Solution of Exercise 6.59. In view of Corollary 6.4 .3 on writing an iterated integral as a twodimensional integral we obtain

$$
\Gamma(x) \Gamma(1-x)=\int_{\mathbf{R}_{+}} e^{-t_{1}} t_{1}^{x-1} d t_{1} \int_{\mathbf{R}_{+}} e^{-t_{2}} t_{2}^{-x} d t_{2}=\int_{\mathbf{R}_{+}^{2}} e^{-\left(t_{1}+t_{2}\right)}\left(\frac{t_{1}}{t_{2}}\right)^{x} \frac{1}{t_{1}} d t
$$

According to Exercise 3.1 we have the diffeomorphism $\Psi: \mathbf{R}_{+}^{2} \rightarrow \mathbf{R}_{+}^{2}$ satisfying

$$
s=\Psi(t)=\left(t_{1}+t_{2}, \frac{t_{1}}{t_{2}}\right) \quad \text { and } \quad d s=|\operatorname{det} D \Psi(t)| d t=\frac{t_{1}+t_{2}}{t_{2}^{2}} d t
$$

Application of the Change of Variables Theorem 6.6.1 and Corollary 6.4.3 once more now gives

$$
\begin{aligned}
\Gamma(x) \Gamma(1-x) & =\int_{\mathbf{R}_{+}^{2}} e^{-\left(t_{1}+t_{2}\right)}\left(\frac{t_{1}}{t_{2}}\right)^{x-1} \frac{1}{\frac{t_{1}}{t_{2}}+1} \frac{t_{1}+t_{2}}{t_{2}^{2}} d t=\int_{\mathbf{R}_{+}^{2}} e^{-s_{1}} \frac{s_{2}^{x-1}}{s_{2}+1} d s=\int_{\mathbf{R}_{+}} \frac{s_{2}^{x-1}}{s_{2}+1} d s_{2} \\
& =\frac{\pi}{\sin \pi x}
\end{aligned}
$$

where the last equality follows from Exercise 0.15.(iv).

