

Quick start

Installation and run guide for
CESM 1.0.5
On Snellius

Michael Kliphuis

Introduction

This informal document contains a quick start guide on how to install and run CESM version 1.0.5
on the Dutch national supercomputer Snellius. More information about this CESM version can be
found at: https://www2.cesm.ucar.edu/models/cesm1.0/

Installation

Here comes the installation procedure:

1. Log in on Snellius

2. If you do not already have a directory ~/models/cesm create it by typing:

cd
mkdir -p models/cesm

3. Download the cesm1.0.5 code by typing:

cd ~/models/cesm

svn co https://svn-ccsm-release.cgd.ucar.edu/model_versions/cesm1_0_5 cesm1_0_5

Unfortunately this link does not work anymore. It is unclear where it was moved to at the
ucar.edu site so for now simply copy the code from the shared scratch space of my
mkliphuis login by typing:

cp /scratch-shared/mkliphuis/cesm/cesm1_0_5 .

In the $HOME space we now have all the model code and scripts we need to set up a CESM run.

4. Next create directories in the project space, where we can store the bigger files.

We need one for the input and one for the output files:

(Modify all project space occurences uus20475 below into your own project space!)

cd /projects/0/uus20475
mkdir -p cesm/cesm1_0_5/inputdata
mkdir -p cesm/cesm1_0_5/outputdata

5. Download the inputdata for CESM. As in 3. it is not possible to download the data from the

ucar.edu website. As a workaround copy the data from the shared scratch space of my
mkliphuis login by typing:

cd /projects/0/uus20475/cesm1_0_5/inputdata
cp -r /scratch-shared/mkliphuis/cesm/inputdata/* .

Next modify some configuration files that enable CESM to run on Snellius.

6. The first file is the config_machines.xml

cd ~/models/cesm/cesm1_0_5/scripts/ccsm_utils/Machines

Make sure that the file config_machines.xml has an entry:

(Again modify all project space occurences uus20475 below into your own project space!)

<machine MACH="snellius"

DESC="Surf Lenovo cluster, OS is Centos8 Linux, we use Genoa nodes
with 192 pes/node, batch system is SLURM"

 EXEROOT="/projects/0/uus20475/cesm/cesm1_0_5/outputdata/$CASE"
 OBJROOT="$EXEROOT"
 LIBROOT="$EXEROOT/lib"
 INCROOT="$EXEROOT/lib/include"
 DIN_LOC_ROOT_CSMDATA="/projects/0/uus20475/cesm/cesm1_0_5/inputdata"
 DIN_LOC_ROOT_CLMQIAN="/not/used"
 DOUT_S_ROOT="/not/used"
 DOUT_L_HTAR="FALSE"
 DOUT_L_MSROOT="not/used"
 CCSM_BASELINE="not/used"
 CCSM_CPRNC="/not/used"
 ESMF_LIBDIR="/not/used"
 OS="Linux"
 BATCHQUERY="squeue"
 BATCHSUBMIT="sbatch <"
 GMAKE_J="24"
 MAX_TASKS_PER_NODE="192"
 MPISERIAL_SUPPORT="TRUE"
 PES_PER_NODE="192" />

7. Set other machine specific values like modules and paths to the NetCDF libraries by
modifying file env_mach_specific.snellius

cd ~/models/cesm/cesm1_0_5/scripts/ccsm_utils/Machines

If env_mach_specific.snellius does not exist yet create it by typing:

cp env_machopts.generic_linux_pgi env_mach_specific.snellius

We need to make sure that the model finds the proper NetCDF modules. In this case on
Snellius we load the 2024 modules. The file env_mach_specific.snellius should start with
lines:

set modules
source /etc/profile.d/modules.csh
module purge
module load 2024
module load foss/2024a
module load netCDF-Fortran/4.6.1-gompi-2024a
module load netCDF/4.9.2-gompi-2024a

internal CESM libraries like pio make use of
variable NETCDF_PATH and are implemented such that
they expect that .inc and .mod files
of the NETCDF_C as well as the NETCDF_Fortran library
are in a directory $(NETCDF_PATH)/include
They also expect that the NETCDF_C library libnetcdf.a
as well als NETCDF_Fortran library libnetcdff.a are in
a directory $(NETCDF_PATH)/lib
Make sure the model finds everything by creating your
own directory and put all the files there with a 'ln'

setenv MY_NETCDF $HOME/models/cesm/cesm1_0_5/scripts/my_netcdf

rm -rf $MY_NETCDF

mkdir -p $MY_NETCDF/include
ln -sf $EBROOTNETCDF/include/* $MY_NETCDF/include/
ln -sf $EBROOTNETCDFMINFORTRAN/include/* $MY_NETCDF/include/

mkdir -p $MY_NETCDF/lib
ln -sf $EBROOTNETCDF/lib/* $MY_NETCDF/lib/
ln -sf $EBROOTNETCDFMINFORTRAN/lib/* $MY_NETCDF/lib/

Also other machine specific environment variables can be set here.
This might be needed to set MPI, core file, IO, memory etc.

8. Set compiler and flags by modifying file Macros.snellius

If Macros.snellius does not exist yet create it by typing:

cp Macros.generic_linux_pgi Macros.snellius

We want to use the 2024 modules and the foss/2024a toolchain (see 7.)
Therefore make sure that Macros.snellius file contains the lines (around line 143):

ifeq ($(USE_MPISERIAL),TRUE)
 FC := gfortran
 C := gcc
else
 FC := mpif90
 CC := mpicc
endif

Make sure that the correct NetCDF libraries are used by setting the lines (around line 162):

NETCDF_PATH = $(HOME)/models/cesm/cesm1_0_5/scripts/my_netcdf/
INC_NETCDF := $(NETCDF_PATH)/include
LIB_NETCDF := $(NETCDF_PATH)/lib
MOD_NETCDF := $(NETCDF_PATH)/include

Next set the compiler flags by setting lines (around line 184):

CFLAGS := $(CPPDEFS)
FIXEDFLAGS :=
FREEFLAGS := -FR
FFLAGS := $(CPPDEFS) -O2 -fconvert=big-endian -fallow-invalid-boz –

ffree-line-length-none -fallow-argument-mismatch -fno-
unsafe-math-optimizations -frounding-math -fsignaling-
nans -fbacktrace -DISNAN_INTRINSIC

FFLAGS_NOOPT := $(FFLAGS) -O0
FFLAGS_OPT := -O2
LDFLAGS :=
AR := ar
MOD_SUFFIX := mod
CONFIG_SHELL :=

Next make sure there are lines (around line 230):

ifeq ($(compile_threaded), true)
 FFLAGS += -fopenmp
 FFLAGS_NOOPT += -fopenmp
 CFLAGS += -fopenmp
 LDFLAGS += -fopenmp
endif

And finally some lines to make sure that the internal libraries mct and pio are compiled
correctly (around line 260):

ifeq ($(MODEL),mct)
 #add arguments for mct configure here
 CONFIG_ARGS += CC="$(CC)" CFLAGS="$(CFLAGS)" FC="$(FC)"
 FCFLAGS="$(FFLAGS)" F90="$(FC)" F90FLAGS="$(FFLAGS)" MPIFC="$(FC)"
 INCLUDEPATH="-I$(INC_MPI)"
endif

ifeq ($(MODEL),pio)
 ifneq ($(strip $(PIO_CONFIG_OPTS)),)
 CONFIG_ARGS += $(PIO_CONFIG_OPTS)
 endif
 CONFIG_ARGS += FC="$(FC) $(FFLAGS)" FCFLAGS="$(FFLAGS)
 -DFORTRANUNDERSCORE" MPIF90="$(FC) $(FFLAGS)

 -DFORTRANUNDERSCORE" CC="$(CC)" MPICC="$(CC)"
 MPI_INC="-I$(INC_MPI)" NETCDF_PATH="$(NETCDF_PATH)"

endif

9. Set the batch system values by modifying file mkbatch.snellius

If mkbatch.snellius does not exist yet create it with:

cp mkbatch.generic_linux_pgi mkbatch.snellius

Then make sure that mkbatch.snellius starts with lines:

#! /bin/csh -f

set mach = snellius

We want to use the genoa nodes on Snellius so make sure that the part between EOF1 is:

cat >! $CASEROOT/${CASE}.${mach}.run << EOF1
#!/bin/tcsh -f
#==
GENERIC_USER
This is where the batch submission is set. The above code computes
the total number of tasks, nodes, and other things that can be useful
here. Use PBS, BSUB, or whatever the local environment supports.
#==

Loadleveler directives start with # @

In this job an MPI program is started.

#SBATCH --time=00:30:00
#SBATCH -p genoa
#SBATCH -n ${ntasks}
#SBATCH --job-name=${jobname}

#limit coredumpsize 1000000
#limit stacksize unlimited

EOF1

Also make sure that the part between the second EOF1 is:

cat >> ${CASEROOT}/${CASE}.${MACH}.run << EOF1

Run the model

sleep 25
cd \$RUNDIR
echo "\`date\` -- CSM EXECUTION BEGINS HERE"

#===
GENERIC_USER
Launch the job here. Some samples are commented out below
#===
srun ./ccsm.exe >& ccsm.log.\$LID

wait
echo "\`date\` -- CSM EXECUTION HAS FINISHED"

EOF1

10. Next to NetCDF-C functions the model also needs NetCDF-Fortran functions.
Make sure the Linker finds them while compiling everything into an executable.
You can make sure this will work by typing:

cd $HOME/models/cesm/cesm1_0_5/scripts/ccsm_utils/Build

Then open file Makefile and modify:

ifeq ($(strip $(SLIBS)),)
 SLIBS := -L$(LIB_NETCDF) -lnetcdf
else
 SLIBS += -L$(LIB_NETCDF) -lnetcdf
endif

into:

ifeq ($(strip $(SLIBS)),)
 SLIBS := -L$(LIB_NETCDF) -lnetcdf -lnetcdff
else
 SLIBS += -L$(LIB_NETCDF) -lnetcdf -lnetcdff
endif

OK that’s it! Now the model has been installed and set up such that it can be run on Snellius!

Set up a run case

You can create a default Pre-Industrial (1850) climate run case with 1 x pre-industrial greenhouse
gase concentrations (1pic) on a 1° ocean/ice grid and a 2° atmosphere/land grid (also known as
resolution f19g16) as follows:

1. First go to the directory from where we will set up a case:

cd $HOME/models/cesm/cesm1_0_5/scripts

2. Then type:

./create_newcase -case b.PI_1pic_f19g16 -compset B_1850 -res 1.9x2.5_gx1v6 -mach snellius

3. Now make sure it runs on 768 Genoa cores by typing:

cd b.PI_1pic_f19g16

cp env_mach_pes.xml env_mach_pes.xml_orig

cp ../env_mach_pes_768_cores_genoa.xml env_mach_pes.xml

If you want to run on a different number of cores then modify env_mach_pes.xml
You can ask me (Michael Kliphuis) for guidance. The way these 768 cores are balanced over
the components ocean, atmosphere, land, sea-ice and coupler is very efficient though.

./configure -case

4. Next we need to modify fortran file shr_sys_mod.F90.

In this code there are calls to system() and chdir(). These functions are first
declared as external integer and this gives an error when compiling with GNU.
By simply uncommenting the declarations we overcome this problem.

A quick way to implement this is to type:

cd $HOME/models/cesm/cesm1_0_5/scripts/b.PI_1pic_f19g16
cp ../shr_sys_mod.F90 SourceMods/src.share/

5. Now build the executable ccsm.exe

./b.PI_1pic_f19g16.snellius.clean_build

./b.PI_1pic_f19g16.snellius.build

This will take about 7-8 minutes and the executable will end up in directory:

/projects/0/uus20475/cesm/cesm1_0_5/outputdata/b.PI_1pic_f19g16/run

Start the run case

Now start the run case as follows:

1. cd $HOME/models/cesm/cesm1_0_5/scripts/b.PI_1pic_f19g16

2. In our low resolution (f19g16) runs we typically let the model output a so called history file

every model month containing the monthly mean averages for Temperature, Humidity,
Winds, Salinity etc. We also typically let the model output a restart file every model month.
You tell the model to do this by opening file env_run.xml and set:

<entry id="AVGHIST_OPTION" value="nmonths" />
<entry id="AVGHIST_N" value="1" />

<entry id="REST_OPTION" value="nmonths" />
<entry id="REST_N" value="1" />

3. As a test case let us run the model for 1 model month, do this by opening env_run.xml

again and set:

<entry id="STOP_OPTION" value="nmonths" />
<entry id="STOP_N" value="1" />

4. Make sure that you reserve enough wallclock time for the job by opening file:
b.PI_1pic_f19g16.snellius.run and set:

#SBATCH --time=00:30:00

Or longer, if needed!

5. Finally start the run by typing:

sbatch b.PI_1pic_f19g16.snellius.run

6. The job is then submitted to the queue, you can check if it is running by typing:

squeue
you will see something like:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 8619141 genoa b.PI_1pi mkliphui R 0:05 4 tcn[607,625,633,645]

When it runs ST has value R.

7. If you want to kill the job then type:

scancel 8619141

8. The output will end up in the directory:

/projects/0/uus20475/cesm/cesm1_0_5/outputdata/b.PI_1pic_f19g16/run

9. You can do a quick check on the CESM 1.0.5. output data with the application ‘ncview’

Remember that on Snellius, if you type:

module spider ncview

You can check the versions of the ncview.
After that you find out that you need to type

module load 2023 ncview/2.1.8-gompi-2023a

in order to be able to use the application

It is best to check the output of the ocean.

First type:

cd /projects/0/uus20475/cesm/cesm1_0_5/outputdata/b.PI_1pic_f19g16/run

Then type:

ncview b.PI_1pic_f19g16.pop.h.0001-01.nc

It suffices to check the 3d vars TEMP and SALT which stand for the temperature and salinity
of the ocean.

When you select the TEMP variable you will see the temperature values at the surface of
the ocean (SST) and they should be somewhere in a range between -3° C and 40° C

When you select the SALT variable you will see the salinity values at the surface (SSS) and
they should be in the range between 2 g/kg and 45 g/kg

10. The performance of the low resolution model on 768 cores is now about 48
modelyears/24h. You can check this in the timing file in the run directory:

$HOME/models/cesm/cesm1_0_5/scripts/b.PI_1pic_f19g16/timing

You can also check the performance in the coupler log file in the output directory:

/projects/0/uus20475/cesm/cesm1_0_5/outputdata/b.PI_1pic_f19g16/run

e.g. in file (yours will have a different timestamp): cpl.log.241120-144340

Such a file has lines like:

tStamp_write: model date = 10105 0 wall clock = 2024-11-20 14:45:17 avg dt = 5.09 dt
memory_write: model date = 10105 0 memory = 470.78 MB (highwater) 8234.74 MB (usage)

 Meaning that generating january 5 of year 1 took 5.09 sec and needed 8234.74 MB memory

5.09 sec per day means the model generates (1/5.09) days/sec » 46 modelyears/24h.
This was for a run of only 1 modelmonth. If you run it for a whole modelyear the
performance becomes slightly better, in the order of the earlier mentioned 48
modelyears/24h.

Here follows a note for Wim Rijks of SURF:

This performance is about 33% worse than the performance we had before the
maintenance on Snellius on September 15 this year (2024). I used to get about 72
modelyears/24h and now only 48 modelyears/24h.

At IMAU there are three people who are running CESM on Snellius, these are: me and my
collegues René Wijngaard (r.r.wijngaard@uu.nl) and Casey Patrizio (c.r.patrizio@uu.nl).

Even though we use different versions of CESM we all deal with a similar performance loss.
We would highly appreciate it, if it is possible to get back SBU computerhours. Especially
Casey Patrizio has a problem now since his SBUs are already spent and this is much sooner
than expected because of the slower performance. Can he get the SBUs back even during
your investigation of the problem?

For my own research in which we checked the collapse of the Gulf Stream/AMOC I did
many CESM 1.0.5 runs on 768 Genoa cores with my klipdccp login on Snellius. Most of the
runs were done before September 15 (2024) with performances of about 72
modelyears/24h.

An example of such a run -which was done in May 2024- can be checked by looking at the
timing file:

/home/klipdccp/models/cesm/cesm1_0_5/scripts/b.e10.BRCP4.5_CN.f19_g17.rcp4
.5_future_start_y2100_extended_600_branch.001/timing/
ccsm_timing.b.e10.BRCP4.5_CN.f19_g17.rcp4.5_future_start_y2100_extended_60
0_branch.001.240508-150757

And corresponding coupler log file:

/projects/0/prace_imau/prace_2013081679/cesm1_0_5/b.e10.BRCP4.5_CN.f19_g17
.rcp4.5_future_start_y2100_extended_600_branch.001/run/cpl.log.240505-
164635

mailto:r.r.wijngaard@uu.nl
mailto:c.r.patrizio@uu.nl

