Solution of Exercise 7.15.

(i) Note

$$
x \in V_{1} \cap V_{2} \quad \Longleftrightarrow \quad\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 \quad \text { and } \quad\left(x_{1}-\frac{1}{2}\right)^{2}+x_{2}^{2}=\frac{1}{4}\right)
$$

The former equation gives the existence of $\alpha \in]-\pi, \pi]$ such that $x_{1}^{2}+x_{2}^{2}=\cos ^{2} \alpha$ and $x_{3}=$ $\sin \alpha$. Subtraction of $x_{1}^{2}+x_{2}^{2}=\cos ^{2} \alpha$ and $\left(x_{1}-\frac{1}{2}\right)^{2}+x_{2}^{2}=\frac{1}{4}$ implies
$x_{1}-\frac{1}{4}=\cos ^{2} \alpha-\frac{1}{4}, \quad$ so $\quad x_{1}=\cos ^{2} \alpha \quad$ and $\quad x_{2}^{2}=\cos ^{2} \alpha-\cos ^{4} \alpha=\cos ^{2} \alpha \sin ^{2} \alpha$.
(ii) Obviously, ϕ is a C^{∞} mapping. First we show that the restrictions of ϕ are injective. Indeed, suppose $\phi(\alpha)=\phi(\widetilde{\alpha})$. Consideration of the last two coordinates then gives $\sin \alpha=\sin \widetilde{\alpha}$ and $\cos \alpha=\cos \widetilde{\alpha}$, that is, $\alpha=\widetilde{\alpha}$, unless $\sin \alpha=\sin \widetilde{\alpha}=0$. But the latter condition means $\alpha \in\{-\pi, 0, \pi\}$. Next, we have

$$
D \phi(\alpha)=\left(-2 \cos \alpha \sin \alpha,-\sin ^{2} \alpha+\cos ^{2} \alpha, \cos \alpha\right)=(-\sin 2 \alpha, \cos 2 \alpha, \cos \alpha)
$$

which proves that ϕ is an immersion everywhere. Finally, the continuity of ϕ^{-1} restricted to its image follows as in Example 3.1.1. Hence the restrictions of ϕ satisfy the conditions of being an embedding as given in Definition 4.2.4.
(iii) Part (ii) implies

$$
\|D \phi(\alpha)\|^{2}=1+\cos ^{2} \alpha=2-\sin ^{2} \alpha=2\left(1-\frac{1}{2} \sin ^{2} \alpha\right)
$$

Now note that the right-hand side is invariant under $\alpha \mapsto-\alpha$ and $\alpha \mapsto \pi-\alpha$. According to Formula (7.16) the length of $V_{1} \cap V_{2}$ equals

$$
4 \int_{0}^{\frac{\pi}{2}}\|D \phi(\alpha)\| d \alpha
$$

(iv) The equality of the orthogonal projection of V_{1} to D is obvious, while the second equality for D follows from the following. The boundary of D equals the circle $\left(y_{1}-\frac{1}{2}\right)^{2}+y_{2}^{2}=\frac{1}{4}$, which allows the parametrization

$$
y_{1}=\frac{1}{2}+\frac{1}{2} \cos \beta=\frac{1}{2}(1+\cos \beta)=\cos ^{2} \frac{\beta}{2}, \quad y_{2}=\frac{1}{2} \sin \beta=\cos \frac{\beta}{2} \sin \frac{\beta}{2},
$$

where $-\pi<\beta \leq \pi$. The desired formula now is obtained by writing $\frac{\beta}{2}=\alpha$. Note that the parametrization $\alpha \mapsto \cos \alpha(\cos \alpha, \sin \alpha)$ of the boundary of D coincides with the projection of $\phi(\alpha)$ onto the plane $\left\{x \in \mathbf{R}^{3} \mid x_{3}=0\right\}$. Furthermore, the description of L follows from the equality $L=(D \times \mathbf{R}) \cap\left\{\left(y, x_{3}\right) \in \mathbf{R}^{3}| | x_{3} \mid \leq \sqrt{1-\|y\|^{2}}\right\}$, since L is the intersection of the solid cylinder and the unit ball.
(v) On the basis of Theorem 6.4.5 the description of L in part (iv) immediately leads to

$$
\begin{aligned}
\operatorname{vol}_{3}(L) & =2 \int_{D} \sqrt{1-\|y\|^{2}} d y=2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\cos \alpha} r \sqrt{1-r^{2}} d r d \alpha \\
& =4 \int_{0}^{\frac{\pi}{2}}\left[-\frac{1}{3}\left(1-r^{2}\right)^{\frac{3}{2}}\right]_{0}^{\cos \alpha} d \alpha=\frac{4}{3} \int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{3} \alpha\right) d \alpha=\frac{2}{3} \pi-\frac{4}{3} \frac{2}{3} .
\end{aligned}
$$

Here, the second equality follows by introducing polar coordinates in D and the hint has been used in the last equality.
(vi) As in Example 7.4.10 one sees

$$
\begin{aligned}
\operatorname{area}_{2}\left(V_{1}\right) & =2 \int_{\text {projection }\left(V_{1}\right)} \frac{1}{\sqrt{1-\|y\|^{2}}} d y=2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\cos \alpha} \frac{r}{\sqrt{1-r^{2}}} d r d \alpha \\
& =4 \int_{0}^{\frac{\pi}{2}}\left[-\sqrt{1-r^{2}}\right]_{0}^{\cos \alpha} d \alpha=4 \int_{0}^{\frac{\pi}{2}}(1-\sin \alpha) d \alpha=2 \pi+4[\cos \alpha]_{0}^{\frac{\pi}{2}} \\
& =2 \pi-4
\end{aligned}
$$

(vii) From the parametrization of $V_{1} \cap V_{2}$ in part (i) and that of the boundary of D as given in part (iv) we see that $V_{2} \cap \mathbf{R}_{+}^{3}$ is parametrized by

$$
\chi:\left(\alpha, x_{3}\right) \mapsto\left(\begin{array}{c}
\cos ^{2} \alpha \\
\cos \alpha \sin \alpha \\
x_{3}
\end{array}\right) \quad\left(0<\alpha<\frac{\pi}{2}, 0<x_{3}<\sin \alpha\right)
$$

Accordingly, with the partial derivatives being evaluated at $\left(\alpha, x_{3}\right)$,

$$
\frac{\partial \chi}{\partial \alpha}=\left(\begin{array}{c}
-2 \sin \alpha \cos \alpha \\
\cos ^{2} \alpha-\sin ^{2} \alpha \\
0
\end{array}\right), \quad \frac{\partial \chi}{\partial x_{3}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \frac{\partial \chi}{\partial \alpha} \times \frac{\partial \chi}{\partial x_{3}}=\left(\begin{array}{c}
\cos 2 \alpha \\
\sin 2 \alpha \\
0
\end{array}\right)
$$

In particular, $\left\|\frac{\partial \chi}{\partial \alpha} \times \frac{\partial \chi}{\partial x_{3}}\left(\alpha, x_{3}\right)\right\|=1$. Furthermore, V_{2} being invariant under the reflections $x_{j} \mapsto-x_{j}$, for $j \in\{2,3\}$, we have by symmetry that $\operatorname{area}_{2}\left(V_{2}\right)=4 \operatorname{area}_{2}\left(V_{2} \cap \mathbf{R}_{+}^{3}\right)$; and so

$$
\operatorname{area}_{2}\left(V_{2}\right)=4 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin \alpha} d x_{3} d \alpha=4 \int_{0}^{\frac{\pi}{2}} \sin \alpha d \alpha=4[-\cos \alpha]_{0}^{\frac{\pi}{2}}=4
$$

