

Quick start guide

running POP
On Snellius

Michael Kliphuis

1. Introduction

This informal document serves as a quick-start guide for running the Parallel Ocean Program (POP)
model on the Dutch national supercomputer Snellius.

The Parallel Ocean Program (POP) is a three-dimensional ocean circulation model primarily designed
for studying the ocean climate system. The model has been developed and supported by researchers
at Los Alamos National Laboratory (LANL).

The version of the model used in this guide is pop2.1alpha_jan2005 and we focus on the low-
resolution (1°) grid, which features a horizontal domain of 320 x 384 grid points (longitude x latitude)
and 40 depth levels.

Section 2 describes how to install the model on Snellius.

In section 3 we show how to start the quasi-equilibrium hysteresis experiment that we did at IMAU in
nov/dec 2024. This experiment begins from a statistical equilibrium solution of a present-day control
simulation. A quasi-equilibrium approach is applied by introducing a slowly varying extra surface
freshwater flux (F_H) in the North Atlantic, between latitudes 20°N and 50°N. This additional flux is
compensated across the rest of the domain (excluding marginal seas). The surface freshwater flux
forcing is then linearly increased at a rate of 3 × 10⁻⁴ Sv year⁻¹. In the experiment we ran it until model
year 1500 where it reached a maximum of F_H = 0.45 Sv.

Section 4 provides instructions for checking the model output and section 5 for how to calculate the
timeseries of the Atlantic Meridional Overturning Circulation (AMOC) at 26°N.

Finally in section 6 we show how to set up and start a new case.

2. Installation

If you are using the ‘dijkbio’ login on Snellius then you can skip this step.
The POP model is already installed there else ..

1. Go to: https://webspace.science.uu.nl/~kliph103/Projects/pop/download

And click on pop.tar. This will download the tar file on your local machine.

2. Copy the pop.tar file to your login on Snellius

Suppose your login is ‘jansen’. Then use the secure copy command scp as follows:

scp pop.tar jansen@snellius.surf.nl:/home/jansen/

3. Log in on Snellius with your login (e.g. jansen) via:

ssh -X jansen@snellius.surf.nl

4. After logging in create a directory models by typing:

mkdir models

5. Move the pop.tar file to models

mv pop.tar models/

6. untar the tar file

tar xvf pop.tar

Now all the needed files are on Snellius.

In the next section we start a quasi-equilibrium hysteresis experiment.

https://webspace.science.uu.nl/~kliph103/Projects/pop/download
mailto:jansen@snellius.surf.nl

3. Start the quasi-equilibrium hysteresis experiment

1. Log in on Snellius

2. Go to the so called ‘scripts’ directory where you will build and start the run

cd ~/models/pop/scripts/gx1v6/pop.B2000.gx1v6.qe_hosing.001

If you are using the dijkbio login you can also simply type:

scr

this is a shortcut (see lines with aliases in ~/.bashrc)

3. In order to do the quasi-equilibrium hysteresis experiment you need to make sure that the
following files are in the current directory:

-rwxr-x--- 1 dijkbio dijkbio 110930 Apr 6 2024 forcing_sfwf.F90
-rwxr-x--- 1 dijkbio dijkbio 44863 Apr 6 2024 forcing_tools.F90
-rwxr-x--- 1 dijkbio dijkbio 65849 Nov 21 01:30 state_mod.F90

Fortran files that are put in the ‘scripts’ directory overrule the default source code
located in: ~/models/pop/code/source

The dates of the first two files should be April 6, 2024, and the date of the last one should be
November 21, 2024. You can check the revision history in the header of each file to see what has
been modified for this 'hosing experiment.'

There are two more fortran files in the directory: domain_size.F90 and
POP_DomainSizeMod.F90. Somehow this is default, please don’t mind them.

4. Then build the executable ./pop by typing:

./case.build.sc

Afterwards check that there is indeed an executable ./pop in the current directory.

5. Next if needed modify the file pop_in. The pop_in file is the primary namelist input file for
configuring your POP simulation. The file contains parameters, options, and initial settings that
control various aspects of the POP simulation, such as grid configuration, physical processes,
numerical methods, and output settings.

For instance via parameters stop_option and stop_count you can control the length of the
simulation and there are parameters like bckgrnd_vdc1 and bckgrnd_vdc2 that control the
background vertical diffusivity for tracers temperature and salinity.

The appendix at the end of this document provides a description of all the parameters in the
pop_in namelist.

6. If needed you can output different monthly and daily variables by modifying files:
movie_contents resp. tavg_contents.

File transport_contents contains the straits and gateways through which mass, heat and
salt transports are calculated.

7. Open file pointer.restart and make sure that you start from the correct restart file

At first start, this should be the restartfile of year 2050 of the present day control simulation i.e.

~/models/pop/inputdata/gx1v6/restart/r.x1_SAMOC_flux.20500101

After each model year a restart file will be generated and the pointer.restart file will
automatically be updated. When you restart the model then the run will continue from this
latest restart file.

8. Finally start the run with the job script pop.slurm

Make sure that you reserve enough wallclock time for the job with line:

#SBATCH --time=120:00:00

With the setting above it is set to 120 hours which is 5 wallclock days and this is the maximum
on Snellius. When the job finishes before the 120 hours it will simply stop
and the amount of time spend on the job will be taken of your budget, not the 120 hours.

You start the job by typing on the commandline:

sbatch pop.slurm

The job is then submitted to the queue, you can check if it is running by typing:

squeue

you will see something like:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 8619141 genoa LR_hyst dijkbio R 0:05 4 tcn[607,625,633,645]

When it runs ST which stands for status has value R. When the job is waiting/pending in the
queue it has value PD.

If you want to kill the job then type:

scancel 8619141

4. Check the output of the model

The output of the simulation will end up in the directories that were set by the pop_in namelist
parameters:

restart_outfile
tavg_outfile
movie_outfile

For the simulation that we described in section 3 at the dijkbio login this is directory:

/projects/0/prjs1105/pop/gx1v6/pop.B2000.gx1v6.qe_hosing.001

On the dijkbio login you can quickly go to this directory by simply typing:

out

this is a shortcut (see lines with aliases in ~/.bashrc)

You can do a quick check on the output data with the application ‘ncview’

Keep in mind that on Snellius, if you type:

module spider ncview

You can check the versions of the application ncview.

Doing this on Snellius will show you that in order to use the last version you need to type:

module load 2023 ncview/2.1.8-gompi-2023a

After this you can make use of ncview

Check for instance the first outputfile of the simulation in section 3 by typing:

ncview t.x1_SAMOC_flux.000101.nc

Check for instance the 3d variables TEMP and SALT which stand for the temperature and salinity of the
ocean.

When you select the TEMP variable you will see the temperature values at the surface of the ocean
(SST) and they should be somewhere in a range between say -1.8° C and 42° C

When you select the SALT variable you will see the salinity values at the surface (SSS) and they should
be in the range between say 2 g/kg and 40 g/kg

5. Calculate a timeseries of the AMOC

The installation contains the python script AMOC_transport.py that calculates a timeseries of the
Atlantic Meridional Overturning Circulation (AMOC) at 26°N.

It is located in directory:

~/models/pop/code/tools/calc_amoc/gx1/pop.B2000.gx1v6.qe_hosing.001

and It calculates the AMOC timeseries for the simulation described in section 3.

On the dijkbio login you can quickly go to this directory by simply typing:

amoc

this is a shortcut (see lines with aliases in ~/.bashrc) which also activates a conda environment that
contains the python libraries for matplotlib and netCDF4

Then do the actual calculation by typing:

python AMOC_transport.py

6. Set up and start a new case

Suppose you want to run a new simulation and you want to call it testrun

1. Log in on Snellius

2. Go to the base of the ‘scripts’ directory by typing:

cd ~/models/pop/scripts

3. Simply copy the simulation from section 3 to testrun by typing:

cp -r pop.B2000.gx1v6.qe_hosing.001 testrun

4. Go to the new directory and remove not needed files

cd testrun
rm slurm* tran.* diag.* build.log*

5. Modify all the appearances of string pop.B2000.gx1v6.qe_hosing.001 into string
testrun.

You can check this by typing:

grep pop.B2000.gx1v6.qe_hosing.001 *

This way you find out that you need to change

In file case_build.sc:

set case = pop.B2000.gx1v6.qe_hosing.001

into:

set case = testrun

Also in file pop_in change:

runid = 'pop.B2000.gx1v6.qe_hosing.001'

restart_outfile = '/projects/0/prjs1105/pop/gx1v6/pop.B2000.gx1v6.qe_hosing.001/restart/r'
tavg_outfile = '/projects/0/prjs1105/pop/gx1v6/pop.B2000.gx1v6.qe_hosing.001/tavg/t'
movie_outfile = '/projects/0/prjs1105/pop/gx1v6/pop.B2000.gx1v6.qe_hosing.001/movie/m'
var_viscosity_outfile = '/projects/0/prjs1105/pop/gx1v6/pop.B2000.gx1v6.qe_hosing.001/var_visc'

into:

runid = ‘testrun’

restart_outfile ='/projects/0/prjs1105/pop/gx1v6/testrun/restart/r'
tavg_outfile ='/projects/0/prjs1105/pop/gx1v6/testrun/tavg/t'
movie_outfile ='/projects/0/prjs1105/pop/gx1v6/testrun/movie/m'
var_viscosity_outfile='/projects/0/prjs1105/pop/gx1v6/testrun/var_visc'

and finally in file pop.slurm change:

cd ~/models/pop/scripts/gx1v6/pop.B2000.gx1v6.qe_hosing.001

 into:

cd ~/models/pop/scripts/gx1v6/testrun

6. From here continue from step 3. in section 3.

Note that if you want to do a default POP run without the additional ‘IMAU hosing’ then
remove the files forcing_sfwf.F90 and forcing_tools.F90 in the
~/models/pop/scripts/gx1v6/testrun directory but do not remove the file
state_mod.F90.

Also remove the subnamelist forcing_imau_nml from the namelist file pop_in

APPENDIX

Description of the parameters in the pop_in namelist file (in red)

&domain_nml
 nprocs_clinic = 3840 < - number of cores to be used for the code, domain is divided over the cores
 nprocs_tropic = 3840 < - number of cores to be used for barotropic solver
 clinic_distribution_type = 'cartesian' < - method for distributing blocks across processors
 tropic_distribution_type = 'cartesian' <- method for distributing blocks across processors
 ew_boundary_type = 'cyclic' < -type of boundary in the logical east-west direction for global domain
 ns_boundary_type = 'tripole' < -type of boundary in the logical north-south direction for global domain

/

&context_nml
/

&io_nml
 num_iotasks = 1 < - number of I/O processes for parallel binary I/O
 lredirect_stdout = .false. < - flag to write stdout to log file
 log_filename = 'pop.out' < - root filename (with path) of optional output log file
 luse_pointer_files = .true. < - flag to turn on use of pointer files
 pointer_filename = 'pointer'
/

&time_manager_nml
 runid = 'clim_closeditf'
 stop_option = 'eom' < - units of time for ‘stop count’, eom = end of month
 stop_count = 1 < - how long in above units to run this segment (use yyyymmdd for date)
 time_mix_opt = 'avgfit' < - method to suppress leapfrog computational mode
 fit_freq = 1 < - when using ‘avgfit’, the intervals per day into which full and half steps must fit
 time_mix_freq = 17 < - requested frequency (in steps) for taking mixing steps
 dt_option = 'steps_per_day' < - units for determining timestep (combined with dt count)
 dt_count = 170 < - number of timesteps in above units to compute timestep
 impcor = .true. < - if .true., the Coriolis terms treated implicitly
 laccel = .false. < - if .true., tracer timesteps increase with depth
 accel_file = 'unknown_accel_file' < - file containing vertical profile of timestep acceleration factor
 dtuxcel = 1.0 < - factor to multiply momentum timestep for different momentum and tracer tsteps

 allow_leapyear = .false. < - use leap years in calendar
 iyear0 = 75 < - year (yyyy) at start of full run sequence
 imonth0 = 1 < - month at start of sequence
 iday0 = 1 < - day at start of sequence
 ihour0 = 0 < - etc.
 iminute0 = 0
 isecond0 = 0
 date_separator = ' ' <- character to separate yyyy mm dd in date (‘ ’ means no separator)
/

&grid_nml
 horiz_grid_opt = 'file' < - read horizontal grid from a file OR create simple lat/lon grid
 horiz_grid_file = ‘path_to_file/grid.3600x2400.fob.da'
 sfc_layer_opt = 'varthick' <- surface layer is variable thickness OR rigid lid OR old free

 surface formulation
 vert_grid_opt = 'file' < - read vertical grid structure from file OR compute vertical grid internally
 vert_grid_file = 'path_to_file/in_depths.42.dat'
 topography_opt = 'file'
 topography_file = 'path_to_file /kmt_noITF.big_endian' < - file containing depth level of each gridpoint
 partial_bottom_cells = .true. < - use partial bottom cells
 bottom_cell_file = 'path_to_file/dzbc_pbc.p1_tripole.s2.0-og.20060315.no_caspian_or_black'
 region_mask_file = 'unknown_region_mask' < - file containing region number for each gridpoint
 topo_smooth = .false. < - if .true., smooth topography using 9-point averaging stencil
 flat_bottom = .false. < - if .true., flat bottom is used
 lremove_points = .false. < - if .true., remove isolated or disconnected ocean points
/

&init_ts_nml
 init_ts_option = 'restart' < - start from restart OR read initial ocean conditions from a file OR

 create conditions from an input mean ocean profile OR create
 initial conditions based on 1992 Levitus mean ocean profile
 computed internally

 init_ts_file = 'path_to_file/r.t0.1_42l_nccs01.00750101_fixedU' <- restart file OR file
 containing 3D potential
 temperature and salinity
 at grid points OR file
 containing depth pro-
 file of potential tempera-
 ture and salinity OR (ig-
 nored for ‘internal’ or
 when luse pointer files
 is enabled)

 init_ts_file_fmt = 'bin' <- data format (binary or netCDF) for input init ts file (‘file’ and ‘restart’
 options only)

/

&diagnostics_nml
 diag_global_freq_opt = 'nday'
 diag_global_freq = 1 < - how often (in above units) to compute and print global diagnostics
 diag_cfl_freq_opt = 'nday'
 diag_cfl_freq = 1 < - how often (in above units) to compute and print CFL stability

 diagnostics
 diag_transp_freq_opt = 'nday'
 diag_transp_freq = 1 < - how often (in above units) to compute and print transport

 diagnostics
 diag_transport_file = 'transport_file_141lines'
 diag_outfile = 'diag'
 diag_transport_outfile = 'transp'
 diag_all_levels = .false. < - if true, tracer mean diagnostics at all vertical levels are output
 cfl_all_levels = .false.
/

&restart_nml
 restart_freq_opt = 'nmonth' < - units of time for ‘restart freq’
 restart_freq = 1 < - number of units between output of restart files
 restart_outfile = 'path_to_file/restart/r' < - root filename (with path prepended, if necessary)

 for restart files (‘runid’ and suf- fixes will be added)
 restart_fmt = 'bin' < - data format (binary or netCDF) for restart output files
 leven_odd_on = .false. < - create alternating even/odd restart outputs

 which over- write each other
 even_odd_freq = 3840 < - frequency (in steps) for even/odd output
 pressure_correction = .false. < - if true, corrects surface pres- sure error due to (possible)

 different timestep. use .false. for exact restart
/

&tavg_nml
 tavg_freq_opt = 'nmonth'
 tavg_freq = 1 < - interval in above units for computation & output of time average history files
 tavg_start_opt = 'nstep'
 tavg_start = 0 < - time in above units after which to start accumulating time average
 tavg_infile = '' < - restart file for partial tavg sums if starting from restart (ignored if luse pointer

 files is enabled)
 tavg_fmt_in = 'bin' <- format for tavg restart file
 tavg_outfile = 'path_to_file /tavg/t'
 tavg_fmt_out = 'bin' < - format for tavg output files
 tavg_contents = 'tavg_contents' < - file name for input file containing names of fields
 requested for tavg output
/

&history_nml
 history_freq_opt = 'never' < - this makes snapshot history files possible, we usually do not need

 this, we want monthly mean history files so it’s set to never
 history_freq = 100000
 history_outfile = 'unknown_history'
 history_fmt = 'nc'
 history_contents = 'sample_history_contents'
/

&movie_nml
 movie_freq_opt = 'nday'
 movie_freq = 1 < - number of units (movie_freq_opt) between output of movie files
 movie_outfile = ‘path_to_file'/movie/m'
 movie_fmt = 'bin'
 movie_contents = 'movie_contents' < - file containing names of fields requested for movie output
/

&solvers
 solverChoice = 'ChronGear'
 convergenceCriterion = 1.e-12 < - convergence criterion: |δX/X| < convergenceCriterion
 maxIterations = 1000 < - upper limit on number of iterations allowed
 convergenceCheckFreq = 25 < - check for convergence every convergenceCheckFreq iterations
 preconditionerChoice = 'diagonal'
 preconditionerFile = 'unknownPrecondFile' < - file containing preconditioner coefficients for solver

&vertical_mix_nml
 vmix_choice = 'kpp' < - method of computing vertical diffusion
 aidif = 1.0 < - time-centering parameter for implicit vertical mixing; use of the default

 value [1.0] is recommended
 bottom_drag = 1.0e-3 < - (dimensionless) coefficient used in quadratic bottom drag formula
 implicit_vertical_mix = .true.
 convection_type = 'diffusion' < - convection treated by adjustment or by large mixing

 coefficients
 nconvad = 2 < - number of passes through the convective adjustment algorithm
 convect_diff = 1000.0 < - tracer mixing coefficient to use with diffusion option
 convect_visc = 1000.0 < - momentum mixing coefficient to use with diffusion option
 bottom_heat_flx = 0.0 < - constant (geothermal) heat flux (W/m2) to apply to bottom layers
 bottom_heat_flx_depth = 100000.00 < - depth (cm) below which to apply bottom heat flux
/

&vmix_const_nml < - constant vertical mixing namelist
 const_vvc = 0.25 < - vertical viscosity coefficient (momentum mixing) (cm2/s)
 const_vdc = 0.25 < - vertical diffusivity coefficient (tracer mixing) (cm2/s)
/

&vmix_rich_nml < - Richardson-number vertical mixing namelist
 bckgrnd_vvc = 1.0 < - background vertical viscosity (cm2/s)
 bckgrnd_vdc = 0.1 < - background vertical diffusivity (cm2/s)
 rich_mix = 50.0 < - coefficient for Richardson-number function
/

&vmix_kpp_nml
 bckgrnd_vdc1 = 0.55 < - base background vertical diffusivity (cm2 /s)
 bckgrnd_vdc2 = 0.303615 < - variation in background vertical diffusivity (cm2 /s)
 bckgrnd_vdc_dpth= 2500.0e2 < - depth (cm) at which background vertical diffusivity is vdc1
 bckgrnd_vdc_linv= 4.5e-5 < - inverse of the length scale (1/L in cm−1) over which diffusivity

 transition takes place
 Prandtl = 10.0 < - (unitless) ratio of background vertical viscosity and diffusivity
 rich_mix = 50.0 < - coefficient for Richardson-number function
 lrich = .true. < - use Richardson-number for interior mixing
 ldbl_diff = .true. < - add double-diffusive parameterization
 lshort_wave = .true. < - use penetrative shortwave forcing
 lcheckekmo = .false. < - check whether boundary layer exceeds Ekman or Monin-Obukhov

 limit
 num_v_smooth_Ri = 1 < - number of passes to smooth Richardson number
/

&advect_nml
 tadvect_ctype = 'centered' < - centered differences OR 3rd-order up- winding
/

&hmix_nml
 hmix_momentum_choice = 'del4' < - method for horizontal mixing of momentum (Laplacian,

 biharmonic or anisotropic)
 hmix_tracer_choice = 'del4' < - method for horizontal mixing of tracers (Laplacian, biharmonic

 or Gent-McWilliams)
/

&hmix_del2u_nml
 lauto_hmix = .true. < - computes mixing coefficient based on resolution
 lvariable_hmix = .false. < - scales mixing coeff by grid cell area
 am = 1.e8 < - momentum mixing coefficient (cm2/s)
/

&hmix_del2t_nml
 lauto_hmix = .true. < - computes mixing coefficient based on resolution
 lvariable_hmix = .false. < - scales mixing coeff by grid cell area
 ah = 1.e8 < - tracer mixing coefficient (cm2/s)
/

&hmix_del4u_nml
 lauto_hmix = .false. < - compute mixing coefficient based on resolution
 lvariable_hmix = .true. < - scale mixing coeff by grid cell area
 am = -27.0e17 < - momentum mixing coeff (cm2/s)
/

&hmix_del4t_nml
 lauto_hmix = .false. < - compute mixing coefficient based on resolution
 lvariable_hmix = .true. < - scale mixing coeff by grid cell area
 ah = -3.0e17 < -tracer mixing coefficient (cm2/s)
/

&hmix_gm_nml < - Gent-McWilliams horizontal mixing namelist
/

&hmix_aniso_nml < - anisotropic viscosity namelist
/

&state_nml <- equation of state namelist
 state_choice = 'mwjf' <- McDougall et al. eos OR Jackett and McDougall eos
 OR polynomial fit to UNESCO eos OR linear eos
 state_file = 'internal' < - compute polynomial coefficients inter- nally OR read from file filename
 state_range_opt = 'enforce' < - ignore (ignore) when T,S outside valid polynomial range OR

 check (check) and report OR compute (enforce) eos as if T,S
 were in valid range (but don’t alter T,S)

 state_range_freq = 100000 < - frequency (steps) for checking T,S range
/

&baroclinic_nml

reset_to_freezing = .true. < - flag to prevent very cold water.
 if .true. and Tsurf(i,j) < Tfreezing, Tsurf(i,j) is reset to Tfreezing = -1.8°C

/

&ice_nml
 ice_freq_opt = 'never' < - frequency units for computing ice formation
 ice_freq = 100000 < - frequency in above units for com- puting ice formation
 kmxice = 1 < - compute ice formation above this vertical level
/

&pressure_grad_nml
 lpressure_avg = .true. < - use pressure averaging to increase time step
 lbouss_correct = .false. < - applies depth-dependent factor to correct for assumed constant density
/

&topostress_nml
 ltopostress = .false. < - true if topographic stress enabled
 nsmooth_topo = 0 < - number of passes to smooth topography
/

&xdisplay_nml
 lxdisplay = .false. < - if .true., enable x-display
 nstep_xdisplay = 1 < - frequency (in steps) for updating x-display
/

&forcing_ws_nml < - windstress forcing namelist
 ws_data_type = 'monthly' < - type or periodicity of wind stress forcing
 ws_data_inc = 1.e20 < - increment (in hours) between forcing times if ws data type=‘n-hour’
 ws_interp_freq = 'every-timestep' < - how often to temporally interpolate wind stress data to

 current time
 ws_interp_type = 'linear' < - type of temporal interpolation for wind stress data
 ws_interp_inc = 1.e20 < - increment (in hours) be- tween interpolation times if

 ws interp freq = ‘n-hour’
ws_filename =
'/work/e24/sar00059/sar00059/itamoc/scripts/prod_run3_0.5Sv/files_mat/forcing/ws.o_n_avg.mon' <-

< - name of file containing wind stress, or root of filenames if
 ws data type=‘n-hour’

 ws_file_fmt = 'bin' < - format of wind stress file
 ws_data_renorm(1) = 10. < - renormalization constants for the components in the wind stress

 forcing file
 ws_data_renorm(2) = 10.
/

&forcing_shf_nml < - surface heat flux forcing namelist
 shf_formulation = 'normal-year' < - surface heat flux formulation
 shf_data_type = 'monthly' < - type or periodicity of surface heat flux forcing
 shf_data_inc = 1.e20 < - increment (in hours) between forcing times if shf data type=‘n-hour’
 shf_interp_freq = 'every-timestep' < - how often to temporally interpolate surface heat flux

 data to current time
 shf_interp_type = 'linear' < - type of temporal interpolation for surface heat flux data
 shf_interp_inc = 1.e20 < - increment (in hours) be- tween interpolation times if

 shf interp freq = ‘n-hour’
 shf_restore_tau = 1.e20 < - restoring timescale (days) if type restoring
 shf_weak_restore = 0.0 < - restoring flux for weak restor- ing in bulk-NCEP
 shf_strong_restore = 15.8 < - restoring flux for strong restoring in bulk-NCEP
 shf_filename =
'/work/e24/sar00059/sar00059/itamoc/scripts/run_clim_closeditf/files_mat/forcing/shf.normal_year+Hurrell.monthly'
 < - name of file containing surface heat flux data, or root of

 filenames if shf data type=‘n-hour’
 shf_file_fmt = 'bin' < - format (binary or netCDF) of shf file
 shf_data_renorm(3) = 1. < - renormalization constants for the components in the surface heat

 flux forcing file

 shf_data_renorm(4) = 1.
&forcing_sfwf_nml < - surface fresh water flux forcing namelist
 sfwf_formulation = 'bulk-NCEP' < - surface fresh water flux formulation. Bulk-NCEP means:

 calculate fluxes based on atmospheric state variables and
 radiation similar to a fully-coupled model (and using bulk
 flux formulations extracted from the NCAR flux coupler)

 sfwf_data_type = 'monthly' < - type or periodicity of surface fresh water flux forcing
 sfwf_data_inc = 1.e20 < - increment (hours) between forcing times if sfwf data type=‘n-hour’
 sfwf_interp_freq = 'every-timestep' < - how often to temporally interpolate surface fresh

 water flux data to current time
 sfwf_interp_type = 'linear' < - type of temporal interpolation for surface fresh water flux data
 sfwf_interp_inc = 1.e20 < - increment (hours) between interpolation times if

 sfwf interp freq = ‘n-hour’
 sfwf_restore_tau = 1.e20 < - restoring timescale (days) if restoring
 sfwf_weak_restore = 0.009 < - restoring flux for weak restoring in bulk-NCEP
 sfwf_strong_restore = 0.11 < - restoring flux for strong restoring in bulk-NCEP
 sfwf_filename =
'/work/e24/sar00059/sar00059/itamoc/scripts/run_clim_closeditf/files_mat/forcing/sfwf.CORE+runoff.monthly
' < - name of file containing surface fresh water flux data, or root of

 filenames if sfwf data type=‘n-hour’
 sfwf_file_fmt = 'bin' < - format (binary or netCDF) for sfwf file
 sfwf_data_renorm(1) = 0.001 < - renormalization constants for components in

 sfwf forcing file
 sfwf_data_renorm(2) = 1.
 ladjust_precip = .true. < - adjust precipitation to balance water budget
 lfw_as_salt_flx = .true. < - treat fresh water flux as virtual salt flux

 when using varthick sfc layer
 runoff = .true.
/

&forcing_pt_interior_nml < - interior potential temperature forcing namelist
 pt_interior_formulation = 'restoring' < - interior pt formulation
 pt_interior_data_type = 'none' < - type or periodicity of interior pt forcing
 pt_interior_data_inc = 1.e20 < - increment (hours) between forcing times if data type ‘n-hour’
 pt_interior_interp_freq = 'never' < - how often to temporally interpolate interior pt data to

 current time
 pt_interior_interp_type = 'nearest' < - type of temporal interpolation for interior pt data
 pt_interior_interp_inc = 1.e20 < - increment (hours) between interpolation times if

 interp freq = ‘n-hour’
 pt_interior_restore_tau = 1.e20 < - restoring timescale (days) if restoring
 pt_interior_filename = 'unknown-pt_interior' < - file containing interior pt data, or root of

 filenames if data type=‘n-hour’
 pt_interior_file_fmt = 'bin' < - file format (binary or netCDF)
 pt_interior_data_renorm = 1. < - renormalization constants for components in interior pt forcing file
 pt_interior_restore_max_level = 0 < - maximum level for interior pt restoring
 pt_interior_variable_restore = .false. < - enable variable interior pt restoring
 pt_interior_restore_filename = 'unknown-pt_interior_restore' < - name of file containing

 variable interior pt restoring data
 pt_interior_restore_file_fmt = 'bin' < - file format (binary or netCDF)
/

&forcing_s_interior_nml < - interior salinity restoring namelist
 s_interior_formulation = 'restoring' < - forcing formulation
 s_interior_data_type = 'none' < - type or periodicity of interior salinity forcing
 s_interior_data_inc = 1.e20 < - increment (hours) between forcing times if data type ‘n-hour’
 s_interior_interp_freq = 'never' < - how often to temporally interpolate interior S data to

 current time
 s_interior_interp_type = 'nearest' < - type of temporal interpolation for interior S data
 s_interior_interp_inc = 1.e20 < - increment (in hours) between interpolation times if

 interp freq ‘n-hour’
 s_interior_restore_tau = 1.e20 < - restoring timescale (days) if restoring
 s_interior_filename = 'unknown-s_interior' < - name of file containing interior S data, or

 root of filenames if data type ‘n- hour’
 s_interior_file_fmt = 'bin' < - format (binary or netCDF) of s interior file
 s_interior_data_renorm = 1. < - renormalization constants for components in interior S forcing file
 s_interior_restore_max_level = 0 < - maximum level for inte- rior S restoring
 s_interior_variable_restore = .false. < - enable variable interior S restoring
 s_interior_restore_filename = 'unknown-s_interior_restore' < - name of file containing variable interior S

 restoring data
 s_interior_restore_file_fmt = 'bin'
/

&forcing_ap_nml < - atmospheric pressure forcing namelist
 ap_data_type = 'none' < - type or periodicity of atmospheric forcing forcing
 ap_data_inc = 1.e20 < - increment (in hours) between forcing times if ap data type=’n-hour’
 ap_interp_freq = 'never'
 ap_interp_type = 'nearest'
 ap_interp_inc = 1.e20
 ap_filename = 'unknown-ap'
 ap_file_fmt = 'bin'
 ap_data_renorm = 1.
/

The subnamelist forcing_imau_nml below was added to enable additional surface freshwater flux (hosing).
If one wants to do a default POP run then remove this subnamelist from the pop_in namelist file.
The three files set by imau_filename, imau_filename_next and imau_filename_prev provide an additional surface
freshwater flux forcing (hosing) in the form of a climatology (12 timesteps, one for each month) for the current year, the
next year, and the previous year, respectively. Linear interpolation is used to compute the additional forcing for specific
days. For days in January, data from December of the previous year is required,
while for days in December, data from January of the next year is needed. If the additional forcing is constant across all
model years, then imau_filename, imau_filename_next, and imau_filename_prev will all have the same value.
Interpolation will still be performed, even though it is not strictly necessary.

&forcing_imau_nml
 imau_data_type = 'monthly'
 imau_filename = '/home/dijkbio/models/pop/inputdata/gx1v6/sfwf_monthly/SFWF_gx1v6_imau.nc'
 imau_filename_next = '/home/dijkbio/models/pop/inputdata/gx1v6/sfwf_monthly/SFWF_gx1v6_imau.nc'
 imau_filename_prev = '/home/dijkbio/models/pop/inputdata/gx1v6/sfwf_monthly/SFWF_gx1v6_imau.nc'
/

&coupled_nml
 coupled_freq_opt = 'never' <- unit of time for coupled freq
 coupled_freq = 100000
/

&tidal_nml
/

&passive_tracers_on_nml
 dye_on = .false.
 iage_on = .false.
/

&dye_nml
 init_dye_option = 'restart'
 init_dye_init_file = 'same_as_TS'
 dye_region_file = 'blablabla'
 dye_region_file_fmt = 'bin'
 tracer_init_ext(1)%mod_varname = 'DYE'
 tracer_init_ext(1)%filename = 'unknown'
 tracer_init_ext(1)%default_val = 0.0
 dye_tadvect_ctype = 'lw_lim'
/

&sw_absorption_nml
/

&float_nml
/

For more information about parameters that are not described here check the POP user guide at:
https://ncar.github.io/POP/doc/build/html/users_guide/index.html

