Performance of POP on Snellius

20 jan 2024 Michael Kliphuis

Introduction

We tested the performance of the Parallel Ocean Program (POP) model (version pop2.1alpha_jan2005) on the dutch national supercomputer Snellius. We tested on the so called gx1v6 grid representing a low resolution 1° grid and on the so called tx0.1v2 grid representing a high resolution 0.1° grid. This (informal) document shows the test results.

Each test was done with a simulation representing 'present day' i.e. initialized with a present day temperature and salt field (from NCAR) and forced with present day atmospheric wind speeds, surface heat fluxes and surface freshwater fluxes from the so called CORE-I climatology dataset [Large and Yeager , 2004].

Performance test results

All tests were compiled with the 2022 software stack and foss toolchain with GCC compiler which generally proves best for running on AMD cores. In order to be able to generate NetCDF output we made use of the NetCDF C and Fortran libraries and for optimization we used the OpenBLAS and Scalapack libraries. More concrete we used the following Snellius modules:

2022 foss/2022a netCDF/4.9.0-gompi-2022a netCDF-Fortran/4.6.0-gompi-2022a OpenBLAS/0.3.20-GCC-11.3.0 ScaLAPACK/2.2.0-gompi-2022a-fb

Optimal settings

In order to get the most optimal setup in terms of compiler flags, type of nodes, usage of nodes, distribution of gridpoint blocks over the cores etc. we started with a high resolution 0.1° base test on 1280 'rome' cores with the default settings. We then tested new settings which we kept when there was an improvement of performance. The results are shown in the table below.

Case	#	block	settings	performance	comments
name	cores	size		(years/24h)	
base	1280 rome	90x75	5 model days output to /projects	1.19	high resolution 0.1° base test
			<pre>pop_in settings: restart_freq_opt = 'nmonth' tavg_freq_opt = 'nmonth' movie_freq_opt = 'nday' movie_fmt = 'nc'</pre>		now find settings that improve performance
			<pre>tavg_fmt_out = 'bin' clinic(tropic)_distribution_type=cartesian</pre>		
ptest1	1280 rome	90x75	base test settings together with environment variables (in pop.slurm):	1.21	Not significantly faster, leave them
			OMPI_MCA_fcoll="two_phase" OMPI_MCA_io_ompio_bytes_per_agg="512MB"		
ptest2	1152 genoa	100x75	base test settings together with:	1.75	Tip from Wim Rijks from SURF, genoa
			running on genoa node with 192 cores per node (instead of 128 on rome node)		nodes are faster, now better performance on less cores!
ptest3	1152	100x75	ptest2 settings now for:	2.97	Initialization phase
	genoa		32 model days (instead of 5)		days is way too short
ptest4	1152 genoa	100x75	ptest3 settings together with compile flags: fexternal-blas -funroll-loops -flto - march=native -lopenblas -lscalapack	3.13	Architecture and link time optimizations and there are many matrix multiplications so BLAS and LAPACK libraries work well
ptest5	1152 genoa	100x75	<pre>ptest4 settings but now with pop_in settings: clinic(tropic)_distribution_type=spacecurve</pre>	3.32	spacecurve distribution works better for high res, not for low res!
ptest6	1152	100x150	ptest5 settings but now use only half of the nodes	4.02	Tip from Marco
	genoa		pop_in settings:		SURF. I got
			<pre>nprocs_clinic(tropic) = 576</pre>		from Gijs van den
			pop.slurm settings:		Oord . Especially scaling is much
			<pre>#SBATCHnodes 6 #SBATCHntasks-per-node 96 #SBATCHcpus-per-task 2 #SBATCHdistribution=block:cyclic:block</pre>		better when using half of the nodes (see later figures)
					. 0/

Table 1: Settings that deliver the best performance for a high resolution 0.1° POP base test

When we started using Snellius, the performance of our POP model was very disappointing and even worse than on the previous supercomputer Cartesius. With the help of Wim Rijks and Marco Verdicchio of SURF and Gijs van den Oord of the Netherlands eScience Center we were able to improve the performance significantly. Using only half of the genoa nodes of Snellius seems to improve the scaling (with respect to Cartesius) as well.

Table 2 and figure 1 below show the test results of the low resolution POP:

Performance low resolution POP

Performance low resolution gx1v6 (1°)										
# cores	performance (modelyears/24h)	cost corehours/ 1000 modelyears	wallclock days to finish 1000 modelyears	remarks						
192	128.7	35.804	7.8	Runs were all done with the so						
384	205.5	44.847	4.9	called 'cartesian' distribution.						
768	285.1	64.651	3.5	Because there are only 384 x						
1536	307.1	120.039	3.3	320 horizontal gridpoints the model does not scale very well anymore when using more than 768 cores (relatively much communication).						

Table 2: performance low resolution POP

Figure 1 performance low resolution POP

Performance high resolution POP

Performance high resolution tx0.1v2 (0.1°)										
#	performance	cost	wallclock	remarks						
cores	(modelyears/24h)	corehours/	days to							
		1000 modelyears	finish 1000							
			modelyears							
1152	4.02	6.877.612	249	Runs were all done with						
2304	7.64	7.237.696	131	the so called 'spacecurve'						
4608	11.41	9.692.550	88	distribution. The model						
9216	17.06	12.965.064	59	has 3600x2400 horizontal						
13824	19.42	17.084.243	52	gridpoints and scales reasonable well						

Figure 2 performance high resolution POP