
Solution of Exercise 6.49.

(i) Introducing polar coordinates x = r(cos α, sinα) in R2 as in Example 6.6.4, we get |x1 + ix2| =
r|eiα| = r and dx = r dr dα; therefore we have by the same example∫
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|D1f(x) + iD2f(x)| dx

≤
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(|D1f(r cos α, r sinα)|+ |D2f(r cos α, r sinα)|) dr dα < ∞,

in view of the compactness of the support of f .

(ii) The desired equality follows from the following identities:
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(iii) In view of Example 6.6.4 once more, the Fundamental Theorem 2.10.1 of Integral Calculus on R
and the compactness of the support of f successively, we find∫
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(r, α) dα dr =
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−f(0) dα = −2πf(0).

(iv) Obviously the function α 7→ f̃(r, α) = f(r cos α, r sinα) is 2π-periodic. As a consequence (?)
follows from part (iii) and∫ π

−π

∂f̃

∂α
(r, α) dα = f̃(r, π)− f̃(r,−π) = 0.
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