Isomorphism classes of polarised abelian varieties and Drinfeld modules over finite fields

Valentijn Karemaker (Utrecht University)

Joint work with Bergström – Marseglia (IMRN rnab333) and Katen – Papikian (arXiv 2209.15033)

Arithmetic and Algebraic Geometry Seminar, UvA
23 November 2022

Abelian varieties over finite fields: set-up

Definitions

An abelian variety is a connected projective group variety.

The **dual variety** A^{\vee} of an abelian variety A over a field K is such that $A^{\vee}(\overline{K}) = \operatorname{Pic}^0(A_{\overline{K}})$.

A **polarisation** of an abelian variety A is an isogeny $\mu: A \to A^{\vee}$ such that there exists an ample line bundle $\mathcal L$ on $A_{\overline{K}}$ such that $\mu_{\overline{K}}$ equals $\varphi_{\mathcal L}: A \to A^{\vee}, x \mapsto [t_x^*\mathcal L \otimes \mathcal L^{-1}].$

Abelian varieties over finite fields: set-up

Definitions

An **abelian variety** is a connected projective group variety.

The **dual variety** A^{\vee} of an abelian variety A over a field K is such that $A^{\vee}(\overline{K}) = \operatorname{Pic}^0(A_{\overline{K}})$.

A **polarisation** of an abelian variety A is an isogeny $\mu: A \to A^{\vee}$ such that there exists an ample line bundle \mathcal{L} on $A_{\overline{K}}$ such that $\mu_{\overline{K}}$ equals $\varphi_{\mathcal{L}}: A \to A^{\vee}, x \mapsto [t_{x}^{*}\mathcal{L} \otimes \mathcal{L}^{-1}].$

When $K = \mathbb{F}_q$ is a finite field, abelian varieties over K are partitioned into **isogeny classes**.

Important open problem

Describe and compute (polarised!) isomorphism classes within a fixed polarised isogeny class.

Preliminaries: Complex multiplication

Definitions

A **CM-field** L/\mathbb{Q} is a totally imaginary quadratic extension L/L' of a totally real extension L'/\mathbb{Q} . It has a canonical involution $x \mapsto \overline{x}$.

A **CM**-algebra is a finite product of CM-fields.

A **CM-type** for a CM-algebra L is a subset $\Phi \subseteq \operatorname{Hom}(L, \overline{\mathbb{Q}})$ so that

$$\operatorname{Hom}(L,\overline{\mathbb{Q}}) = \Phi \coprod \overline{\Phi}.$$

Preliminaries: Complex multiplication

Definitions

A **CM-field** L/\mathbb{Q} is a totally imaginary quadratic extension L/L' of a totally real extension L'/\mathbb{Q} . It has a canonical involution $x \mapsto \overline{x}$.

A **CM-algebra** is a finite product of CM-fields.

A **CM-type** for a CM-algebra L is a subset $\Phi \subseteq \operatorname{Hom}(L, \overline{\mathbb{Q}})$ so that

$$\operatorname{Hom}(L,\overline{\mathbb{Q}}) = \Phi \coprod \overline{\Phi}.$$

An abelian variety A over K of dimension g has CM (by (L, Φ)) if

$$L \subseteq \operatorname{End}^0(A) := \operatorname{End}(A) \otimes \mathbb{Q}.$$

Preliminaries: Complex multiplication

Definitions

A **CM-field** L/\mathbb{Q} is a totally imaginary quadratic extension L/L' of a totally real extension L'/\mathbb{Q} . It has a canonical involution $x \mapsto \overline{x}$.

A **CM-algebra** is a finite product of CM-fields.

A **CM-type** for a CM-algebra L is a subset $\Phi \subseteq \operatorname{Hom}(L, \overline{\mathbb{Q}})$ so that

$$\operatorname{Hom}(L,\overline{\mathbb{Q}}) = \Phi \coprod \overline{\Phi}.$$

An abelian variety A over K of dimension g has CM (by (L, Φ)) if

$$L \subseteq \operatorname{End}^0(A) := \operatorname{End}(A) \otimes \mathbb{Q}.$$

Fact

Every abelian variety over a finite field has CM.

Complex uniformisation

Consider an abelian variety A over $\mathbb C$ of dimension g. By **complex uniformisation**, we have

$$A(\mathbb{C}) \simeq \mathbb{C}^g/\Lambda, \qquad \Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}.$$

Complex uniformisation

Consider an abelian variety A over \mathbb{C} of dimension g. By **complex uniformisation**, we have

$$A(\mathbb{C}) \simeq \mathbb{C}^g/\Lambda, \qquad \Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}.$$

When A has CM by (L, Φ) , we can say more:

There exists a fractional ideal I in L such that $A(\mathbb{C}) \simeq \mathbb{C}^g/\Phi(I)$.

Then also $A^{\vee}(\mathbb{C})\simeq \mathbb{C}^g/\Phi(\overline{I}^t)$, where t is the trace dual. Hence,

$$\operatorname{Hom}_{L}(A, A^{\vee}) \leftrightarrow (\overline{I}^{t} : I) := \{x \in L : xI \subseteq \overline{I}^{t}\}.$$

Complex uniformisation

Consider an abelian variety A over \mathbb{C} of dimension g. By **complex uniformisation**, we have

$$A(\mathbb{C}) \simeq \mathbb{C}^g/\Lambda, \qquad \Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}.$$

When A has CM by (L, Φ) , we can say more:

There exists a fractional ideal I in L such that $A(\mathbb{C}) \simeq \mathbb{C}^g/\Phi(I)$. Then also $A^{\vee}(\mathbb{C}) \simeq \mathbb{C}^g/\Phi(\overline{I}^t)$, where t is the trace dual. Hence,

$$(0) = (0) / (1)$$
, where t is the trace dual. Hence

$$\operatorname{Hom}_L(A, A^{\vee}) \leftrightarrow (\overline{I}^t : I) := \{x \in L : xI \subseteq \overline{I}^t\}.$$

Definition/construction

Let A be a g-dimensional abelian variety over a p-adic field K and with CM by (L,Φ) . Form $A_{\mathbb{C}}=A\otimes \mathbb{C}$; then $A_{\mathbb{C}}(\mathbb{C})\simeq \mathbb{C}^g/\Phi(I)$. Write $\mathcal{H}(A):=I$. Then $\mathcal{H}(A^{\vee})=\overline{I}^t$ and

$$\mathcal{H}(\operatorname{Hom}_{L}(A, A^{\vee})) := \operatorname{Hom}_{L}(\mathcal{H}(A), \mathcal{H}(A^{\vee})) = (\overline{I}^{t} : I).$$

Polarisations in characteristic zero

Let
$$\mathcal{H}(A) = I$$
, so $\mathcal{H}(A^{\vee}) = \overline{I}^t$ and $\mathcal{H}(\operatorname{Hom}_L(A, A^{\vee})) = (\overline{I}^t : I)$.

By definition, $\{ \text{ polarisations of } A \} \subseteq \operatorname{Hom}(A, A^{\vee}).$

Polarisations in characteristic zero

Let
$$\mathcal{H}(A) = I$$
, so $\mathcal{H}(A^{\vee}) = \overline{I}^{t}$ and $\mathcal{H}(\operatorname{Hom}_{L}(A, A^{\vee})) = (\overline{I}^{t} : I)$.

By definition, { polarisations of A } \subseteq Hom (A, A^{\vee}) .

Proposition

Let A be a g-dimensional abelian variety over a p-adic field K and with CM by (L, Φ) . An L-linear isogeny $\mu : A \to A^{\vee} \in \operatorname{Hom}(A, A^{\vee})$ is a polarisation if and only if:

- $\mathcal{H}(\mu) = \lambda \in L$ is totally imaginary (i.e. $\overline{\lambda} = -\lambda$);
- λ is Φ -positive (i.e. $\operatorname{Im}(\varphi(\lambda)) > 0$ for all $\varphi \in \Phi$).

(towards) Polarisations in characteristic p

Goal

Describe and compute polarisations of abelian varieties over finite fields $K = \mathbb{F}_q$.

Every A/\mathbb{F}_q has a Frobenius endomorphism π_A with characteristic polynomial $h_A(x) \in \mathbb{Z}[x]$, which is an isogeny invariant: By Honda-Tate theory, $\{$ isogeny classes $\} \leftrightarrow \{$ char. poly's h_A $\}$.

(towards) Polarisations in characteristic p

Goal

Describe and compute polarisations of abelian varieties over finite fields $K = \mathbb{F}_q$.

Every A/\mathbb{F}_q has a Frobenius endomorphism π_A with characteristic polynomial $h_A(x) \in \mathbb{Z}[x]$, which is an isogeny invariant: By Honda-Tate theory, $\{$ isogeny classes $\} \leftrightarrow \{$ char. poly's h_A $\}$.

Idea

Give analogous construction to \mathcal{H} for abelian varieties in characteristic p, to describe $\operatorname{Hom}(A, A^{\vee}) \supseteq \{ \text{ polarisations of } A \}$.

We will use the Centeleghe-Stix equivalence.

Categorical equivalence of Centeleghe-Stix

For this, we need to restrict to abelian varieties A_0 over \mathbb{F}_p such that h_{A_0} is squarefree ($\Leftrightarrow \operatorname{End}(A_0)$ is commutative).

Categorical equivalence of Centeleghe-Stix

For this, we need to restrict to abelian varieties A_0 over \mathbb{F}_p such that h_{A_0} is squarefree ($\Leftrightarrow \operatorname{End}(A_0)$ is commutative).

C-S equivalence

Fix an h as above, or equivalently an isogeny class AV_h .

Let
$$L := \mathbb{Q}[x]/(h) = \mathbb{Q}[F]$$
 and $V := p/F$.

Any
$$A_0 \in AV_h$$
 has $\operatorname{End}(A_0) \supseteq \mathbb{Z}[F, V]$.

Choose
$$A_h \in AV_h$$
 with $End(A_h) = \mathbb{Z}[F, V]$.

Then the functor

$$\mathcal{G}: \mathrm{AV}_h \to \{ \text{ fractional } \mathbb{Z}[F,V] \text{-ideals } \}$$

$$A_0 \mapsto \mathrm{Hom}(A_0,A_h), \text{ embedded into } L$$

is an equivalence of categories.

We have the equivalence

$$\mathcal{G}: \mathrm{AV}_h \to \{ \text{ fractional } \mathbb{Z}[F,V] \text{-ideals } \}$$

 $A_0 \mapsto \mathrm{Hom}(A_0,A_h), \text{ embedded into } L$

There are some choices involved here:

- Choosing A_h : these form a $Pic(\mathbb{Z}[F, V])$ -orbit;
- Choosing an embedding into *L*.

We have the equivalence

$$\mathcal{G}: \mathrm{AV}_h \to \{ \text{ fractional } \mathbb{Z}[F, V] \text{-ideals } \}$$

$$A_0 \mapsto \mathrm{Hom}(A_0, A_h), \text{ embedded into } L$$

There are some choices involved here:

- Choosing A_h : these form a $\operatorname{Pic}(\mathbb{Z}[F,V])$ -orbit;
- Choosing an embedding into L.

Choosing well, we can ensure that $\mathcal{G}(A_0^{\lor}) = \overline{\mathcal{G}(A_0)}^t$ and hence

$$\mathcal{G}(\operatorname{Hom}_{L}(A_{0}, A_{0}^{\vee})) := (\mathcal{G}(A_{0}) : \mathcal{G}(A_{0}^{\vee})) = (\mathcal{G}(A_{0}) : \overline{\mathcal{G}(A_{0})}^{t}).$$

Compare: $\mathcal{H}(\operatorname{Hom}(A, A^{\vee})) = (\overline{I}^{t} : I).$

We have the equivalence

$$\mathcal{G}: \mathrm{AV}_h \to \{ ext{ fractional } \mathbb{Z}[F, V] ext{-ideals } \}$$

$$A_0 \mapsto \mathrm{Hom}(A_0, A_h), \text{ embedded into } L.$$

Assume that
$$\mathcal{G}(A_0^{\vee}) = \overline{\mathcal{G}(A_0)}^t$$
.

We have the equivalence

$$\mathcal{G}: \mathrm{AV}_h \to \{ ext{ fractional } \mathbb{Z}[F, V] ext{-ideals } \}$$

$$A_0 \mapsto \mathrm{Hom}(A_0, A_h), \text{ embedded into } L.$$

Assume that $\mathcal{G}(A_0^{\vee}) = \overline{\mathcal{G}(A_0)}^t$.

For $f: A_0 \to B_0$ and $f^{\vee}: B_0^{\vee} \to A_0^{\vee}$, we have $\mathcal{G}(f^{\vee}) = \overline{\mathcal{G}(f)}$. Also:

$$\operatorname{Hom}(B_0, B_0^{\vee}) \xrightarrow{f^*} \operatorname{Hom}(A_0, A_0^{\vee})$$

$$\downarrow_{\mathcal{G}} \qquad \downarrow_{\mathcal{G}}$$

$$(\mathcal{G}(B_0) : \overline{\mathcal{G}(B_0)}^t) \xrightarrow{\mathcal{G}(f^*)} (\mathcal{G}(A_0) : \overline{\mathcal{G}(A_0)}^t)$$

where $f^*: \varphi \mapsto f^{\vee}\varphi f$, so $\mathcal{G}(f^*)$ is multiplication by $\mathcal{G}(f)\overline{\mathcal{G}(f)} \in L$.

Canonical liftings

Now
$$(\mathcal{G}(A_0) : \overline{\mathcal{G}(A_0)}^t) = \mathcal{G}(\operatorname{Hom}(A_0, A_0^{\vee})) \supseteq \mathcal{G}(\mathsf{polarisations}).$$

Idea

Lift to characteristic zero to access the description of polarisations. N.B.: $\text{Hom}(A_0, A_0^{\vee})$ should be preserved by the lifting process.

Canonical liftings

Now
$$(\mathcal{G}(A_0) : \overline{\mathcal{G}(A_0)}^t) = \mathcal{G}(\operatorname{Hom}(A_0, A_0^{\vee})) \supseteq \mathcal{G}(\mathsf{polarisations}).$$

Idea

Lift to characteristic zero to access the description of polarisations. N.B.: $\text{Hom}(A_0, A_0^{\vee})$ should be preserved by the lifting process.

Definition

A **canonical lifting** of A_0/\mathbb{F}_q to a local domain $\mathcal R$ of characteristic zero with residue field \mathbb{F}_q and fraction field K is an abelian scheme $\mathcal A/\mathcal R$ such that $\operatorname{End}(A_0)=\operatorname{End}(\mathcal A)$ and $\mathcal A\otimes\mathbb{F}_q\simeq A_0,\ \mathcal A\otimes K\simeq A$.

N.B.: We may view $\operatorname{End}(A_0)$ as an order in $L \simeq \operatorname{End}^0(A_0)$; these identifications can be made compatibly with $\mathcal G$ and $\mathcal H$.

Characteristic p versus characteristic zero

Proposition

If A_0/\mathbb{F}_q has a canonical lifting to A/K, or equivalently if A/K with CM by L has good reduction to A_0/\mathbb{F}_q , and if

$$\operatorname{End}(A^{\vee}) \simeq \operatorname{End}(A) \simeq \operatorname{End}(A_0) \simeq \operatorname{End}(A_0^{\vee})$$

and is Gorenstein, then reduction $\operatorname{Hom}_{L}(A, A^{\vee}) \to \operatorname{Hom}_{L}(A_{0}, A_{0}^{\vee})$ is multiplication by some $\alpha \in \operatorname{End}(A_{0})^{*}$.

Characteristic p versus characteristic zero

Proposition

If A_0/\mathbb{F}_q has a canonical lifting to A/K, or equivalently if A/K with CM by L has good reduction to A_0/\mathbb{F}_q , and if

$$\operatorname{End}(A^{\vee}) \simeq \operatorname{End}(A) \simeq \operatorname{End}(A_0) \simeq \operatorname{End}(A_0^{\vee})$$

and is Gorenstein, then reduction $\operatorname{Hom}_{\mathcal{L}}(A, A^{\vee}) \to \operatorname{Hom}_{\mathcal{L}}(A_0, A_0^{\vee})$ is multiplication by some $\alpha \in \operatorname{End}(A_0)^*$.

$$\operatorname{Hom}(A_{K}, A_{K}^{\vee}) \xrightarrow{\operatorname{red}} \operatorname{Hom}(B_{0}, B_{0}^{\vee}) \xrightarrow{f^{*}} \operatorname{Hom}(A_{0}, A_{0}^{\vee}) \qquad (\overline{I}^{t} : I)$$

$$\downarrow^{\mathcal{G}} \qquad \qquad \downarrow^{\mathcal{G}} \qquad \qquad \alpha \downarrow$$

$$(\mathcal{G}(B_{0}) : \mathcal{G}(B_{0}^{\vee})) \xrightarrow{\mathcal{G}(f)^{*}} (\mathcal{G}(A_{0}) : \mathcal{G}(A_{0}^{\vee})) = (\overline{I}^{t} : I)$$

Main result: describing polarisations

Lemmas

- Let $f: A_0 \to B_0$ and $\mu_0: B_0 \to B_0^{\vee}$ be isogenies. Then μ_0 is a polarisation $\Leftrightarrow f^*\mu_0 = f^{\vee}\mu_0 f$ is a polarisation.
- 2 Let $\mu:A\to A^\vee$ be an isogeny and $\mu_0:A_0\to A_0^\vee$ its reduction. Then μ is a polarisation $\Leftrightarrow \mu_0$ is a polarisation.
- **3** The element $\alpha \in \operatorname{End}(A) = \operatorname{End}(A_0)$ is totally real: $\overline{\alpha} = \alpha$.

Main result: describing polarisations

Lemmas

- Let $f: A_0 \to B_0$ and $\mu_0: B_0 \to B_0^{\vee}$ be isogenies. Then μ_0 is a polarisation $\Leftrightarrow f^*\mu_0 = f^{\vee}\mu_0 f$ is a polarisation.
- 2 Let $\mu: A \to A^{\vee}$ be an isogeny and $\mu_0: A_0 \to A_0^{\vee}$ its reduction. Then μ is a polarisation $\Leftrightarrow \mu_0$ is a polarisation.
- **3** The element $\alpha \in \operatorname{End}(A) = \operatorname{End}(A_0)$ is totally real: $\overline{\alpha} = \alpha$.

Theorem

Let h be a squarefree characteristic polynomial corresponding to the isogeny class AV_h over \mathbb{F}_p . Let $L\simeq \mathbb{Q}[x]/(h)$ and choose a CM-type Φ for L. Let $S=\overline{S}$ be a Gorenstein order in L such that there is $A_0\in\mathrm{AV}_h$ with $\mathrm{End}(A_0)=S$ which admits a canonical lifting to a p-adic field K.

Main result: describing polarisations

Lemmas

- Let $f: A_0 \to B_0$ and $\mu_0: B_0 \to B_0^{\vee}$ be isogenies. Then μ_0 is a polarisation $\Leftrightarrow f^*\mu_0 = f^{\vee}\mu_0 f$ is a polarisation.
- 2 Let $\mu:A\to A^\vee$ be an isogeny and $\mu_0:A_0\to A_0^\vee$ its reduction. Then μ is a polarisation $\Leftrightarrow \mu_0$ is a polarisation.
- **3** The element $\alpha \in \operatorname{End}(A) = \operatorname{End}(A_0)$ is totally real: $\overline{\alpha} = \alpha$.

Theorem

Let h be a squarefree characteristic polynomial corresponding to the isogeny class AV_h over \mathbb{F}_p . Let $L\simeq \mathbb{Q}[x]/(h)$ and choose a CM-type Φ for L. Let $S=\overline{S}$ be a Gorenstein order in L such that there is $A_0\in\operatorname{AV}_h$ with $\operatorname{End}(A_0)=S$ which admits a canonical lifting to a p-adic field K. Then there exists a totally real $\alpha\in S^*$ such that for **any** $B_0\in\operatorname{AV}_h$ and any isogeny $\mu_0:B_0\to B_0^\vee$, μ_0 is a polarisation $\Leftrightarrow \alpha^{-1}\mathcal{G}(\mu)\in L$ is totally imaginary and Φ -positive.

When do canonical liftings exist?

Known results

- (Serre-Tate) Every **ordinary** AV has a canonical lifting.
- (Oswal-Shankar and BKM) Every **almost-ordinary** AV with commutative endomorphism ring has a canonical lifting.
- (Chai-Conrad-Oort) Let h be irreducible, $L = \mathbb{Q}[x]/(h) = \mathbb{Q}[\pi]$ and Φ a CM-type such that (L, Φ) satisfies the **residual reflex condition (RRC)**. Then the isogeny class corresponding to h contains an A_0/\mathbb{F}_q such that $\operatorname{End}(A_0) = \mathcal{O}_L$ which has a canonical lifting.

When do canonical liftings exist?

Known results

- (Serre-Tate) Every **ordinary** AV has a canonical lifting.
- (Oswal-Shankar and BKM) Every almost-ordinary AV with commutative endomorphism ring has a canonical lifting.
- (Chai-Conrad-Oort) Let h be irreducible, $L=\mathbb{Q}[x]/(h)=\mathbb{Q}[\pi]$ and Φ a CM-type such that (L,Φ) satisfies the **residual reflex condition (RRC)**. Then the isogeny class corresponding to h contains an A_0/\mathbb{F}_q such that $\operatorname{End}(A_0)=\mathcal{O}_L$ which has a canonical lifting.
 - We generalised the RRC to squarefree *h*.
 - Any AV separably isogenous to A_0 then also has a lifting.
 - We implemented the (generalised) RRC in Magma.

Computation of polarisations

Under the assumptions of our theorem, there exists totally real $\alpha \in S^*$ such that $\mu_0 : B_0 \to B_0^\vee$ is a polarisation if and only if $\alpha^{-1}\mathcal{G}(\mu) \in L$ is totally imaginary and Φ -positive.

Computation of polarisations

Under the assumptions of our theorem, there exists totally real $\alpha \in S^*$ such that $\mu_0 : B_0 \to B_0^\vee$ is a polarisation if and only if $\alpha^{-1}\mathcal{G}(\mu) \in L$ is totally imaginary and Φ -positive.

To find all (principal) polarisations of B_0 starting with a given $\mathcal{G}(\mu_0)=i_0\in L^*$, we need to compute

 $\{i_0u: u\in \operatorname{End}(B_0)^*/\langle \nu\overline{\nu}\rangle \text{ s.t. } \alpha^{-1}i_0u \text{ totally imaginary and } \Phi\text{-positive }\}.$

- $(B_0, \mu_0) \simeq (B_0, \mu_0') \Leftrightarrow \exists \nu \in \operatorname{End}(B_0)^* \text{ s.t. } \mathcal{G}(\mu_0) = \nu \overline{\nu} \mathcal{G}(\mu_0').$
- Can often ignore $\alpha!$ E.g. if an AV with $\operatorname{End} = \mathbb{Z}[F, V]$ lifts.

Aggregate examples

squarefree dimension 3			p=2	p=3	p=5	p = 7
total			185	621	2863	7847
ordinary			82	390	2280	6700
	almost ordinary 58 170 474			474	996	
p-rank 1	no RRC		0	0	0	0
	yes RRC	$5.5.2(R_w)$ yes	20	26	76	118
		$5.5.2(R_w)$ no	4	16	12	8
p-rank 0	no RRC		0	3	2	1
	yes RRC	$5.5.2(R_w)$ yes	20	15	17	23
		$5.5.2(R_w)$ no	1	1	2	1

Aggregate examples

squarefree dimension 3			p=2	p = 3	p = 5	p = 7
total			185	621	2863	7847
ordinary			82	390	2280	6700
almost ordinary			58	170	474	996
p-rank 1	no RRC		0	0	0	0
	yes RRC	$5.5.2(R_w)$ yes	20	26	76	118
		$5.5.2(R_w)$ no	4	16	12	8
p-rank 0	no RRC		0	3	2	1
	yes RRC	$5.5.2(R_w)$ yes	20	15	17	23
		$5.5.2(R_w)$ no	1	1	2	1

squarefree dimension 4			p=2	p=3
total			1431	10453
ordinary			656	6742
almost ordinary			392	2506
p-rank 2	no RRC		0	0
	yes RRC	$5.5.2(R_w)$ yes	149	500
		$5.5.2(R_w)$ no	49	312
p-rank 1	no RRC		6	36
	ves RRC	$5.5.2(R_w)$ yes	80	184
	yes mic	$5.5.2(R_w)$ no	14	40
	no RRC		3	6
<i>p</i> -rank 0	yes RRC	$5.5.2(R_w)$ yes	73	88
		$5.5.2(R_w)$ no	9	39

Drinfeld modules over finite fields: set-up

We fix some notation:

- $A = \mathbb{F}_q[T], F = \mathbb{F}_q(T).$
- $\mathfrak{p} \leq A$ is a prime of degree d, monic generator denoted by \mathfrak{p} .
- ullet $k\cong \mathbb{F}_{q^n}$ is a finite extension of $A/\mathfrak{p}=\mathbb{F}_{\mathfrak{p}}\cong \mathbb{F}_{q^d}$.
- $\gamma: A \to A/\mathfrak{p} \hookrightarrow k$ is the A-field structure on k.
- $\pi = \tau^n$ is the Frobenius endomorphism.

Drinfeld modules over finite fields: set-up

We fix some notation:

- $A = \mathbb{F}_q[T], F = \mathbb{F}_q(T).$
- $\mathfrak{p} \leq A$ is a prime of degree d, monic generator denoted by \mathfrak{p} .
- ullet $k\cong \mathbb{F}_{q^n}$ is a finite extension of $A/\mathfrak{p}=\mathbb{F}_{\mathfrak{p}}\cong \mathbb{F}_{q^d}$.
- $\gamma: A \to A/\mathfrak{p} \hookrightarrow k$ is the A-field structure on k.
- $\pi = \tau^n$ is the Frobenius endomorphism.

Let $\phi: A \to k\{\tau\}$ be a Drinfeld module over k of rank r, with $\mathcal{E} := \operatorname{End}_k(\phi)$ and $D := \mathcal{E} \otimes_A F = \operatorname{End}_k^0(\phi)$.

$$ilde{F} = F(\pi)$$
 $ilde{K} = \mathbb{F}_{g}(\pi)$

We will consider the case where $D = \tilde{F}$ is commutative.

Guiding questions

The minimal polynomial of π over F, determines an **isogeny class** of Drinfeld modules over k.

Important open problem

Describe, determine, and count the isomorphism classes within a fixed isogeny class.

Guiding questions

The minimal polynomial of π over F, determines an **isogeny class** of Drinfeld modules over k.

Important open problem

Describe, determine, and count the isomorphism classes within a fixed isogeny class.

- Brute force results for r = 2, 3. [Assong].
- Description of endomorphism rings due to Angles, Garai-Papikian, Kuhn-Pink, and others.
- Related to calculating zeta functions of Drinfeld modular varieties.

Isogenies, subgroups, lattices, ideals [Laumon]

Let $u: \phi \to \psi$ be an isogeny of Drinfeld modules of rank r over k. The kernel of $u \in k\{\tau\}$ is a finite group scheme G_u in A-modules.

Isogenies, subgroups, lattices, ideals [Laumon]

Let $u: \phi \to \psi$ be an isogeny of Drinfeld modules of rank r over k. The kernel of $u \in k\{\tau\}$ is a finite group scheme G_u in A-modules.

Let $H_{\mathfrak{p}}$ denote the Dieudonné module and $T_{\mathfrak{l}}$ the Tate module. Via injective maps $u_{\mathfrak{p}}: H_{\mathfrak{p}}(\psi) \hookrightarrow H_{\mathfrak{p}}(\phi)$ and $u_{\mathfrak{l}}: T_{\mathfrak{l}}(\phi) \hookrightarrow T_{\mathfrak{l}}(\psi)$ for $\mathfrak{l} \neq \mathfrak{p}$, it yields sublattices $M_{\mathfrak{p}}:=u_{\mathfrak{p}}(H_{\mathfrak{p}}(\psi))\subseteq H_{\mathfrak{p}}(\phi)$ and $M_{\mathfrak{l}}:=\operatorname{Hom}(u_{\mathfrak{l}}^{-1}T_{\mathfrak{l}}(\psi),A_{\mathfrak{l}})\subseteq \operatorname{Hom}(T_{\mathfrak{l}}(\phi),A_{\mathfrak{l}})=:H_{\mathfrak{l}}(\phi)$ for $\mathfrak{l} \neq \mathfrak{p}$, and hence a sublattice $M:=\prod_{\mathfrak{l}} M_{\mathfrak{l}}\subseteq \prod_{\mathfrak{l}} H_{\mathfrak{l}}(\phi)=:\mathbb{H}(\phi)$. By construction, $G_{u}\simeq \prod_{\mathfrak{l}\neq \mathfrak{p}} H_{\mathfrak{l}}(\phi)/M_{\mathfrak{l}}\times H_{\mathfrak{p}}(\phi)/M_{\mathfrak{p}}=\mathbb{H}(\phi)/M$.

Isogenies, subgroups, lattices, ideals [Laumon]

Let $u: \phi \to \psi$ be an isogeny of Drinfeld modules of rank r over k. The kernel of $u \in k\{\tau\}$ is a finite group scheme G_u in A-modules.

Let $H_{\mathfrak{p}}$ denote the Dieudonné module and $T_{\mathfrak{l}}$ the Tate module. Via injective maps $u_{\mathfrak{p}}: H_{\mathfrak{p}}(\psi) \hookrightarrow H_{\mathfrak{p}}(\phi)$ and $u_{\mathfrak{l}}: T_{\mathfrak{l}}(\phi) \hookrightarrow T_{\mathfrak{l}}(\psi)$ for $\mathfrak{l} \neq \mathfrak{p}$, it yields sublattices $M_{\mathfrak{p}}:=u_{\mathfrak{p}}(H_{\mathfrak{p}}(\psi))\subseteq H_{\mathfrak{p}}(\phi)$ and $M_{\mathfrak{l}}:=\operatorname{Hom}(u_{\mathfrak{l}}^{-1}T_{\mathfrak{l}}(\psi),A_{\mathfrak{l}})\subseteq \operatorname{Hom}(T_{\mathfrak{l}}(\phi),A_{\mathfrak{l}})=:H_{\mathfrak{l}}(\phi)$ for $\mathfrak{l} \neq \mathfrak{p}$, and hence a sublattice $M:=\prod_{\mathfrak{l}} M_{\mathfrak{l}}\subseteq \prod_{\mathfrak{l}} H_{\mathfrak{l}}(\phi)=:\mathbb{H}(\phi)$. By construction, $G_{u}\simeq \prod_{\mathfrak{l}\neq \mathfrak{p}} H_{\mathfrak{l}}(\phi)/M_{\mathfrak{l}}\times H_{\mathfrak{p}}(\phi)/M_{\mathfrak{p}}=\mathbb{H}(\phi)/M$.

For an ideal $I \subseteq \mathcal{E}$, we have $k\{\tau\}I = k\{\tau\}u_I$ for some $u_I \in k\{\tau\}$. The sublattice corresponding to u_I is $I\mathbb{H}(\phi) = \prod_{\mathfrak{l}} IH_{\mathfrak{l}}(\phi)$, since $\ker(u_I) = \phi[I] = \cap_{\alpha \in I} \ker(\alpha)$.

Ideal action on isomorphism classes [Hayes]

Recall $\phi: A \to k\{\tau\}$ is a Drinfeld module with $\mathcal{E} := \operatorname{End}_k(\phi)$. For an ideal $I \subseteq \mathcal{E}$, again write $k\{\tau\}I = k\{\tau\}u_I$ with $u_I \in k\{\tau\}$.

A Drinfeld module over k is determined by its value at T. Setting $\psi_T = u_I \phi_T u_I^{-1}$ determines a Drinfeld module ψ over k, isogenous to ϕ via $u_I : \phi \to \psi$. We write $\psi = I * \phi$.

Ideal action on isomorphism classes [Hayes]

Recall $\phi: A \to k\{\tau\}$ is a Drinfeld module with $\mathcal{E} := \operatorname{End}_k(\phi)$. For an ideal $I \subseteq \mathcal{E}$, again write $k\{\tau\}I = k\{\tau\}u_I$ with $u_I \in k\{\tau\}$.

A Drinfeld module over k is determined by its value at T. Setting $\psi_T = u_I \phi_T u_I^{-1}$ determines a Drinfeld module ψ over k, isogenous to ϕ via $u_I : \phi \to \psi$. We write $\psi = I * \phi$.

Lemma

The map $I\mapsto I*\phi$ determines an action of the monoid of fractional ideals of $\mathcal E$ up to linear equivalence on the set of isomorphism classes in the isogeny class of ϕ whose endomorphism ring is the order of an $\mathcal E$ -ideal (hence an overorder of $\mathcal E$).

When is this action free? When is it transitive?

Kernel ideals

Let $I \subseteq \mathcal{E} := \operatorname{End}_k(\phi) = D \cap k\{\tau\}$ be an ideal.

Definition

The ideal *I* is a **kernel ideal** if any of the following equivalent properties holds:

- $\bullet I = (k\{\tau\}I) \cap D. \text{ (Generally }\subseteq.) \text{ [Yu]}$
- $I = \operatorname{Ann}_{\mathcal{E}}(\phi[I])$. (Generally \subseteq .)
- **3** For any $J \subseteq \mathcal{E}$, we have $J\mathbb{H}(\phi) \subseteq I\mathbb{H}(\phi) \Rightarrow J \subseteq I$. (\Leftarrow holds.)

Kernel ideals

Let $I \subseteq \mathcal{E} := \operatorname{End}_k(\phi) = D \cap k\{\tau\}$ be an ideal.

Definition

The ideal *I* is a **kernel ideal** if any of the following equivalent properties holds:

- $I = \operatorname{Ann}_{\mathcal{E}}(\phi[I])$. (Generally \subseteq .)
- **3** For any $J \subseteq \mathcal{E}$, we have $J\mathbb{H}(\phi) \subseteq I\mathbb{H}(\phi) \Rightarrow J \subseteq I$. (\Leftarrow holds.)

Lemma

Upon restricting to kernel ideals, the ideal action $I\mapsto I*\phi$ is free.

Kernel ideals

Let $I \subseteq \mathcal{E} := \operatorname{End}_k(\phi) = D \cap k\{\tau\}$ be an ideal.

Definition

The ideal *I* is a **kernel ideal** if any of the following equivalent properties holds:

- $I = \operatorname{Ann}_{\mathcal{E}}(\phi[I])$. (Generally \subseteq .)
- **3** For any $J \subseteq \mathcal{E}$, we have $J\mathbb{H}(\phi) \subseteq I\mathbb{H}(\phi) \Rightarrow J \subseteq I$. (\Leftarrow holds.)

Lemma

Upon restricting to kernel ideals, the ideal action $I\mapsto I*\phi$ is free.

Lemma

Every ideal is a kernel ideal when \mathcal{E} is maximal, or when \mathcal{E} is Gorenstein, e.g., when $\mathcal{E} = A[\pi]$.

Endomorphism rings (under the ideal action)

Fix an isogeny class with commutative endomorphism algebra D. The endomorphism ring $\mathcal E$ of a Drinfeld module ϕ in the isogeny class is an order in D containing the minimal order $A[\pi]$. For $I \subseteq \mathcal E$, let $(I:I) = \{g \in D: Ig \subseteq I\}$ be its order. Write $k\{\tau\}I = k\{\tau\}uI$ as before.

Endomorphism rings (under the ideal action)

Fix an isogeny class with commutative endomorphism algebra D. The endomorphism ring $\mathcal E$ of a Drinfeld module ϕ in the isogeny class is an order in D containing the minimal order $A[\pi]$. For $I \subseteq \mathcal E$, let $(I:I) = \{g \in D: Ig \subseteq I\}$ be its order. Write $k\{\tau\}I = k\{\tau\}u_I$ as before.

Lemma, cf. [Yu] and [Waterhouse]

For any $I \subseteq \mathcal{E}$, we have $\operatorname{End}_k(I * \phi) \supseteq u_I(I : I)u_I^{-1} \simeq (I : I)$. Equality holds when I is a kernel ideal.

Endomorphism rings (under the ideal action)

Fix an isogeny class with commutative endomorphism algebra D. The endomorphism ring \mathcal{E} of a Drinfeld module ϕ in the isogeny class is an order in D containing the minimal order $A[\pi]$. For $I \leq \mathcal{E}$, let $(I:I) = \{g \in D: Ig \subseteq I\}$ be its order.

Write $k\{\tau\}I = k\{\tau\}u_I$ as before.

Lemma, cf. [Yu] and [Waterhouse]

For any $I \subseteq \mathcal{E}$, we have $\operatorname{End}_k(I * \phi) \supseteq u_I(I : I)u_I^{-1} \simeq (I : I)$. Equality holds when I is a kernel ideal.

Since $\mathcal{E} \subseteq (I:I)$, "endomorphism rings grow under ideal action". For transitivity of $I \mapsto I * \phi$, every occurring endomorphism ring in the isogeny class should be an overorder of \mathcal{E} . When does the minimal order $A[\pi]$ occur as endomorphism ring?

Local maximality of $A[\pi]$

$$D = \tilde{F} = F(\pi)$$
 $K = \mathbb{F}_q(\pi)$
 \mathfrak{p}
 (π)

Definition, cf. [Angles]

Let $B_{\tilde{\mathfrak{p}}}$ be the ring of integers of $\tilde{F}_{\tilde{\mathfrak{p}}}:=\tilde{F}\otimes_{\mathcal{K}}\mathbb{F}_q((\pi))$ and write $A[\pi]_{\tilde{\mathfrak{p}}}:=A[\pi]\otimes_{\mathbb{F}_q[\pi]}\mathbb{F}_q[[\pi]]$. Then $A[\pi]$ is **locally maximal** at π if $A[\pi]_{\tilde{\mathfrak{p}}}=B_{\tilde{\mathfrak{p}}}$.

Local maximality of $A[\pi]$

$$D = \tilde{F} = F(\pi)$$
 $K = \mathbb{F}_q(\pi)$
 \mathfrak{p}
 (π)

Definition, cf. [Angles]

Let $B_{\tilde{\mathfrak{p}}}$ be the ring of integers of $\tilde{F}_{\tilde{\mathfrak{p}}}:=\tilde{F}\otimes_{\mathcal{K}}\mathbb{F}_q((\pi))$ and write $A[\pi]_{\tilde{\mathfrak{p}}}:=A[\pi]\otimes_{\mathbb{F}_q[\pi]}\mathbb{F}_q[[\pi]]$. Then $A[\pi]$ is **locally maximal** at π if $A[\pi]_{\tilde{\mathfrak{p}}}=B_{\tilde{\mathfrak{p}}}$.

Theorem

Recall $\deg(\mathfrak{p}) = d$ and $k \simeq \mathbb{F}_{q^n}$. Let H be the height of ϕ .

Then $\left\lceil \frac{n}{H \cdot d} \right\rceil \leq \frac{\left\lceil \tilde{F} : K \right\rceil}{d}$, with equality $\Leftrightarrow A[\pi]$ is locally maximal at π . Hence, $A[\pi]$ is locally maximal at $\pi \Leftrightarrow \phi$ is ordinary or $k = \mathbb{F}_p$.

$A[\pi]$ as an endomorphism ring

Fix an isogeny class with commutative endomorphism algebra D.

Lemma

Let R be any A-order in D containing π . There exists a Drinfeld module ϕ in the isogeny class such that $\operatorname{End}_k(\phi) = R$ if and only if R is locally maximal at π .

$A[\pi]$ as an endomorphism ring

Fix an isogeny class with commutative endomorphism algebra D.

Lemma

Let R be any A-order in D containing π . There exists a Drinfeld module ϕ in the isogeny class such that $\operatorname{End}_k(\phi) = R$ if and only if R is locally maximal at π .

At \mathfrak{p} , i.e. at π , any endomorphism ring is locally maximal. [Yu] At all $\mathfrak{l} \neq \mathfrak{p}$, the order is almost always maximal and can be adjusted at the remaining places (\leftrightarrow isogeny).

Theorem: $A[\pi]$ is locally maximal at $\pi \Leftrightarrow \phi$ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.

$A[\pi]$ as an endomorphism ring

Fix an isogeny class with commutative endomorphism algebra D.

Lemma

Let R be any A-order in D containing π . There exists a Drinfeld module ϕ in the isogeny class such that $\operatorname{End}_k(\phi) = R$ if and only if R is locally maximal at π .

At \mathfrak{p} , i.e. at π , any endomorphism ring is locally maximal. [Yu] At all $\mathfrak{l} \neq \mathfrak{p}$, the order is almost always maximal and can be adjusted at the remaining places (\leftrightarrow isogeny).

Theorem: $A[\pi]$ is locally maximal at $\pi \Leftrightarrow \phi$ is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$.

Corollary

 $A[\pi]$ occurs as an endomorphism ring if and only if it is locally maximal at π , if and only if the isogeny class is ordinary or $k = \mathbb{F}_{\mathfrak{p}}$. So does any overorder of $A[\pi]$.

Main result

Theorem

Suppose that $\mathcal{E} := \operatorname{End}_{k}(\phi) = A[\pi]$. Then the action $I \mapsto I * \phi$ of the monoid of fractional ideals of $A[\pi]$ is free and transitive on the isomorphism classes in the isogeny class of ϕ .

In other words, all isomorphism classes in the isogeny class of ϕ are of the form $I*\phi$ for some $A[\pi]$ -ideal I.

Main result

Theorem

Suppose that $\mathcal{E} := \operatorname{End}_{k}(\phi) = A[\pi]$. Then the action $I \mapsto I * \phi$ of the monoid of fractional ideals of $A[\pi]$ is free and transitive on the isomorphism classes in the isogeny class of ϕ .

In other words, all isomorphism classes in the isogeny class of ϕ are of the form $I*\phi$ for some $A[\pi]$ -ideal I.

- ullet If $\mathcal{E}=A[\pi]$ then ϕ is ordinary or $k=\mathbb{F}_{\mathfrak{p}}.$
- For the Gorenstein order $A[\pi]$, every ideal is a kernel ideal.
- Kernel ideals act freely.
- Kernel ideals of $A[\pi]$ act transitively on isomorphism classes whose endomorphism ring is an overorder of $A[\pi]$, i.e. on all isomorphism classes.

Example

Let q=2, $k=\mathbb{F}_4$, $\mathfrak{p}=T$. Fix $\alpha\in k\setminus \mathbb{F}_q$. Let $\phi_1:A\to k\{\tau\}$ be the (rank 7, height 1) Drinfeld module given by $(\phi_1)_T=\alpha\tau+\tau^2+\tau^7$. Then $\mathrm{End}_k(\phi_1)=A[\pi]$, $\pi=\tau^2$. There are 15 isomorphism classes in the isogeny class of ϕ_1 :

I	u_I	$I * \phi_1$
(1)	1	ϕ_1
(T,π)	au	ϕ_2
$(T^2 + T, \pi^3 + 1)$	$\alpha + \tau^3$	ϕ_3
$(T^2, \pi^2 + T + 1)$	$(\alpha+1)+(\alpha+1)\tau+\tau^3$	ϕ_4
$(T, \pi^4 + \pi^2 + \pi + 1)$	$1 + \alpha \tau^2 + \tau^3 + \tau^4$	ϕ_5
$(T+1,\pi^3+\pi+1)$	$1 + (\alpha + 1)\tau + \tau^2 + \tau^3$	ϕ_6
$(T, \pi^2 + 1)$	$(\alpha+1)+\tau+\tau^2$	ϕ_7
$(T^2 + T, \pi^3 + \pi^2 + \pi)$	$\tau + \alpha \tau^2 + \tau^3$	ϕ_8
$(T^2, \pi^2 + \pi + T)$	$(\alpha+1)\tau + (\alpha+1)\tau^2 + \tau^3$	ϕ_9
$(T, \pi^6 + \pi^5 + \pi^4 + \pi)$	$(\alpha + 1)\tau + \tau^2 + \alpha\tau^3 + \tau^4 + \alpha\tau^5 + \tau^6$	ϕ_{10}
$(T, \pi^3 + \pi^2 + 1)$	$(\alpha+1)+\tau+\alpha\tau^2+\tau^3$	ϕ_{11}
$(T^2, \pi + T + 1)$	$\alpha + \alpha \tau + \tau^2$	ϕ_{12}
$(T+1,\pi^5+\pi^4+1)$	$1 + \tau + (\alpha + 1)\tau^2 + (\alpha + 1)\tau^4 + \tau^5$	ϕ_{13}
$(T,\pi^4+\pi^3+\pi)$	$\alpha \tau + \tau^2 + (\alpha + 1)\tau^3 + \tau^4$	ϕ_{14}
$(T, \pi^2 + \pi)$	$(\alpha+1)\tau+\tau^2$	ϕ_{15}

Comparing (polarised) abelian varieties and Drinfeld modules over finite fields k

In both cases we want to describe the isomorphism classes within a fixed isogeny class, determined by π .

We get the best results when the varieties/modules are **ordinary** or when k is the **prime field**.

Comparing (polarised) abelian varieties and Drinfeld modules over finite fields k

In both cases we want to describe the isomorphism classes within a fixed isogeny class, determined by π .

We get the best results when the varieties/modules are **ordinary** or when k is the **prime field**.

Ordinary: canonical liftings exist; fractional End -ideals act on isomorphism classes – via ideal action (DM) or via complex uniformisation/Deligne's equivalence (AV).

Comparing (polarised) abelian varieties and Drinfeld modules over finite fields k

In both cases we want to describe the isomorphism classes within a fixed isogeny class, determined by π .

We get the best results when the varieties/modules are **ordinary** or when k is the **prime field**.

Ordinary: canonical liftings exist; fractional End -ideals act on isomorphism classes — via ideal action (DM) or via complex uniformisation/Deligne's equivalence (AV).

Prime fields: elements with minimal endomorphism ring are key. Centeleghe-Stix map $A_0 \mapsto \operatorname{Hom}(A_0,A_h)$ with $\operatorname{End}(A_h) = \mathbb{Z}[F,V]$. Cf.: If $\phi = I * \phi_w$ with $\operatorname{End}_k(\phi_w) = A[\pi]$ and I a kernel $A[\pi]$ -ideal, then $\operatorname{Hom}_k(\phi,\phi_w) = I$.