Solution of Exercise 7.44

(i) On the basis of

$$
\frac{\partial}{\partial x_{1}} \frac{x_{1}}{x_{1}^{2}+x_{2}^{2}}=\frac{1}{x_{1}^{2}+x_{2}^{2}}-\frac{x_{1} 2 x_{1}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{2}}=\frac{x_{2}^{2}-x_{1}^{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{2}}, \quad \frac{\partial}{\partial x_{2}} \frac{x_{2}}{x_{1}^{2}+x_{2}^{2}}=\frac{x_{1}^{2}-x_{2}^{2}}{\left(x_{1}^{2}+x_{2}^{2}\right)^{2}}
$$

we see $\operatorname{div} f(x)=0$. Gauss' Divergence Theorem 7.8.5 then implies

$$
0=\int_{\Omega} \operatorname{div} f(x) d x=\int_{\partial \Omega}\langle f, \nu\rangle(y) d_{2} y
$$

The outer normal $\nu(y)$ to the two plane regions is $(0,0, \mp 1)$, respectively, and the inner product of this vector with the vector $f(y)$ equals 0 for points y belonging to the two plane regions. For $y \in S_{1}$ we have $\nu(y)=-y$ and therefore

$$
\langle f(y), \nu(y)\rangle=-\frac{1}{y_{1}^{2}+y_{2}^{2}}\left\langle\left(y_{1}, y_{2}, 0\right),\left(y_{1}, y_{2}, y_{3}\right)\right\rangle=-1 .
$$

A parametrization of S_{2} is given by

$$
\phi:]-\frac{\pi}{2}, \frac{\pi}{2}[\times] h_{1}, h_{2}\left[\rightarrow \mathbf{R}^{3} \quad \text { with } \quad \phi(\alpha, t)=(\cos \alpha, \sin \alpha, t)\right.
$$

Accordingly

$$
\frac{\partial \phi}{\partial \alpha} \times \frac{\partial \phi}{\partial t}(\alpha, t)=(\cos \alpha, \sin \alpha, 0)
$$

which implies, for $y \in S_{2}$,

$$
\nu(y)=\left(y_{1}, y_{2}, 0\right), \quad \text { hence } \quad\langle f(y), \nu(y)\rangle=1
$$

Accordingly

$$
0=-\int_{S_{1}} d_{2} y+\int_{S_{2}} d_{2} y
$$

(ii) Recognizing the shell S_{1} as the difference of two caps of the sphere we deduce from Example 7.4.6

$$
\operatorname{area}\left(S_{1}\right)=2 \pi\left(1-\sin \arcsin h_{1}\right)-2 \pi\left(1-\sin \arcsin h_{2}\right)=2 \pi\left(h_{2}-h_{1}\right)
$$

From the calculation in part (i) we obtain

$$
\left\|\frac{\partial \phi}{\partial \alpha} \times \frac{\partial \phi}{\partial t}(\alpha, t)\right\|=\|(\cos \alpha, \sin \alpha, 0)\|=1
$$

which implies

$$
\operatorname{area}\left(S_{2}\right)=\int_{-\pi}^{\pi} \int_{h_{1}}^{h_{2}} d \alpha d t=2 \pi\left(h_{2}-h_{1}\right)
$$

