
Performance of POP
on Snellius

20 jan 2024

Michael Kliphuis

Introduction

We tested the performance of the Parallel Ocean Program (POP) model (version
pop2.1alpha_jan2005) on the dutch national supercomputer Snellius.
We tested on the so called gx1v6 grid representing a low resolution 1° grid and on the so
called tx0.1v2 grid representing a high resolution 0.1° grid. This (informal) document shows
the test results.

Each test was done with a simulation representing ‘present day’ i.e. initialized with a present
day temperature and salt field (from NCAR) and forced with present day atmospheric wind
speeds, surface heat fluxes and surface freshwater fluxes from the so called CORE-I
climatology dataset [Large and Yeager , 2004].

Performance test results

All tests were compiled with the 2022 software stack and foss toolchain with GCC compiler
which generally proves best for running on AMD cores. In order to be able to generate
NetCDF output we made use of the NetCDF C and Fortran libraries and for optimization we
used the OpenBLAS and Scalapack libraries. More concrete we used the following Snellius
modules:

2022
foss/2022a
netCDF/4.9.0-gompi-2022a
netCDF-Fortran/4.6.0-gompi-2022a
OpenBLAS/0.3.20-GCC-11.3.0
ScaLAPACK/2.2.0-gompi-2022a-fb

Optimal settings

In order to get the most optimal setup in terms of compiler flags, type of nodes, usage of
nodes, distribution of gridpoint blocks over the cores etc. we started with a high resolution
0.1° base test on 1280 ‘rome’ cores with the default settings. We then tested new settings
which we kept when there was an improvement of performance. The results are shown in
the table below.

Case
name

 #
cores

block
size

settings performance
(years/24h)

comments

base 1280
rome

90x75 5 model days
output to /projects

pop_in settings:

restart_freq_opt = ‘nmonth’
tavg_freq_opt = 'nmonth'
movie_freq_opt = 'nday'
movie_fmt = 'nc'
tavg_fmt_out = 'bin'
clinic(tropic)_distribution_type=cartesian

1.19 high resolution
0.1° base test

now find settings
that improve
performance

ptest1 1280
rome

90x75 base test settings together with environment
variables (in pop.slurm):

OMPI_MCA_fcoll="two_phase"
OMPI_MCA_io_ompio_bytes_per_agg="512MB"

1.21 Not significantly
faster, leave them
out

ptest2 1152
genoa

100x75 base test settings together with:

running on genoa node with 192 cores per node
(instead of 128 on rome node)

1.75 Tip from Wim Rijks
from SURF, genoa
nodes are faster,
now better
performance on
less cores!

ptest3 1152
genoa

100x75 ptest2 settings now for:

32 model days (instead of 5)

2.97 Initialization phase
takes long so 5
days is way too
short

ptest4 1152
genoa

100x75 ptest3 settings together with compile flags:

fexternal-blas –funroll-loops -flto -
march=native –lopenblas
-lscalapack

3.13 Architecture and
link time
optimizations and
there are many
matrix
multiplications so
BLAS and LAPACK
libraries work well

ptest5 1152
genoa

100x75 ptest4 settings but now with pop_in settings:

clinic(tropic)_distribution_type=spacecurve

3.32 spacecurve
distribution works
better for high res,
not for low res!

ptest6 1152
genoa

100x150 ptest5 settings but now use only half of the nodes

pop_in settings:

nprocs_clinic(tropic) = 576

pop.slurm settings:

#SBATCH --nodes 6
#SBATCH --ntasks-per-node 96
#SBATCH --cpus-per-task 2
#SBATCH --distribution=block:cyclic:block

4.02 Tip from Marco
Verdicchio from
SURF. I got
SBATCH settings
from Gijs van den
Oord . Especially
scaling is much
better when using
half of the nodes
(see later figures)

Table 1: Settings that deliver the best performance for a high resolution 0.1° POP base test

When we started using Snellius, the performance of our POP model was very disappointing
and even worse than on the previous supercomputer Cartesius. With the help of Wim Rijks
and Marco Verdicchio of SURF and Gijs van den Oord of the Netherlands eScience Center we
were able to improve the performance significantly. Using only half of the genoa nodes of
Snellius seems to improve the scaling (with respect to Cartesius) as well.

Table 2 and figure 1 below show the test results of the low resolution POP:

Performance low resolution POP

Performance low resolution gx1v6 (1°)

cores

performance
(modelyears/24h)

cost
corehours/

1000
modelyears

wallclock days to
finish 1000
modelyears

remarks

192 128.7 35.804 7.8 Runs were all done with the so
called ‘cartesian’ distribution.
Because there are only 384 x
320 horizontal gridpoints the
model does not scale very well
anymore when using more
than 768 cores (relatively
much communication).

384 205.5 44.847 4.9
768 285.1 64.651 3.5
1536 307.1 120.039 3.3

Table 2: performance low resolution POP

Figure 1 performance low resolution POP

Performance high resolution POP

Performance high resolution tx0.1v2 (0.1°)

cores

performance
(modelyears/24h)

cost
corehours/

1000 modelyears

wallclock
days to

finish 1000
modelyears

remarks

1152 4.02 6.877.612 249 Runs were all done with
the so called ‘spacecurve’
distribution. The model
has 3600x2400 horizontal
gridpoints and scales
reasonable well

2304 7.64 7.237.696 131
4608 11.41 9.692.550 88
9216 17.06 12.965.064 59

13824 19.42 17.084.243 52

Table 3: performance high resolution POP

Figure 2 performance high resolution POP

