Solution of Exercise 6.23.

(i) This follows directly from Exercise 1.15 and the observation that the mappings Ψ and Φ are of class C^{∞}.
(ii) The equality

$$
\Psi_{i}(y)=\left(1-\sum_{1 \leq k \leq n} y_{k}^{2}\right)^{-\frac{1}{2}} y_{i}
$$

implies

$$
D_{j} \Psi_{i}(y)=y_{j}\left(1-\sum_{1 \leq k \leq n} y_{k}^{2}\right)^{-\frac{3}{2}} y_{i}+\left(1-\sum_{1 \leq k \leq n} y_{k}^{2}\right)^{-\frac{1}{2}} \delta_{i j}=\left(1-\|y\|^{2}\right)^{-\frac{1}{2}}\left(\Psi_{i}(y) \Psi_{j}(y)+\delta_{i j}\right) .
$$

(iii) On the basis of the multiplicative properties of the determinant and the fact that $\operatorname{det} A A^{t}=1$, which is valid for $A \in \mathbf{O}(n, \mathbf{R})$, we see

$$
\begin{aligned}
\operatorname{det}\left(I+x x^{t}\right) & =\operatorname{det} A \operatorname{det}\left(I+x x^{t}\right) \operatorname{det} A^{t}=\operatorname{det}\left(A A^{t}+A x x^{t} A^{t}\right)=\operatorname{det}\left(I+(A x)(A x)^{t}\right) \\
& =\operatorname{det}\left(I+z z^{t}\right)
\end{aligned}
$$

In particular, we may select $A \in \mathbf{O}(n, \mathbf{R})$ such that $z=A x=\|x\| e_{1}$, where e_{1} is the first standard basis vector in \mathbf{R}^{n}. Then

$$
I+z z^{t}=\left(\begin{array}{cccc}
1+\|x\|^{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Combination of the two equalities above now leads to the desired result.
(iv) Application of the parts (ii) and (iii) gives

$$
\begin{aligned}
\operatorname{det} D \Psi(y) & =\left(1-\|y\|^{2}\right)^{-\frac{n}{2}} \operatorname{det}\left(I+\Psi(y) \Psi(y)^{t}\right)=\left(1-\|y\|^{2}\right)^{-\frac{n}{2}}\left(1+\frac{\|(y)\|^{2}}{1-\|y\|^{2}}\right) \\
& =\frac{1}{\left(1-\|y\|^{2}\right)^{\frac{n}{2}+1}}
\end{aligned}
$$

Note that (\star) in the solution to Exercise 1.15 , with f replaced by Φ and the roles of x and y reversed, implies

$$
1+\|x\|^{2}=1+\frac{\|y\|^{2}}{1-\|y\|^{2}}=\frac{1}{1-\|y\|^{2}}
$$

if $x=\Psi(y)$; and according to Example 2.4.9 this gives

$$
\operatorname{det} D \Phi(x)=\frac{1}{\operatorname{det} D \Psi(y)}=\left(1-\|y\|^{2}\right)^{\frac{n}{2}+1}=\frac{1}{\left(1+\|x\|^{2}\right)^{\frac{n}{2}+1}}
$$

The identities for the integrals now follow by the Change of Variables Theorem 6.6.1.

