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Abelian varieties over finite fields: set-up

Definitions

An abelian variety is a connected projective group variety.
The dual variety A∨ of an abelian variety A over a field K is such
that A∨(K ) = Pic0(AK ).
A polarisation of an abelian variety A is an isogeny µ : A→ A∨

such that there exists an ample line bundle L on AK such that µK
equals ϕL : A→ A∨, x 7→ [t∗xL ⊗ L−1].

When K = Fq is a finite field, abelian varieties over K are
partitioned into isogeny classes.

Important open problem

Describe and compute (polarised!) isomorphism classes within a
fixed polarised isogeny class.
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Preliminaries: Complex multiplication

Definitions

A CM-field L/Q is a totally imaginary quadratic extension L/L′ of
a totally real extension L′/Q. It has a canonical involution x 7→ x .
A CM-algebra is a finite product of CM-fields.
A CM-type for a CM-algebra L is a subset Φ ⊆ Hom(L,Q) so that

Hom(L,Q) = Φ
∐

Φ.

An abelian variety A over K of dimension g has CM (by (L,Φ)) if

L ⊆ End0(A) := End(A)⊗Q.

Fact

Every abelian variety over a finite field has CM.
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Complex uniformisation

Consider an abelian variety A over C of dimension g .
By complex uniformisation, we have

A(C) ' Cg/Λ, Λ 'Z Z2g .

When A has CM by (L,Φ), we can say more:
There exists a fractional ideal I in L such that A(C) ' Cg/Φ(I ).

Then also A∨(C) ' Cg/Φ(I
t
), where t is the trace dual. Hence,

HomL(A,A∨)↔ (I
t

: I ) := {x ∈ L : xI ⊆ I
t}.

Definition/construction

Let A be a g -dimensional abelian variety over a p-adic field K and
with CM by (L,Φ). Form AC = A⊗ C; then AC(C) ' Cg/Φ(I ).

Write H(A) := I . Then H(A∨) = I
t

and

H(HomL(A,A∨)) := HomL(H(A),H(A∨)) = (I
t

: I ).
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Polarisations in characteristic zero

Let H(A) = I , so H(A∨) = I
t

and H(HomL(A,A∨)) = (I
t

: I ).

By definition, { polarisations of A } ⊆ Hom(A,A∨).

Proposition

Let A be a g -dimensional abelian variety over a p-adic field K and
with CM by (L,Φ). An L-linear isogeny µ : A→ A∨ ∈ Hom(A,A∨)
is a polarisation if and only if:

H(µ) = λ ∈ L is totally imaginary (i.e. λ = −λ);

λ is Φ-positive (i.e. Im(ϕ(λ)) > 0 for all ϕ ∈ Φ).
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(towards) Polarisations in characteristic p

Goal

Describe and compute polarisations of abelian varieties over finite
fields K = Fq.

Every A/Fq has a Frobenius endomorphism πA with characteristic
polynomial hA(x) ∈ Z[x ], which is an isogeny invariant:
By Honda-Tate theory, { isogeny classes } ↔ { char. poly’s hA }.

Idea

Give analogous construction to H for abelian varieties in
characteristic p, to describe Hom(A,A∨) ⊇ { polarisations of A }.

We will use the Centeleghe-Stix equivalence.



Polarised abelian varieties over finite fields Drinfeld modules over finite fields Comparison

(towards) Polarisations in characteristic p

Goal

Describe and compute polarisations of abelian varieties over finite
fields K = Fq.

Every A/Fq has a Frobenius endomorphism πA with characteristic
polynomial hA(x) ∈ Z[x ], which is an isogeny invariant:
By Honda-Tate theory, { isogeny classes } ↔ { char. poly’s hA }.

Idea

Give analogous construction to H for abelian varieties in
characteristic p, to describe Hom(A,A∨) ⊇ { polarisations of A }.

We will use the Centeleghe-Stix equivalence.



Polarised abelian varieties over finite fields Drinfeld modules over finite fields Comparison

Categorical equivalence of Centeleghe-Stix

For this, we need to restrict to abelian varieties A0 over Fp such
that hA0 is squarefree (⇔ End(A0) is commutative).

C-S equivalence

Fix an h as above, or equivalently an isogeny class AVh.
Let L := Q[x ]/(h) = Q[F ] and V := p/F .
Any A0 ∈ AVh has End(A0) ⊇ Z[F ,V ].
Choose Ah ∈ AVh with End(Ah) = Z[F ,V ].
Then the functor

G : AVh → { fractional Z[F ,V ]-ideals }
A0 7→ Hom(A0,Ah), embedded into L

is an equivalence of categories.
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Properties of the equivalence

We have the equivalence

G : AVh → { fractional Z[F ,V ]-ideals }
A0 7→ Hom(A0,Ah), embedded into L

There are some choices involved here:

Choosing Ah: these form a Pic(Z[F ,V ])-orbit;

Choosing an embedding into L.

Choosing well, we can ensure that G(A∨0 ) = G(A0)
t

and hence

G(HomL(A0,A
∨
0 )) := (G(A0) : G(A∨0 )) = (G(A0) : G(A0)

t
).

Compare: H(Hom(A,A∨)) = (I
t

: I ).
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Properties of the equivalence

We have the equivalence

G : AVh → { fractional Z[F ,V ]-ideals }
A0 7→ Hom(A0,Ah), embedded into L.

Assume that G(A∨0 ) = G(A0)
t
.

For f : A0 → B0 and f ∨ : B∨0 → A∨0 , we have G(f ∨) = G(f ). Also:

Hom(B0,B
∨
0 )

f ∗ //

G��

Hom(A0,A
∨
0 )

G��

(G(B0) : G(B0)
t
)
G(f ∗)
// (G(A0) : G(A0)

t
)

where f ∗ : ϕ 7→ f ∨ϕf , so G(f ∗) is multiplication by G(f )G(f ) ∈ L.
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Canonical liftings

Now (G(A0) : G(A0)
t
) = G(Hom(A0,A

∨
0 )) ⊇ G(polarisations).

Idea

Lift to characteristic zero to access the description of polarisations.
N.B.: Hom(A0,A

∨
0 ) should be preserved by the lifting process.

Definition

A canonical lifting of A0/Fq to a local domain R of characteristic
zero with residue field Fq and fraction field K is an abelian scheme
A/R such that End(A0) = End(A) and A⊗Fq ' A0, A⊗K ' A.

N.B. : We may view End(A0) as an order in L ' End0(A0); these
identifications can be made compatibly with G and H.
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Characteristic p versus characteristic zero

Proposition

If A0/Fq has a canonical lifting to A/K , or equivalently
if A/K with CM by L has good reduction to A0/Fq, and if

End(A∨) ' End(A) ' End(A0) ' End(A∨0 )

and it’s Gorenstein, then reduction HomL(A,A∨)→ HomL(A0,A
∨
0 )

is multiplication by some α ∈ End(A0)∗.
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Main result: describing polarisations

Lemmas

1 Let f : A0 → B0 and µ0 : B0 → B∨0 be isogenies. Then µ0 is a
polarisation ⇔ f ∗µ0 = f ∨µ0f is a polarisation.

2 Let µ : A→ A∨ be an isogeny and µ0 : A0 → A∨0 its
reduction. Then µ is a polarisation ⇔ µ0 is a polarisation.

3 The element α ∈ End(A) = End(A0) is totally real: α = α.

Theorem

Let h be a squarefree characteristic polynomial corresponding to
the isogeny class AVh over Fp. Let L ' Q[x ]/(h) and choose a
CM-type Φ for L. Let S = S be a Gorenstein order in L such that
there is an A0 ∈ AVh with End(A0) = S which admits a canonical
lifting to a p-adic field K . Then there exists a totally real α ∈ S∗

such that for any B0 ∈ AVh and any isogeny µ0 : B0 → B∨0 , µ0 is
a polarisation ⇔ α−1G(µ) ∈ L is totally imaginary and Φ-positive.
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When do canonical liftings exist?

Known results

1 (Serre-Tate) Every ordinary AV has a canonical lifting.

2 (Oswal-Shankar and BKM) Every almost-ordinary AV with
commutative endomorphism ring has a canonical lifting.

3 (Bhatnagar-Fu) Certain abelian varieties with real
multiplication have a canonical lifting.

4 (Chai-Conrad-Oort) Let h be irreducible,
L = Q[x ]/(h) = Q[π] and Φ a CM-type such that (L,Φ)
satisfies the residual reflex condition (RRC).
Then the isogeny class corresponding to h contains an A0/Fq

such that End(A0) = OL which has a canonical lifting.

We generalised the RRC to squarefree h.

Any AV separably isogenous to A0 then also has a lifting.

We implemented the (generalised) RRC in Magma.
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Computation of polarisations

Under the assumptions of our theorem, there exists totally real
α ∈ S∗ such that µ0 : B0 → B∨0 is a polarisation if and only if
α−1G(µ0) ∈ L is totally imaginary and Φ-positive.

To find all (principal) polarisations of B0 starting with a given
G(µ0) = i0 ∈ L∗, we need to compute

{i0u : u ∈ End(B0)∗/〈νν〉 s.t. α−1i0u totally imaginary and Φ-positive }.

(B0, µ0) ' (B0, µ
′
0)⇔ ∃ν ∈ End(B0)∗ s.t. G(µ0) = ννG(µ′0).

Can often ignore α! E.g. if an AV with End = Z[F ,V ] lifts.
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Aggregate examples



Polarised abelian varieties over finite fields Drinfeld modules over finite fields Comparison

Aggregate examples



Polarised abelian varieties over finite fields Drinfeld modules over finite fields Comparison

Drinfeld modules over finite fields: set-up

We fix some notation:

A = Fq[T ], F = Fq(T ).

p E A is a prime of degree d , monic generator denoted by p.

k ∼= Fqn is a finite extension of A/p = Fp
∼= Fqd .

γ : A→ A/p ↪→ k is the A-field structure on k.

Let φ : A→ k{τ} be a Drinfeld module over k of rank r ,
with E := Endk(φ) and D := E ⊗A F = End0

k(φ).
Let π = τn be the Frobenius endomorphism of k.

D

F̃ = F (π)

F K = Fq(π)

We will consider the case where D = F̃ is commutative.
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Guiding questions

The minimal polynomial of π over F determines an isogeny class
of Drinfeld modules over k.

Important open problem

Describe, determine, and count the isomorphism classes within a
fixed isogeny class.

Brute force results for r = 2, 3. [Assong].

Description of endomorphism rings due to Anglès,
Garai-Papikian, Kuhn-Pink, and others.

Related to calculating zeta functions of Drinfeld modular
varieties.
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Isogenies, subgroups, lattices, ideals [Laumon]

Let u : φ→ ψ be an isogeny of Drinfeld modules of rank r over k .
The kernel of u ∈ k{τ} is a finite group scheme Gu in A-modules.

Let Hp denote the Dieudonné module and Tl the Tate module.
Via injective maps up : Hp(ψ) ↪→ Hp(φ) and ul : Tl(φ) ↪→ Tl(ψ)
for l 6= p, we find sublattices Mp := up(Hp(ψ)) ⊆ Hp(φ) and
Ml := Hom(u−1

l Tl(ψ),Al) ⊆ Hom(Tl(φ),Al) =: Hl(φ) for l 6= p,
and hence a sublattice M :=

∏
lMl ⊆

∏
lHl(φ) =: H(φ).

By construction, Gu '
∏

l 6=pHl(φ)/Ml × Hp(φ)/Mp = H(φ)/M.

For an ideal I E E , we have k{τ}I = k{τ}uI for some uI ∈ k{τ}.
The sublattice corresponding to uI is IH(φ) =

∏
l IHl(φ), since

ker(uI ) = φ[I ] = ∩α∈I ker(α).
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l Tl(ψ),Al) ⊆ Hom(Tl(φ),Al) =: Hl(φ) for l 6= p,
and hence a sublattice M :=

∏
lMl ⊆

∏
lHl(φ) =: H(φ).

By construction, Gu '
∏

l 6=pHl(φ)/Ml × Hp(φ)/Mp = H(φ)/M.

For an ideal I E E , we have k{τ}I = k{τ}uI for some uI ∈ k{τ}.
The sublattice corresponding to uI is IH(φ) =

∏
l IHl(φ), since

ker(uI ) = φ[I ] = ∩α∈I ker(α).
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Isogenies, subgroups, lattices, ideals [Laumon]
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The kernel of u ∈ k{τ} is a finite group scheme Gu in A-modules.
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Ideal action on isomorphism classes [Hayes]

Recall φ : A→ k{τ} is a Drinfeld module with E := Endk(φ).
For an ideal I E E , again write k{τ}I = k{τ}uI with uI ∈ k{τ}.

A Drinfeld module over k is determined by its value at T .
Setting ψT = uIφTu

−1
I determines a Drinfeld module ψ over k,

isogenous to φ via uI : φ→ ψ. We write ψ = I ∗ φ.

Lemma

The map I 7→ I ∗ φ determines an action of the monoid of
fractional ideals of E up to linear equivalence on the set of
isomorphism classes in the isogeny class of φ whose endomorphism
ring is the order of an E-ideal (hence an overorder of E).

When is this action free? When is it transitive?
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Kernel ideals

Let I E E := Endk(φ) = D ∩ k{τ} be an ideal.

Definition

The ideal I is a kernel ideal if any of the following equivalent
properties holds:

1 I = (k{τ}I ) ∩ D. (Generally ⊆.) [Yu]

2 I = AnnE(φ[I ]). (Generally ⊆.)

3 For any J E E , we have JH(φ) ⊆ IH(φ)⇒ J ⊆ I . (⇐ holds.)

Lemma

Upon restricting to kernel ideals, the ideal action I 7→ I ∗ φ is free.

Lemma

Every ideal is a kernel ideal when E is maximal, or
when E is Gorenstein, e.g., when E = A[π].
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Endomorphism rings (under the ideal action)

Fix an isogeny class with commutative endomorphism algebra D.
The endomorphism ring E of a Drinfeld module φ in the isogeny
class is an order in D containing the minimal order A[π].
For I E E , let (I : I ) = {g ∈ D : Ig ⊆ I} be its order.
Write k{τ}I = k{τ}uI as before.

Lemma, cf. [Yu] and [Waterhouse]

For any I E E , we have Endk(I ∗ φ) ⊇ uI (I : I )u−1
I ' (I : I ).

Equality holds when I is a kernel ideal.

Since E ⊆ (I : I ), “endomorphism rings grow under ideal action”.
For transitivity of I 7→ I ∗ φ, every occurring endomorphism ring in
the isogeny class should be an overorder of E .
When does the minimal order A[π] occur as endomorphism ring?
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Local maximality of A[π]

D = F̃ = F (π) p̃

F K = Fq(π) p (π)

Definition, cf. [Anglès]

Let Bp̃ be the ring of integers of F̃p̃ := F̃ ⊗K Fq((π)) and write
A[π]p̃ := A[π]⊗Fq [π] Fq[[π]]. Then A[π] is locally maximal at π
if A[π]p̃ = Bp̃.

Theorem

Recall deg(p) = d and k ' Fqn . Let H be the height of φ.

Then
⌈

n
H·d
⌉
≤ [F̃ :K ]

d , with equality ⇔ A[π] is locally maximal at π.
Hence, A[π] is locally maximal at π ⇔ φ is ordinary or k = Fp.
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A[π] as an endomorphism ring

Fix an isogeny class with commutative endomorphism algebra D.

Lemma

Let R be any A-order in D containing π. There exists a Drinfeld
module φ in the isogeny class such that Endk(φ) = R if and only
if R is locally maximal at π.

At p, i.e. at π, any endomorphism ring is locally maximal. [Yu]
At all l 6= p, the order is almost always maximal and can be
adjusted at the remaining places (↔ isogeny).
Theorem: A[π] is locally maximal at π ⇔ φ is ordinary or k = Fp.

Corollary

A[π] occurs as an endomorphism ring if and only if it is locally
maximal at π, if and only if the isogeny class is ordinary or k = Fp.
So does any overorder of A[π].
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Main result

Theorem

Suppose that E := Endk(φ) = A[π]. Then the action I 7→ I ∗ φ of
the monoid of fractional ideals of A[π] is free and transitive on the
isomorphism classes in the isogeny class of φ.
In other words, all isomorphism classes in the isogeny class of φ
are of the form I ∗ φ for some A[π]-ideal I .

If E = A[π] then φ is ordinary or k = Fp.

For the Gorenstein order A[π], every ideal is a kernel ideal.

Kernel ideals act freely.

Kernel ideals of A[π] act transitively on isomorphism classes
whose endomorphism ring is an overorder of A[π], i.e. on all
isomorphism classes.
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Example

Let q = 2, k = F4, p = T . Fix α ∈ k \ Fq.
Let φ1 : A→ k{τ} be the (rank 7, height 1) Drinfeld module
given by (φ1)T = ατ + τ2 + τ7. Then Endk(φ1) = A[π], π = τ2.
There are 15 isomorphism classes in the isogeny class of φ1:
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Comparing (polarised) abelian varieties and Drinfeld
modules over finite fields k

In both cases we want to describe the isomorphism classes within a
fixed isogeny class, determined by π.
We get the best results when the varieties/modules are ordinary or
when k is the prime field.

Ordinary: canonical liftings exist; fractional End-ideals act on
isomorphism classes – via ideal action (DM) or via
complex uniformisation/Deligne’s equivalence (AV).

Prime fields: elements with minimal endomorphism ring are key.
Centeleghe-Stix map A0 7→ Hom(A0,Ah) with End(Ah) = Z[F ,V ].
Cf.: If φ = I ∗ φw with Endk(φw ) = A[π] and I a kernel A[π]-ideal,
then Homk(φ, φw ) = I .
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