Solution of Exercise 7.19.

(i) According to the Fundamental Theorem 2.10.1 of Integral Calculus on \mathbf{R} we have, for $x \in] 0,1$],

$$
f^{\prime}(x)=-\frac{\sqrt{1-x^{2}}}{x}, \quad \text { so } \quad \sqrt{1+f^{\prime}(x)^{2}}=\sqrt{1+\frac{1-x^{2}}{x^{2}}}=\frac{1}{x}
$$

On the basis of Formula (7.17) the desired length then equals

$$
\int_{x}^{1} \frac{1}{x} d x=-\log x=\log \left(\frac{1}{x}\right)
$$

(ii) This is immediate from $\lim _{x \downarrow 0} \log \left(\frac{1}{x}\right)=\infty$.
(iii) Consider the parametrization ϕ of the pseudosphere from Exercise 5.51.(v). The pseudosphere is a C^{∞} manifold at all of its points with the exception of the points belonging to the "rim", which consists of points of the form $\phi\left(\frac{\pi}{2}, t\right)$, for $-\pi<t \leq \pi$. It follows from the formulae in that part that the outer normal to the pseudosphere at $\phi(s, t)$ is given by

$$
-\psi(t,-s), \quad \text { where } \quad \psi(t, s)=(\cos t \cos s, \sin t \cos s, \sin s)
$$

is the usual parametrization of the unit sphere S^{2}. As a consequence, the Euclidean density ω_{ϕ} associated with ϕ satisfies $\omega_{\phi}(s, t)=|\cos s|$, for $0<s<\frac{\pi}{2}$ or $\frac{\pi}{2}<s<\pi$. In turns this implies that the mapping which assigns to a point of the pseudosphere not belonging to the rim its outer normal at that point (in other words, the Gauss mapping from Section 5.7) gives an areapreserving diffeomorphism between the pseudosphere minus its rim and an open dense subset of S^{2}. This explains why the pseudosphere has the same area 4π as the sphere. Alternatively, by mere computation, one finds for the area of the pseudosphere

$$
\int_{-\pi}^{\pi} \int_{0}^{\pi}|\cos s| d s d t=4 \pi \int_{0}^{\frac{\pi}{2}} \cos s d s=4 \pi
$$

