
Solution of Exercise 7.17.

(i) We have
Dφ(s, t) =

(
tγ′(s) γ(s)

)
∈ Lin(R2,R3).

This is a matrix of rank 2, for all (s, t) ∈ D, since γ(s) and tγ′(s) are linearly independent in this
case. Therefore the kernel of Dφ(s, t) is of dimension 0 and thus Dφ(s, t) is injective. It follows
that φ is a C1 immersion.

(ii) Using the symbol t with two different meanings, we obtain the following element in Mat(2,R):

Dφ(s, t)tDφ(s, t) =
(
tγ′(s)
γ(s)

)(
tγ′(s) γ(s)

)
=

(
t2〈γ′(s), γ′(s)〉 t〈γ′(s), γ(s)〉

t〈γ(s), γ′(s)〉 〈γ(s), γ(s)〉

)
.

On the basis of Formula (5.3) in the case of n = 3 this implies

det (Dφ(s, t)tDφ(s, t)) = t2‖γ′(s)× γ(s)‖2.

It follows that

area(C) =
∫

I×] 0,1 [
t‖γ(s)× γ′(s)‖ d(s, t) =

∫ 1

0
t dt

∫
I
‖γ(s)× γ′(s)‖ ds

=
1
2

∫
I
‖γ(s)× γ′(s)‖ ds.

(iii) From the Fundamental Theorem 2.10.1 of Integral Calculus on R and the assumption on γ we
obtain, for s ∈ I ,

α′(s) =
‖γ(s)× γ′(s)‖

‖γ(s)‖2
> 0.

It follows that α : I → R is monotonically increasing and injective, as a consequence. Therefore
α : I → ] 0, α(l) [ is a bijection, and so is β : ] 0, α(l) [ → I . Observe that β is a C1 function.
Next, we verify that Υ is injective. Indeed, suppose Υ(s, t) = Υ(s̃, t̃). By projection onto the
second factors we see that α(s) = α(s̃), and so s = s̃. But this implies t = t̃ too. By definition
Υ is surjective and therefore it is bijective. Now suppose Υ(s, t) = (r, α) ∈ V , then s = β(α)
and so

t =
r

‖γ(s)‖
=

r

r(α)
.

Since all mappings involved are of classC1 on their domains, so is the inverse of Υ. Furthermore,

υ = Ψ ◦Υ ◦ φ−1 : tγ(s) 7→ (s, t) 7→ (t‖γ(s), α(s)) 7→ t‖γ(s)‖ ( cosα(s), sinα(s))

is a bijection R3 ⊃ C → υ(C) ⊂ R2 since all the composing maps are bijections. Obviously
the mapping t 7→ φ(s, t) has a ruling on C as its image, which then gets mapped by υ to a line
segment in R2. Both line segments are of equal length since ‖( cosα(s), sinα(s))‖ = 1, for all
s.

(iv) A natural parametrization of υ(C) ⊂ R2 is given by

ψ = υ ◦ φ : D → υ(C) satisfying ψ(s, t) = t‖γ(s)‖
(

cosα(s)
sinα(s)

)
.
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The evaluation of area (υ(C)) requires the value of |detDψ(s, t)|. Therefore we compute

∂ψ

∂s
(s, t) = ∗

(
cosα(s)
sinα(s)

)
+ t‖γ(s)‖α′(s)

(
− sinα(s)

cosα(s)

)

= ∗
(

cosα(s)
sinα(s)

)
+ t

‖γ(s)× γ′(s)‖
‖γ(s)‖

(
− sinα(s)

cosα(s)

)
,

∂ψ

∂t
(s, t) = ‖γ(s)‖

(
cosα(s)
sinα(s)

)
,

where there will be no need for further specification of ∗. In fact,

detDψ(s, t) = t‖γ(s)× γ′(s)‖|
∣∣∣∣ − sinα(s) cosα(s)

cosα(s) sinα(s)

∣∣∣∣ = −t‖γ(s)× γ′(s)‖|

and therefore we obtain the same value as in part (ii)

area (υ(C)) =
∫

I×] 0,1 [
t‖γ(s)× γ′(s)‖ d(s, t) =

1
2

∫
I
‖γ(s)× γ′(s)‖ ds.

Finally, note that

r(cosα, sinα) = υ(γ(s)) = ‖γ(s)‖ ( cosα(s), sinα(s)) ∈ υ(C)

implies α = α(s), so s = β(α) and therefore

r = ‖γ(s)‖ = ‖γ ◦ β(α)‖ = r(α).

Accoerdingly the formula in the penultimate display in Example 6.6.4 takes the form

area (υ(C)) =
1
2

∫ α(l)

0
r(α)2 dα.
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