Solution of Exercise 7.21.

(i) Use arguments similar to those in Example 6.10.8.
(ii) In Cartesian coordinates we have

$$
\int_{\mathbf{R}^{n}} e^{-\|x\|^{2}} d x=\left(\int_{\mathbf{R}} e^{-x^{2}} d x\right)^{n}=\pi^{\frac{n}{2}}
$$

on the basis of Example 6.10.8. On the other hand, application of Formula (7.26) and Exercise 6.50.(i) gives

$$
\begin{aligned}
\int_{\mathbf{R}^{n}} e^{-\|x\|^{2}} d x & =\int_{\mathbf{R}_{+}} r^{n-1} e^{-r^{2}} \int_{S^{n-1}} d_{n-1} y d r=\text { hyperarea }_{n-1}\left(S^{n-1}\right) \int_{\mathbf{R}_{+}} e^{-r^{2}} r^{n-1} d r \\
& =\text { hyperarea }_{n-1}\left(S^{n-1}\right) \frac{1}{2} \Gamma\left(\frac{n}{2}\right)
\end{aligned}
$$

Comparison of the two equations now leads to the desired equality.
(iii) Apply the formula from part (ii) for $n=3$ and note that $\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{\pi^{\frac{1}{2}}}{2}$, according to Exercise 6.50.(i).
(iv) We have

$$
\operatorname{vol}_{n}\left(B^{n}\right)=\int_{0}^{1} \operatorname{hyperarea}_{n-1}\left(S^{n-1}\right) r^{n-1} d r=\frac{1}{n} \operatorname{hyperarea}_{n-1}\left(S^{n-1}\right)
$$

(v) Combination of parts (iv) and (ii) as well as Exercise 6.50.(i) implies

$$
\operatorname{vol}_{n}\left(B^{n}\right)=\frac{2 \pi^{\frac{n}{2}}}{n \Gamma\left(\frac{n}{2}\right)}=\frac{\pi^{\frac{n}{2}}}{\frac{n}{2} \Gamma\left(\frac{n}{2}\right)}=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}
$$

(vi) This follows by the same arguments as in part (v).

