Solution of Exercise 7.17.

(i) We have

$$
D \phi(s, t)=\left(t \gamma^{\prime}(s) \quad \gamma(s)\right) \in \operatorname{Lin}\left(\mathbf{R}^{2}, \mathbf{R}^{3}\right)
$$

This is a matrix of rank 2 , for all $(s, t) \in D$, since $\gamma(s)$ and $t \gamma^{\prime}(s)$ are linearly independent in this case. Therefore the kernel of $D \phi(s, t)$ is of dimension 0 and thus $D \phi(s, t)$ is injective. It follows that ϕ is a C^{1} immersion.
(ii) Using the symbol t with two different meanings, we obtain the following element in $\operatorname{Mat}(2, \mathbf{R})$:

$$
D \phi(s, t)^{t} D \phi(s, t)=\binom{t \gamma^{\prime}(s)}{\gamma(s)}\left(\begin{array}{cc}
t \gamma^{\prime}(s) & \gamma(s)
\end{array}\right)=\left(\begin{array}{cc}
t^{2}\left\langle\gamma^{\prime}(s), \gamma^{\prime}(s)\right\rangle & t\left\langle\gamma^{\prime}(s), \gamma(s)\right\rangle \\
t\left\langle\gamma(s), \gamma^{\prime}(s)\right\rangle & \langle\gamma(s), \gamma(s)\rangle
\end{array}\right)
$$

On the basis of Formula (5.3) in the case of $n=3$ this implies

$$
\operatorname{det}\left(D \phi(s, t)^{t} D \phi(s, t)\right)=t^{2}\left\|\gamma^{\prime}(s) \times \gamma(s)\right\|^{2}
$$

It follows that

$$
\begin{aligned}
\operatorname{area}(C) & =\int_{I \times] 0,1[} t\left\|\gamma(s) \times \gamma^{\prime}(s)\right\| d(s, t)=\int_{0}^{1} t d t \int_{I}\left\|\gamma(s) \times \gamma^{\prime}(s)\right\| d s \\
& =\frac{1}{2} \int_{I}\left\|\gamma(s) \times \gamma^{\prime}(s)\right\| d s
\end{aligned}
$$

(iii) From the Fundamental Theorem 2.10.1 of Integral Calculus on \mathbf{R} and the assumption on γ we obtain, for $s \in I$,

$$
\alpha^{\prime}(s)=\frac{\left\|\gamma(s) \times \gamma^{\prime}(s)\right\|}{\|\gamma(s)\|^{2}}>0
$$

It follows that $\alpha: I \rightarrow \mathbf{R}$ is monotonically increasing and injective, as a consequence. Therefore $\alpha: I \rightarrow] 0, \alpha(l)$ [is a bijection, and so is $\beta:] 0, \alpha(l)\left[\rightarrow I\right.$. Observe that β is a C^{1} function. Next, we verify that Υ is injective. Indeed, suppose $\Upsilon(s, t)=\Upsilon(\widetilde{s}, \widetilde{t})$. By projection onto the second factors we see that $\alpha(s)=\alpha(\widetilde{s})$, and so $s=\widetilde{s}$. But this implies $t=\widetilde{t}$ too. By definition Υ is surjective and therefore it is bijective. Now suppose $\Upsilon(s, t)=(r, \alpha) \in V$, then $s=\beta(\alpha)$ and so

$$
t=\frac{r}{\|\gamma(s)\|}=\frac{r}{r(\alpha)}
$$

Since all mappings involved are of class C^{1} on their domains, so is the inverse of Υ. Furthermore,

$$
v=\Psi \circ \Upsilon \circ \phi^{-1}: t \gamma(s) \mapsto(s, t) \mapsto(t \| \gamma(s), \alpha(s)) \mapsto t\|\gamma(s)\|(\cos \alpha(s), \sin \alpha(s))
$$

is a bijection $\mathbf{R}^{3} \supset C \rightarrow v(C) \subset \mathbf{R}^{2}$ since all the composing maps are bijections. Obviously the mapping $t \mapsto \phi(s, t)$ has a ruling on C as its image, which then gets mapped by v to a line segment in \mathbf{R}^{2}. Both line segments are of equal length since $\|(\cos \alpha(s), \sin \alpha(s))\|=1$, for all s.
(iv) A natural parametrization of $v(C) \subset \mathbf{R}^{2}$ is given by

$$
\psi=v \circ \phi: D \rightarrow v(C) \quad \text { satisfying } \quad \psi(s, t)=t\|\gamma(s)\|\binom{\cos \alpha(s)}{\sin \alpha(s)}
$$

The evaluation of area $(v(C))$ requires the value of $|\operatorname{det} D \psi(s, t)|$. Therefore we compute

$$
\begin{aligned}
\frac{\partial \psi}{\partial s}(s, t) & =*\binom{\cos \alpha(s)}{\sin \alpha(s)}+t\|\gamma(s)\| \alpha^{\prime}(s)\binom{-\sin \alpha(s)}{\cos \alpha(s)} \\
& =*\binom{\cos \alpha(s)}{\sin \alpha(s)}+t \frac{\left\|\gamma(s) \times \gamma^{\prime}(s)\right\|}{\|\gamma(s)\|}\binom{-\sin \alpha(s)}{\cos \alpha(s)} \\
\frac{\partial \psi}{\partial t}(s, t) & =\|\gamma(s)\|\binom{\cos \alpha(s)}{\sin \alpha(s)}
\end{aligned}
$$

where there will be no need for further specification of $*$. In fact,

$$
\operatorname{det} D \psi(s, t)=t\left\|\gamma(s) \times \gamma^{\prime}(s)\right\|\left\|\left|\begin{array}{rr}
-\sin \alpha(s) & \cos \alpha(s) \\
\cos \alpha(s) & \sin \alpha(s)
\end{array}\right|=-t\right\| \gamma(s) \times \gamma^{\prime}(s)\| \|
$$

and therefore we obtain the same value as in part (ii)

$$
\operatorname{area}(v(C))=\int_{I \times] 0,1[} t\left\|\gamma(s) \times \gamma^{\prime}(s)\right\| d(s, t)=\frac{1}{2} \int_{I}\left\|\gamma(s) \times \gamma^{\prime}(s)\right\| d s
$$

Finally, note that

$$
r(\cos \alpha, \sin \alpha)=v(\gamma(s))=\|\gamma(s)\|(\cos \alpha(s), \sin \alpha(s)) \in v(C)
$$

implies $\alpha=\alpha(s)$, so $s=\beta(\alpha)$ and therefore

$$
r=\|\gamma(s)\|=\|\gamma \circ \beta(\alpha)\|=r(\alpha)
$$

Accoerdingly the formula in the penultimate display in Example 6.6.4 takes the form

$$
\operatorname{area}(v(C))=\frac{1}{2} \int_{0}^{\alpha(l)} r(\alpha)^{2} d \alpha
$$

