Solution of Exercise 6.49.

(i) Introducing polar coordinates 2 = r(cos a, sin «) in R? as in Example 6.6.4, we get |21 +izz| =
r|e’®| = r and dx = r dr do; therefore we have by the same example
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in view of the compactness of the support of f.

(i) The desired equality follows from the following identities:
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(iii) In view of Example 6.6.4 once more, the Fundamental Theorem 2.10.1 of Integral Calculus on R
and the compactness of the support of f successively, we find
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(iv) Obviously the function o — f(r, a) = f(rcosa,rsina) is 2m-periodic. As a consequence (x)
follows from part (iii) and

af = = B
9o —(r,a)da = f(r,m) — f(r,—m) = 0.



