \overline{\mathcal{G}(A_0)}^t$.

For $f : A_0 \to B_0$ and $f^{\vee} : B_0^{\vee} \to A_0^{\vee}$, we have $\mathcal{G}(f^{\vee}) = \overline{\mathcal{G}(f)}$. Also:

$$\begin{array}{c} \operatorname{Hom}(B_0, B_0^{\vee}) \xrightarrow{f^*} \operatorname{Hom}(A_0, A_0^{\vee}) \\ \downarrow_{\mathcal{G}} & \downarrow_{\mathcal{G}} \\ (\mathcal{G}(B_0) : \overline{\mathcal{G}(B_0)}^t) \xrightarrow{\mathcal{G}(f^*)} (\mathcal{G}(A_0) : \overline{\mathcal{G}(A_0)}^t) \end{array}$$

where $f^*: \varphi \mapsto f^{\vee}\varphi f$, so $\mathcal{G}(f^*)$ is multiplication by $\mathcal{G}(f)\overline{\mathcal{G}(f)} \in L$.

Comparison O

Canonical liftings

Now
$$(\mathcal{G}(A_0) : \overline{\mathcal{G}(A_0)}^t) = \mathcal{G}(\operatorname{Hom}(A_0, A_0^{\vee})) \supseteq \mathcal{G}(\operatorname{polarisations}).$$

Idea

Lift to characteristic zero to access the description of polarisations. N.B.: Hom (A_0, A_0^{\vee}) should be preserved by the lifting process.

Comparison O

Canonical liftings

Now
$$(\mathcal{G}(A_0) : \overline{\mathcal{G}(A_0)}^t) = \mathcal{G}(\operatorname{Hom}(A_0, A_0^{\vee})) \supseteq \mathcal{G}(\text{polarisations}).$$

Idea

Lift to characteristic zero to access the description of polarisations. N.B.: $\operatorname{Hom}(A_0, A_0^{\vee})$ should be preserved by the lifting process.

Definition

A **canonical lifting** of A_0/\mathbb{F}_q to a local domain \mathcal{R} of characteristic zero with residue field \mathbb{F}_q and fraction field K is an abelian scheme \mathcal{A}/\mathcal{R} such that $\operatorname{End}(A_0) = \operatorname{End}(\mathcal{A})$ and $\mathcal{A} \otimes \mathbb{F}_q \simeq A_0$, $\mathcal{A} \otimes K \simeq A$.

N.B. : We may view $\operatorname{End}(A_0)$ as an order in $L \simeq \operatorname{End}^0(A_0)$; these identifications can be made compatibly with \mathcal{G} and \mathcal{H} .

Characteristic *p* versus characteristic zero

Proposition

If A_0/\mathbb{F}_q has a canonical lifting to A/K, or equivalently if A/K with CM by *L* has good reduction to A_0/\mathbb{F}_q , and if

$$\operatorname{End}(\mathcal{A}^ee)\simeq\operatorname{End}(\mathcal{A})\simeq\operatorname{End}(\mathcal{A}_0)\simeq\operatorname{End}(\mathcal{A}_0^ee)$$

and it's Gorenstein, then reduction $\operatorname{Hom}_{L}(A, A^{\vee}) \to \operatorname{Hom}_{L}(A_{0}, A_{0}^{\vee})$ is multiplication by some $\alpha \in \operatorname{End}(A_{0})^{*}$.

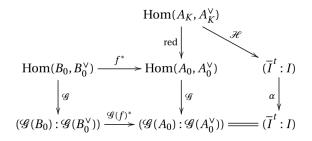
Characteristic p versus characteristic zero

Proposition

If A_0/\mathbb{F}_q has a canonical lifting to A/K, or equivalently if A/K with CM by *L* has good reduction to A_0/\mathbb{F}_q , and if

$$\operatorname{End}(A^{ee})\simeq\operatorname{End}(A)\simeq\operatorname{End}(A_0)\simeq\operatorname{End}(A_0^{ee})$$

and it's Gorenstein, then reduction $\operatorname{Hom}_{L}(A, A^{\vee}) \to \operatorname{Hom}_{L}(A_{0}, A_{0}^{\vee})$ is multiplication by some $\alpha \in \operatorname{End}(A_{0})^{*}$.



Polarised abelian varieties over finite fields

Drinfeld modules over finite fields

Comparison O

Main result: describing polarisations

Lemmas

- Let $f : A_0 \to B_0$ and $\mu_0 : B_0 \to B_0^{\vee}$ be isogenies. Then μ_0 is a polarisation $\Leftrightarrow f^*\mu_0 = f^{\vee}\mu_0 f$ is a polarisation.
- ② Let $\mu : A \to A^{\vee}$ be an isogeny and $\mu_0 : A_0 \to A_0^{\vee}$ its reduction. Then μ is a polarisation $\Leftrightarrow \mu_0$ is a polarisation.
- The element $\alpha \in \operatorname{End}(A) = \operatorname{End}(A_0)$ is totally real: $\overline{\alpha} = \alpha$.

Comparison O

Main result: describing polarisations

Lemmas

- Let $f : A_0 \to B_0$ and $\mu_0 : B_0 \to B_0^{\vee}$ be isogenies. Then μ_0 is a polarisation $\Leftrightarrow f^*\mu_0 = f^{\vee}\mu_0 f$ is a polarisation.
- ② Let $\mu : A \to A^{\vee}$ be an isogeny and $\mu_0 : A_0 \to A_0^{\vee}$ its reduction. Then μ is a polarisation $\Leftrightarrow \mu_0$ is a polarisation.
- The element $\alpha \in \operatorname{End}(A) = \operatorname{End}(A_0)$ is totally real: $\overline{\alpha} = \alpha$.

Theorem

Let *h* be a squarefree characteristic polynomial corresponding to the isogeny class AV_h over \mathbb{F}_p . Let $L \simeq \mathbb{Q}[x]/(h)$ and choose a CM-type Φ for *L*. Let $S = \overline{S}$ be a Gorenstein order in *L* such that there is an $A_0 \in AV_h$ with $End(A_0) = S$ which admits a canonical lifting to a *p*-adic field *K*.

Comparison O

Main result: describing polarisations

Lemmas

- Let $f : A_0 \to B_0$ and $\mu_0 : B_0 \to B_0^{\vee}$ be isogenies. Then μ_0 is a polarisation $\Leftrightarrow f^*\mu_0 = f^{\vee}\mu_0 f$ is a polarisation.
- ② Let $\mu : A \to A^{\vee}$ be an isogeny and $\mu_0 : A_0 \to A_0^{\vee}$ its reduction. Then μ is a polarisation $\Leftrightarrow \mu_0$ is a polarisation.
- **③** The element $\alpha \in \operatorname{End}(A) = \operatorname{End}(A_0)$ is totally real: $\overline{\alpha} = \alpha$.

Theorem

Let *h* be a squarefree characteristic polynomial corresponding to the isogeny class AV_h over \mathbb{F}_p . Let $L \simeq \mathbb{Q}[x]/(h)$ and choose a CM-type Φ for *L*. Let $S = \overline{S}$ be a Gorenstein order in *L* such that there is an $A_0 \in AV_h$ with $End(A_0) = S$ which admits a canonical lifting to a *p*-adic field *K*. Then there exists a totally real $\alpha \in S^*$ such that for **any** $B_0 \in AV_h$ and any isogeny $\mu_0 : B_0 \to B_0^{\vee}$, μ_0 is a polarisation $\Leftrightarrow \alpha^{-1}\mathcal{G}(\mu) \in L$ is totally imaginary and Φ -positive.

When do canonical liftings exist?

Known results

- (Serre-Tate) Every ordinary AV has a canonical lifting.
- (Oswal-Shankar and BKM) Every almost-ordinary AV with commutative endomorphism ring has a canonical lifting.
- (Bhatnagar-Fu) Certain abelian varieties with real multiplication have a canonical lifting.

 (Chai-Conrad-Oort) Let h be irreducible, L = Q[x]/(h) = Q[π] and Φ a CM-type such that (L, Φ) satisfies the residual reflex condition (RRC). Then the isogeny class corresponding to h contains an A₀/F_q such that End(A₀) = O₁ which has a canonical lifting.

When do canonical liftings exist?

Known results

- (Serre-Tate) Every ordinary AV has a canonical lifting.
- (Oswal-Shankar and BKM) Every almost-ordinary AV with commutative endomorphism ring has a canonical lifting.
- (Bhatnagar-Fu) Certain abelian varieties with real multiplication have a canonical lifting.
- (Chai-Conrad-Oort) Let h be irreducible, L = Q[x]/(h) = Q[π] and Φ a CM-type such that (L, Φ) satisfies the residual reflex condition (RRC). Then the isogeny class corresponding to h contains an A₀/F_q such that End(A₀) = O_L which has a canonical lifting.
 - We generalised the RRC to squarefree h.
 - Any AV separably isogenous to A_0 then also has a lifting.
 - We implemented the (generalised) RRC in Magma.

Computation of polarisations

Under the assumptions of our theorem, there exists totally real $\alpha \in S^*$ such that $\mu_0 : B_0 \to B_0^{\vee}$ is a polarisation if and only if $\alpha^{-1}\mathcal{G}(\mu_0) \in L$ is totally imaginary and Φ -positive.

Computation of polarisations

Under the assumptions of our theorem, there exists totally real $\alpha \in S^*$ such that $\mu_0 : B_0 \to B_0^{\vee}$ is a polarisation if and only if $\alpha^{-1}\mathcal{G}(\mu_0) \in L$ is totally imaginary and Φ -positive.

To find all (principal) polarisations of B_0 starting with a given $\mathcal{G}(\mu_0) = i_0 \in L^*$, we need to compute

 $\{i_0 u : u \in \operatorname{End}(B_0)^* / \langle \nu \overline{\nu} \rangle \text{ s.t. } \alpha^{-1} i_0 u \text{ totally imaginary and } \Phi\text{-positive } \}.$

- $(B_0, \mu_0) \simeq (B_0, \mu'_0) \Leftrightarrow \exists \nu \in \operatorname{End}(B_0)^* \text{ s.t. } \mathcal{G}(\mu_0) = \nu \overline{\nu} \mathcal{G}(\mu'_0).$
- Can often ignore α ! E.g. if an AV with End = $\mathbb{Z}[F, V]$ lifts.

Aggregate examples

squ	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 5	<i>p</i> = 7		
total			185	621	2863	7847
ordinary			82	390	2280	6700
almost ordinary			58	170	474	996
<i>p</i> -rank 1	n	0	0	0	0	
	yes RRC	$5.5.2(R_w)$ yes	20	26	76	118
		$5.5.2(R_w)$ no	4	16	12	8
<i>p</i> -rank 0	n	0	3	2	1	
	yes RRC	$5.5.2(R_w)$ yes	20	15	17	23
		$5.5.2(R_w)$ no	1	1	2	1

Aggregate examples

squarefree dimension 3 $p=2$ $p=3$ $p=5$ $p=7$											
squ	p=2		9 = 3	<i>p</i> =	_	<i>p</i> = 7					
	185		621	2863		7847					
	82		390 2		0	6700					
almost ordinary				58		170		4	996		
<i>p</i> -rank 1	no RRC			0		0			0		
	ves RRC	5.5.2	(R_w) yes	20	26		76		118		
	yes nuc	5.5.2	$R(R_w)$ no	4		16	12		8		
<i>p</i> -rank 0	no RRC			0		3	2		1		
	ves RRC	5.5.2	(R_w) yes	20		15 17		'	23		
	yes fute	5.5.2	$R(R_w)$ no	1		1	2		1		
squarefree dimension 4							= 2		<i>v</i> = 3		
total						1431		10453			
ordinary						656		6742			
almost ordinary					392		2506				
		no RRC					0		0		
<i>p</i> -rank	2	\vee ves RR(\vee \vdash		R_w) ye	s	149		500			
	yes 1			$5.5.2(R_w)$ no			49		312		
		no RRC					6		36		
<i>p</i> -rank	1 ves l	ves RRC		$5.5.2(R_w)$ yes		80		184			
	yesine		$5.5.2(R_w)$ no		14		40				
		no RRC					3		6		
<i>p</i> -rank	0 yes I	RRC	5.5.2(R_w) yes		73		88				
	yc31		5.5.2($5.2(R_w)$ no		9		39			

Drinfeld modules over finite fields: set-up

We fix some notation:

•
$$A = \mathbb{F}_q[T], F = \mathbb{F}_q(T).$$

- $\mathfrak{p} \trianglelefteq A$ is a prime of degree d, monic generator denoted by \mathfrak{p} .
- $k \cong \mathbb{F}_{q^n}$ is a finite extension of $A/\mathfrak{p} = \mathbb{F}_{\mathfrak{p}} \cong \mathbb{F}_{q^d}$.
- $\gamma \colon A \to A/\mathfrak{p} \hookrightarrow k$ is the A-field structure on k.

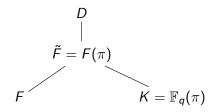
Drinfeld modules over finite fields: set-up

We fix some notation:

•
$$A = \mathbb{F}_q[T], F = \mathbb{F}_q(T).$$

- $\mathfrak{p} \trianglelefteq A$ is a prime of degree d, monic generator denoted by \mathfrak{p} .
- $k \cong \mathbb{F}_{q^n}$ is a finite extension of $A/\mathfrak{p} = \mathbb{F}_{\mathfrak{p}} \cong \mathbb{F}_{q^d}$.
- $\gamma \colon A \to A/\mathfrak{p} \hookrightarrow k$ is the *A*-field structure on *k*.

Let $\phi : A \to k\{\tau\}$ be a Drinfeld module over k of rank r, with $\mathcal{E} := \operatorname{End}_k(\phi)$ and $D := \mathcal{E} \otimes_A F = \operatorname{End}_k^0(\phi)$. Let $\pi = \tau^n$ be the Frobenius endomorphism of k.



We will consider the case where $D = \tilde{F}$ is commutative.

Guiding questions

The minimal polynomial of π over F determines an **isogeny class** of Drinfeld modules over k.

Important open problem

Describe, determine, and count the isomorphism classes within a fixed isogeny class.

Guiding questions

The minimal polynomial of π over F determines an **isogeny class** of Drinfeld modules over k.

Important open problem

Describe, determine, and count the isomorphism classes within a fixed isogeny class.

- Brute force results for r = 2, 3. [Assong].
- Description of endomorphism rings due to Anglès, Garai-Papikian, Kuhn-Pink, and others.
- Related to calculating zeta functions of Drinfeld modular varieties.

Isogenies, subgroups, lattices, ideals [Laumon]

Let $u : \phi \to \psi$ be an isogeny of Drinfeld modules of rank r over k. The kernel of $u \in k\{\tau\}$ is a finite group scheme G_u in A-modules.

Isogenies, subgroups, lattices, ideals [Laumon]

Let $u : \phi \to \psi$ be an isogeny of Drinfeld modules of rank r over k. The kernel of $u \in k\{\tau\}$ is a finite group scheme G_u in A-modules.

Let $H_{\mathfrak{p}}$ denote the Dieudonné module and $T_{\mathfrak{l}}$ the Tate module. Via injective maps $u_{\mathfrak{p}}: H_{\mathfrak{p}}(\psi) \hookrightarrow H_{\mathfrak{p}}(\phi)$ and $u_{\mathfrak{l}}: T_{\mathfrak{l}}(\phi) \hookrightarrow T_{\mathfrak{l}}(\psi)$ for $\mathfrak{l} \neq \mathfrak{p}$, we find sublattices $M_{\mathfrak{p}}:=u_{\mathfrak{p}}(H_{\mathfrak{p}}(\psi)) \subseteq H_{\mathfrak{p}}(\phi)$ and $M_{\mathfrak{l}}:= \operatorname{Hom}(u_{\mathfrak{l}}^{-1}T_{\mathfrak{l}}(\psi), A_{\mathfrak{l}}) \subseteq \operatorname{Hom}(T_{\mathfrak{l}}(\phi), A_{\mathfrak{l}}) =: H_{\mathfrak{l}}(\phi)$ for $\mathfrak{l} \neq \mathfrak{p}$, and hence a sublattice $M:=\prod_{\mathfrak{l}} M_{\mathfrak{l}} \subseteq \prod_{\mathfrak{l}} H_{\mathfrak{l}}(\phi) =: \mathbb{H}(\phi)$. By construction, $G_{\mathfrak{u}} \simeq \prod_{\mathfrak{l} \neq \mathfrak{p}} H_{\mathfrak{l}}(\phi)/M_{\mathfrak{l}} \times H_{\mathfrak{p}}(\phi)/M_{\mathfrak{p}} = \mathbb{H}(\phi)/M$.

Isogenies, subgroups, lattices, ideals [Laumon]

Let $u : \phi \to \psi$ be an isogeny of Drinfeld modules of rank r over k. The kernel of $u \in k\{\tau\}$ is a finite group scheme G_u in A-modules.

Let $H_{\mathfrak{p}}$ denote the Dieudonné module and $T_{\mathfrak{l}}$ the Tate module. Via injective maps $u_{\mathfrak{p}}: H_{\mathfrak{p}}(\psi) \hookrightarrow H_{\mathfrak{p}}(\phi)$ and $u_{\mathfrak{l}}: T_{\mathfrak{l}}(\phi) \hookrightarrow T_{\mathfrak{l}}(\psi)$ for $\mathfrak{l} \neq \mathfrak{p}$, we find sublattices $M_{\mathfrak{p}}:=u_{\mathfrak{p}}(H_{\mathfrak{p}}(\psi)) \subseteq H_{\mathfrak{p}}(\phi)$ and $M_{\mathfrak{l}}:= \operatorname{Hom}(u_{\mathfrak{l}}^{-1}T_{\mathfrak{l}}(\psi), A_{\mathfrak{l}}) \subseteq \operatorname{Hom}(T_{\mathfrak{l}}(\phi), A_{\mathfrak{l}}) =: H_{\mathfrak{l}}(\phi)$ for $\mathfrak{l} \neq \mathfrak{p}$, and hence a sublattice $M:=\prod_{\mathfrak{l}} M_{\mathfrak{l}} \subseteq \prod_{\mathfrak{l}} H_{\mathfrak{l}}(\phi) =: \mathbb{H}(\phi)$. By construction, $G_{\mathfrak{u}} \simeq \prod_{\mathfrak{l} \neq \mathfrak{p}} H_{\mathfrak{l}}(\phi)/M_{\mathfrak{l}} \times H_{\mathfrak{p}}(\phi)/M_{\mathfrak{p}} = \mathbb{H}(\phi)/M$.

For an ideal $I \leq \mathcal{E}$, we have $k\{\tau\}I = k\{\tau\}u_I$ for some $u_I \in k\{\tau\}$. The sublattice corresponding to u_I is $I\mathbb{H}(\phi) = \prod_{\mathfrak{l}} IH_{\mathfrak{l}}(\phi)$, since $\ker(u_I) = \phi[I] = \bigcap_{\alpha \in I} \ker(\alpha)$.

Ideal action on isomorphism classes [Hayes]

Recall $\phi : A \to k\{\tau\}$ is a Drinfeld module with $\mathcal{E} := \operatorname{End}_k(\phi)$. For an ideal $I \leq \mathcal{E}$, again write $k\{\tau\}I = k\{\tau\}u_I$ with $u_I \in k\{\tau\}$.

A Drinfeld module over k is determined by its value at T. Setting $\psi_T = u_I \phi_T u_I^{-1}$ determines a Drinfeld module ψ over k, isogenous to ϕ via $u_I : \phi \to \psi$. We write $\psi = I * \phi$.

Ideal action on isomorphism classes [Hayes]

Recall $\phi : A \to k\{\tau\}$ is a Drinfeld module with $\mathcal{E} := \operatorname{End}_k(\phi)$. For an ideal $I \trianglelefteq \mathcal{E}$, again write $k\{\tau\}I = k\{\tau\}u_I$ with $u_I \in k\{\tau\}$.

A Drinfeld module over k is determined by its value at T. Setting $\psi_T = u_I \phi_T u_I^{-1}$ determines a Drinfeld module ψ over k, isogenous to ϕ via $u_I : \phi \to \psi$. We write $\psi = I * \phi$.

Lemma

The map $I \mapsto I * \phi$ determines an action of the monoid of fractional ideals of \mathcal{E} up to linear equivalence on the set of isomorphism classes in the isogeny class of ϕ whose endomorphism ring is the order of an \mathcal{E} -ideal (hence an overorder of \mathcal{E}).

When is this action free? When is it transitive?

Comparison O

Kernel ideals

Let
$$I \trianglelefteq \mathcal{E} := \operatorname{End}_k(\phi) = D \cap k\{\tau\}$$
 be an ideal.

Definition

The ideal *I* is a **kernel ideal** if any of the following equivalent properties holds:

• $I = (k\{\tau\}I) \cap D.$ (Generally \subseteq .) [Yu]

$$I = \operatorname{Ann}_{\mathcal{E}}(\phi[I]). \ (\mathsf{Generally} \subseteq.)$$

• For any $J \trianglelefteq \mathcal{E}$, we have $J\mathbb{H}(\phi) \subseteq I\mathbb{H}(\phi) \Rightarrow J \subseteq I$. (\Leftarrow holds.)

Comparison O

Kernel ideals

Let
$$I \trianglelefteq \mathcal{E} := \operatorname{End}_k(\phi) = D \cap k\{\tau\}$$
 be an ideal.

Definition

The ideal *I* is a **kernel ideal** if any of the following equivalent properties holds:

- $I = (k\{\tau\}I) \cap D.$ (Generally \subseteq .) [Yu]
- ② $I = Ann_{\mathcal{E}}(\phi[I])$. (Generally ⊆.)
- **③** For any $J \trianglelefteq \mathcal{E}$, we have $J\mathbb{H}(\phi) \subseteq I\mathbb{H}(\phi) \Rightarrow J \subseteq I$. (\Leftarrow holds.)

Lemma

Upon restricting to kernel ideals, the ideal action $I \mapsto I * \phi$ is free.

Comparison O

Kernel ideals

Let
$$I \trianglelefteq \mathcal{E} := \operatorname{End}_k(\phi) = D \cap k\{\tau\}$$
 be an ideal.

Definition

The ideal *I* is a **kernel ideal** if any of the following equivalent properties holds:

- $I = (k\{\tau\}I) \cap D.$ (Generally \subseteq .) [Yu]
- ② $I = Ann_{\mathcal{E}}(\phi[I])$. (Generally ⊆.)
- For any $J \trianglelefteq \mathcal{E}$, we have $J\mathbb{H}(\phi) \subseteq I\mathbb{H}(\phi) \Rightarrow J \subseteq I$. (\Leftarrow holds.)

Lemma

Upon restricting to kernel ideals, the ideal action $I \mapsto I * \phi$ is free.

Lemma

Every ideal is a kernel ideal when \mathcal{E} is maximal, or when \mathcal{E} is Gorenstein, e.g., when $\mathcal{E} = A[\pi]$.

Endomorphism rings (under the ideal action)

Fix an isogeny class with commutative endomorphism algebra D. The endomorphism ring \mathcal{E} of a Drinfeld module ϕ in the isogeny class is an order in D containing the minimal order $A[\pi]$. For $I \leq \mathcal{E}$, let $(I : I) = \{g \in D : Ig \subseteq I\}$ be its order. Write $k\{\tau\}I = k\{\tau\}u_I$ as before.

Endomorphism rings (under the ideal action)

Fix an isogeny class with commutative endomorphism algebra D. The endomorphism ring \mathcal{E} of a Drinfeld module ϕ in the isogeny class is an order in D containing the minimal order $A[\pi]$. For $I \trianglelefteq \mathcal{E}$, let $(I : I) = \{g \in D : Ig \subseteq I\}$ be its order. Write $k\{\tau\}I = k\{\tau\}u_I$ as before.

Lemma, cf. [Yu] and [Waterhouse]

For any $I \trianglelefteq \mathcal{E}$, we have $\operatorname{End}_k(I * \phi) \supseteq u_I(I : I)u_I^{-1} \simeq (I : I)$. Equality holds when I is a kernel ideal.

Endomorphism rings (under the ideal action)

Fix an isogeny class with commutative endomorphism algebra D. The endomorphism ring \mathcal{E} of a Drinfeld module ϕ in the isogeny class is an order in D containing the minimal order $A[\pi]$. For $I \trianglelefteq \mathcal{E}$, let $(I : I) = \{g \in D : Ig \subseteq I\}$ be its order. Write $k\{\tau\}I = k\{\tau\}u_I$ as before.

Lemma, cf. [Yu] and [Waterhouse]

For any $I \trianglelefteq \mathcal{E}$, we have $\operatorname{End}_k(I * \phi) \supseteq u_I(I : I)u_I^{-1} \simeq (I : I)$. Equality holds when I is a kernel ideal.

Since $\mathcal{E} \subseteq (I : I)$, "endomorphism rings grow under ideal action". For transitivity of $I \mapsto I * \phi$, every occurring endomorphism ring in the isogeny class should be an overorder of \mathcal{E} . When does the minimal order $A[\pi]$ occur as endomorphism ring?

Drinfeld modules over finite fields

Comparison O

Local maximality of $A[\pi]$

$$D = \tilde{F} = F(\pi)$$

$$K = \mathbb{F}_q(\pi) \quad \mathfrak{p} \quad (\pi)$$

Definition, cf. [Anglès]

Let $B_{\tilde{\mathfrak{p}}}$ be the ring of integers of $\tilde{F}_{\tilde{\mathfrak{p}}} := \tilde{F} \otimes_{\mathcal{K}} \mathbb{F}_q((\pi))$ and write $A[\pi]_{\tilde{\mathfrak{p}}} := A[\pi] \otimes_{\mathbb{F}_q[\pi]} \mathbb{F}_q[[\pi]]$. Then $A[\pi]$ is **locally maximal** at π if $A[\pi]_{\tilde{\mathfrak{p}}} = B_{\tilde{\mathfrak{p}}}$.

Drinfeld modules over finite fields

Comparison O

Local maximality of $A[\pi]$

$$D = \tilde{F} = F(\pi)$$

$$K = \mathbb{F}_q(\pi) \quad \mathfrak{p} \quad (\pi)$$

Definition, cf. [Anglès]

Let $B_{\tilde{p}}$ be the ring of integers of $\tilde{F}_{\tilde{p}} := \tilde{F} \otimes_{\mathcal{K}} \mathbb{F}_q((\pi))$ and write $A[\pi]_{\tilde{p}} := A[\pi] \otimes_{\mathbb{F}_q[\pi]} \mathbb{F}_q[[\pi]]$. Then $A[\pi]$ is **locally maximal** at π if $A[\pi]_{\tilde{p}} = B_{\tilde{p}}$.

Theorem

Recall deg(\mathfrak{p}) = d and $k \simeq \mathbb{F}_{q^n}$. Let H be the height of ϕ . Then $\left\lceil \frac{n}{H \cdot d} \right\rceil \leq \frac{[\tilde{F}:K]}{d}$, with equality $\Leftrightarrow A[\pi]$ is locally maximal at π . Hence, $A[\pi]$ is locally maximal at $\pi \Leftrightarrow \phi$ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.

$A[\pi]$ as an endomorphism ring

Fix an isogeny class with commutative endomorphism algebra D.

Lemma

Let R be any A-order in D containing π . There exists a Drinfeld module ϕ in the isogeny class such that $\operatorname{End}_k(\phi) = R$ if and only if R is locally maximal at π .

$A[\pi]$ as an endomorphism ring

Fix an isogeny class with commutative endomorphism algebra D.

Lemma

Let R be any A-order in D containing π . There exists a Drinfeld module ϕ in the isogeny class such that $\operatorname{End}_k(\phi) = R$ if and only if R is locally maximal at π .

At \mathfrak{p} , i.e. at π , any endomorphism ring is locally maximal. [Yu] At all $\mathfrak{l} \neq \mathfrak{p}$, the order is almost always maximal and can be adjusted at the remaining places (\leftrightarrow isogeny). Theorem: $A[\pi]$ is locally maximal at $\pi \Leftrightarrow \phi$ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.

$A[\pi]$ as an endomorphism ring

Fix an isogeny class with commutative endomorphism algebra D.

Lemma

Let R be any A-order in D containing π . There exists a Drinfeld module ϕ in the isogeny class such that $\operatorname{End}_k(\phi) = R$ if and only if R is locally maximal at π .

At \mathfrak{p} , i.e. at π , any endomorphism ring is locally maximal. [Yu] At all $\mathfrak{l} \neq \mathfrak{p}$, the order is almost always maximal and can be adjusted at the remaining places (\leftrightarrow isogeny). Theorem: $A[\pi]$ is locally maximal at $\pi \Leftrightarrow \phi$ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.

Corollary

 $A[\pi]$ occurs as an endomorphism ring if and only if it is locally maximal at π , if and only if the isogeny class is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$. So does any overorder of $A[\pi]$.

Drinfeld modules over finite fields

Comparison O

Main result

Theorem

Suppose that $\mathcal{E} := \operatorname{End}_k(\phi) = A[\pi]$. Then the action $I \mapsto I * \phi$ of the monoid of fractional ideals of $A[\pi]$ is free and transitive on the isomorphism classes in the isogeny class of ϕ . In other words, all isomorphism classes in the isogeny class of ϕ are of the form $I * \phi$ for some $A[\pi]$ -ideal I.

Main result

Theorem

Suppose that $\mathcal{E} := \operatorname{End}_k(\phi) = A[\pi]$. Then the action $I \mapsto I * \phi$ of the monoid of fractional ideals of $A[\pi]$ is free and transitive on the isomorphism classes in the isogeny class of ϕ . In other words, all isomorphism classes in the isogeny class of ϕ are of the form $I * \phi$ for some $A[\pi]$ -ideal I.

- If $\mathcal{E} = A[\pi]$ then ϕ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.
- For the Gorenstein order $A[\pi]$, every ideal is a kernel ideal.
- Kernel ideals act freely.
- Kernel ideals of A[π] act transitively on isomorphism classes whose endomorphism ring is an overorder of A[π], i.e. on all isomorphism classes.

Drinfeld modules over finite fields

Comparison O

Example

Let
$$q = 2$$
, $k = \mathbb{F}_4$, $\mathfrak{p} = T$. Fix $\alpha \in k \setminus \mathbb{F}_q$.
Let $\phi_1 : A \to k\{\tau\}$ be the (rank 7, height 1) Drinfeld module
given by $(\phi_1)_T = \alpha \tau + \tau^2 + \tau^7$. Then $\operatorname{End}_k(\phi_1) = A[\pi], \pi = \tau^2$.
There are 15 isomorphism classes in the isogeny class of ϕ_1 :

Ι	u_I	$I * \phi_1$
(1)	1	ϕ_1
(T, π)	au	ϕ_2
$(T^2 + T, \pi^3 + 1)$	$\alpha + \tau^3$	ϕ_3
$(T^2, \pi^2 + T + 1)$	$(\alpha+1) + (\alpha+1)\tau + \tau^3$	ϕ_4
$(T, \pi^4 + \pi^2 + \pi + 1)$	$1 + \alpha \tau^2 + \tau^3 + \tau^4$	ϕ_5
$(T+1, \pi^3 + \pi + 1)$	$1 + (\alpha + 1)\tau + \tau^2 + \tau^3$	ϕ_6
$(T, \pi^2 + 1)$	$(\alpha+1)+\tau+\tau^2$	ϕ_7
$(T^2 + T, \pi^3 + \pi^2 + \pi)$	$\tau + \alpha \tau^2 + \tau^3$	ϕ_8
$(T^2, \pi^2 + \pi + T)$	$(\alpha+1)\tau + (\alpha+1)\tau^2 + \tau^3$	ϕ_9
$(T, \pi^6 + \pi^5 + \pi^4 + \pi)$	$(\alpha + 1)\tau + \tau^2 + \alpha\tau^3 + \tau^4 + \alpha\tau^5 + \tau^6$	ϕ_{10}
$(T, \pi^3 + \pi^2 + 1)$	$(\alpha+1) + \tau + \alpha\tau^2 + \tau^3$	ϕ_{11}
$(T^2, \pi + T + 1)$	$\alpha + \alpha \tau + \tau^2$	ϕ_{12}
$(T+1, \pi^5 + \pi^4 + 1)$	$1 + \tau + (\alpha + 1)\tau^2 + (\alpha + 1)\tau^4 + \tau^5$	ϕ_{13}
$(T, \pi^4 + \pi^3 + \pi)$	$\alpha\tau + \tau^2 + (\alpha + 1)\tau^3 + \tau^4$	ϕ_{14}
$(T, \pi^2 + \pi)$	$(\alpha+1)\tau+\tau^2$	ϕ_{15}

Drinfeld modules over finite fields

Comparison

Comparing (polarised) abelian varieties and Drinfeld modules over finite fields k

In both cases we want to describe the isomorphism classes within a fixed isogeny class, determined by π .

We get the best results when the varieties/modules are **ordinary** or when k is the **prime field**.

Comparing (polarised) abelian varieties and Drinfeld modules over finite fields k

In both cases we want to describe the isomorphism classes within a fixed isogeny class, determined by π .

We get the best results when the varieties/modules are **ordinary** or when k is the **prime field**.

Ordinary: canonical liftings exist; fractional End-ideals act on isomorphism classes – via ideal action (DM) or via complex uniformisation/Deligne's equivalence (AV).

Comparing (polarised) abelian varieties and Drinfeld modules over finite fields k

In both cases we want to describe the isomorphism classes within a fixed isogeny class, determined by π .

We get the best results when the varieties/modules are **ordinary** or when k is the **prime field**.

Ordinary: canonical liftings exist; fractional End-ideals act on isomorphism classes – via ideal action (DM) or via complex uniformisation/Deligne's equivalence (AV).

Prime fields: elements with minimal endomorphism ring are key. Centeleghe-Stix map $A_0 \mapsto \operatorname{Hom}(A_0, A_h)$ with $\operatorname{End}(A_h) = \mathbb{Z}[F, V]$. Cf.: If $\phi = I * \phi_w$ with $\operatorname{End}_k(\phi_w) = A[\pi]$ and I a kernel $A[\pi]$ -ideal, then $\operatorname{Hom}_k(\phi, \phi_w) = I$.