Solution of Exercise 7.17.

(i) We have

$$D\phi(s,t) = (t\gamma'(s) \ \gamma(s)) \in \operatorname{Lin}(\mathbf{R}^2,\mathbf{R}^3).$$

This is a matrix of rank 2, for all $(s,t) \in D$, since $\gamma(s)$ and $t\gamma'(s)$ are linearly independent in this case. Therefore the kernel of $D\phi(s,t)$ is of dimension 0 and thus $D\phi(s,t)$ is injective. It follows that ϕ is a C^1 immersion.

(ii) Using the symbol t with two different meanings, we obtain the following element in $Mat(2, \mathbf{R})$:

$$D\phi(s,t)^{t} D\phi(s,t) = \begin{pmatrix} t\gamma'(s) \\ \gamma(s) \end{pmatrix} \begin{pmatrix} t\gamma'(s) & \gamma(s) \end{pmatrix} = \begin{pmatrix} t^{2} \langle \gamma'(s), \gamma'(s) \rangle & t \langle \gamma'(s), \gamma(s) \rangle \\ t \langle \gamma(s), \gamma'(s) \rangle & \langle \gamma(s), \gamma(s) \rangle \end{pmatrix}.$$

On the basis of Formula (5.3) in the case of n = 3 this implies

$$\det \left(D\phi(s,t)^t \, D\phi(s,t) \right) = t^2 \|\gamma'(s) \times \gamma(s)\|^2.$$

It follows that

$$\operatorname{area}(C) = \int_{I \times [0,1[} t \| \gamma(s) \times \gamma'(s) \| d(s,t) = \int_0^1 t \, dt \, \int_I \| \gamma(s) \times \gamma'(s) \| \, ds$$
$$= \frac{1}{2} \int_I \| \gamma(s) \times \gamma'(s) \| \, ds.$$

(iii) From the Fundamental Theorem 2.10.1 of Integral Calculus on \mathbf{R} and the assumption on γ we obtain, for $s \in I$,

$$\alpha'(s) = \frac{\|\gamma(s) \times \gamma'(s)\|}{\|\gamma(s)\|^2} > 0.$$

It follows that $\alpha : I \to \mathbb{R}$ is monotonically increasing and injective, as a consequence. Therefore $\alpha : I \to]0, \alpha(l)[$ is a bijection, and so is $\beta :]0, \alpha(l)[\to I$. Observe that β is a C^1 function. Next, we verify that Υ is injective. Indeed, suppose $\Upsilon(s,t) = \Upsilon(\tilde{s},\tilde{t})$. By projection onto the second factors we see that $\alpha(s) = \alpha(\tilde{s})$, and so $s = \tilde{s}$. But this implies $t = \tilde{t}$ too. By definition Υ is surjective and therefore it is bijective. Now suppose $\Upsilon(s,t) = (r,\alpha) \in V$, then $s = \beta(\alpha)$ and so

$$t = \frac{r}{\|\gamma(s)\|} = \frac{r}{r(\alpha)}$$

Since all mappings involved are of class C^1 on their domains, so is the inverse of Υ . Furthermore,

$$v = \Psi \circ \Upsilon \circ \phi^{-1} : t\gamma(s) \mapsto (s,t) \mapsto (t \| \gamma(s), \alpha(s)) \mapsto t \| \gamma(s) \| (\cos \alpha(s), \sin \alpha(s))$$

is a bijection $\mathbf{R}^3 \supset C \rightarrow v(C) \subset \mathbf{R}^2$ since all the composing maps are bijections. Obviously the mapping $t \mapsto \phi(s,t)$ has a ruling on C as its image, which then gets mapped by v to a line segment in \mathbf{R}^2 . Both line segments are of equal length since $\|(\cos \alpha(s), \sin \alpha(s))\| = 1$, for all s.

(iv) A natural parametrization of $v(C) \subset \mathbf{R}^2$ is given by

$$\psi = \upsilon \circ \phi : D \to \upsilon(C)$$
 satisfying $\psi(s,t) = t \|\gamma(s)\| \begin{pmatrix} \cos \alpha(s) \\ \sin \alpha(s) \end{pmatrix}$.

The evaluation of area (v(C)) requires the value of $|\det D\psi(s,t)|$. Therefore we compute

$$\begin{aligned} \frac{\partial \psi}{\partial s}(s,t) &= * \left(\begin{array}{c} \cos \alpha(s) \\ \sin \alpha(s) \end{array} \right) + t \|\gamma(s)\|\alpha'(s) \left(\begin{array}{c} -\sin \alpha(s) \\ \cos \alpha(s) \end{array} \right) \\ &= * \left(\begin{array}{c} \cos \alpha(s) \\ \sin \alpha(s) \end{array} \right) + t \frac{\|\gamma(s) \times \gamma'(s)\|}{\|\gamma(s)\|} \left(\begin{array}{c} -\sin \alpha(s) \\ \cos \alpha(s) \end{array} \right), \\ \\ \frac{\partial \psi}{\partial t}(s,t) &= \|\gamma(s)\| \left(\begin{array}{c} \cos \alpha(s) \\ \sin \alpha(s) \end{array} \right), \end{aligned}$$

where there will be no need for further specification of *. In fact,

$$\det D\psi(s,t) = t \|\gamma(s) \times \gamma'(s)\| \left| \begin{array}{cc} -\sin\alpha(s) & \cos\alpha(s) \\ \cos\alpha(s) & \sin\alpha(s) \end{array} \right| = -t \|\gamma(s) \times \gamma'(s)\| \right|$$

and therefore we obtain the same value as in part (ii)

$$\operatorname{area}\left(\upsilon(C)\right) = \int_{I\times]0,1[} t \|\gamma(s) \times \gamma'(s)\| \, d(s,t) = \frac{1}{2} \int_{I} \|\gamma(s) \times \gamma'(s)\| \, ds.$$

Finally, note that

$$r(\cos\alpha, \sin\alpha) = v(\gamma(s)) = \|\gamma(s)\| (\cos\alpha(s), \sin\alpha(s)) \in v(C)$$

implies $\alpha = \alpha(s)$, so $s = \beta(\alpha)$ and therefore

$$r = \|\gamma(s)\| = \|\gamma \circ \beta(\alpha)\| = r(\alpha).$$

Accourdingly the formula in the penultimate display in Example 6.6.4 takes the form

area
$$(v(C)) = \frac{1}{2} \int_0^{\alpha(l)} r(\alpha)^2 d\alpha.$$