Solution of Exercise 7.15.

(i) Note

$$x \in V_1 \cap V_2 \quad \iff \quad \left(x_1^2 + x_2^2 + x_3^2 = 1 \quad \text{and} \quad (x_1 - \frac{1}{2})^2 + x_2^2 = \frac{1}{4}\right).$$

The former equation gives the existence of $\alpha \in [-\pi, \pi]$ such that $x_1^2 + x_2^2 = \cos^2 \alpha$ and $x_3 = \sin \alpha$. Subtraction of $x_1^2 + x_2^2 = \cos^2 \alpha$ and $(x_1 - \frac{1}{2})^2 + x_2^2 = \frac{1}{4}$ implies

$$x_1 - \frac{1}{4} = \cos^2 \alpha - \frac{1}{4}$$
, so $x_1 = \cos^2 \alpha$ and $x_2^2 = \cos^2 \alpha - \cos^4 \alpha = \cos^2 \alpha \sin^2 \alpha$.

(ii) Obviously, ϕ is a C^{∞} mapping. First we show that the restrictions of ϕ are injective. Indeed, suppose $\phi(\alpha) = \phi(\tilde{\alpha})$. Consideration of the last two coordinates then gives $\sin \alpha = \sin \tilde{\alpha}$ and $\cos \alpha = \cos \tilde{\alpha}$, that is, $\alpha = \tilde{\alpha}$, unless $\sin \alpha = \sin \tilde{\alpha} = 0$. But the latter condition means $\alpha \in \{-\pi, 0, \pi\}$. Next, we have

$$D\phi(\alpha) = (-2\cos\alpha\sin\alpha, -\sin^2\alpha + \cos^2\alpha, \cos\alpha) = (-\sin 2\alpha, \cos 2\alpha, \cos \alpha),$$

which proves that ϕ is an immersion everywhere. Finally, the continuity of ϕ^{-1} restricted to its image follows as in Example 3.1.1. Hence the restrictions of ϕ satisfy the conditions of being an embedding as given in Definition 4.2.4.

(iii) Part (ii) implies

$$||D\phi(\alpha)||^2 = 1 + \cos^2 \alpha = 2 - \sin^2 \alpha = 2(1 - \frac{1}{2}\sin^2 \alpha).$$

Now note that the right-hand side is invariant under $\alpha \mapsto -\alpha$ and $\alpha \mapsto \pi - \alpha$. According to Formula (7.16) the length of $V_1 \cap V_2$ equals

$$4\int_0^{\frac{\pi}{2}} \|D\phi(\alpha)\|\,d\alpha.$$

(iv) The equality of the orthogonal projection of V_1 to D is obvious, while the second equality for D follows from the following. The boundary of D equals the circle $(y_1 - \frac{1}{2})^2 + y_2^2 = \frac{1}{4}$, which allows the parametrization

$$y_1 = \frac{1}{2} + \frac{1}{2}\cos\beta = \frac{1}{2}(1 + \cos\beta) = \cos^2\frac{\beta}{2}, \qquad y_2 = \frac{1}{2}\sin\beta = \cos\frac{\beta}{2}\sin\frac{\beta}{2},$$

where $-\pi < \beta \leq \pi$. The desired formula now is obtained by writing $\frac{\beta}{2} = \alpha$. Note that the parametrization $\alpha \mapsto \cos \alpha(\cos \alpha, \sin \alpha)$ of the boundary of D coincides with the projection of $\phi(\alpha)$ onto the plane $\{x \in \mathbf{R}^3 \mid x_3 = 0\}$. Furthermore, the description of L follows from the equality $L = (D \times \mathbf{R}) \cap \{(y, x_3) \in \mathbf{R}^3 \mid |x_3| \leq \sqrt{1 - \|y\|^2}\}$, since L is the intersection of the solid cylinder and the unit ball.

(v) On the basis of Theorem 6.4.5 the description of L in part (iv) immediately leads to

$$\text{vol}_3(L) = 2 \int_D \sqrt{1 - \|y\|^2} \, dy = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^{\cos\alpha} r \sqrt{1 - r^2} \, dr \, d\alpha$$
$$= 4 \int_0^{\frac{\pi}{2}} \left[-\frac{1}{3} (1 - r^2)^{\frac{3}{2}} \right]_0^{\cos\alpha} \, d\alpha = \frac{4}{3} \int_0^{\frac{\pi}{2}} (1 - \sin^3 \alpha) \, d\alpha = \frac{2}{3} \pi - \frac{4}{3} \frac{2}{3}.$$

Here, the second equality follows by introducing polar coordinates in D and the hint has been used in the last equality.

(vi) As in Example 7.4.10 one sees

$$\operatorname{area}_{2}(V_{1}) = 2 \int_{\operatorname{projection}(V_{1})} \frac{1}{\sqrt{1 - \|y\|^{2}}} \, dy = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\cos \alpha} \frac{r}{\sqrt{1 - r^{2}}} \, dr \, d\alpha$$
$$= 4 \int_{0}^{\frac{\pi}{2}} \left[-\sqrt{1 - r^{2}} \right]_{0}^{\cos \alpha} \, d\alpha = 4 \int_{0}^{\frac{\pi}{2}} (1 - \sin \alpha) \, d\alpha = 2\pi + 4 \left[\cos \alpha \right]_{0}^{\frac{\pi}{2}}$$
$$= 2\pi - 4.$$

(vii) From the parametrization of $V_1 \cap V_2$ in part (i) and that of the boundary of D as given in part (iv) we see that $V_2 \cap \mathbf{R}^3_+$ is parametrized by

$$\chi: (\alpha, x_3) \mapsto \begin{pmatrix} \cos^2 \alpha \\ \cos \alpha \sin \alpha \\ x_3 \end{pmatrix} \qquad (0 < \alpha < \frac{\pi}{2}, \ 0 < x_3 < \sin \alpha).$$

Accordingly, with the partial derivatives being evaluated at (α, x_3) ,

$$\frac{\partial \chi}{\partial \alpha} = \begin{pmatrix} -2\sin\alpha\cos\alpha\\ \cos^2\alpha - \sin^2\alpha\\ 0 \end{pmatrix}, \qquad \frac{\partial \chi}{\partial x_3} = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}, \qquad \frac{\partial \chi}{\partial \alpha} \times \frac{\partial \chi}{\partial x_3} = \begin{pmatrix} \cos 2\alpha\\ \sin 2\alpha\\ 0 \end{pmatrix}.$$

In particular, $\left\|\frac{\partial \chi}{\partial \alpha} \times \frac{\partial \chi}{\partial x_3}(\alpha, x_3)\right\| = 1$. Furthermore, V_2 being invariant under the reflections $x_j \mapsto -x_j$, for $j \in \{2, 3\}$, we have by symmetry that $\operatorname{area}_2(V_2) = 4 \operatorname{area}_2(V_2 \cap \mathbf{R}^3_+)$; and so

area₂(V₂) =
$$4 \int_0^{\frac{\pi}{2}} \int_0^{\sin \alpha} dx_3 \, d\alpha = 4 \int_0^{\frac{\pi}{2}} \sin \alpha \, d\alpha = 4 \left[-\cos \alpha \right]_0^{\frac{\pi}{2}} = 4.$$