Solution of Exercise 7.53.

- (i) The equality follows upon introduction of the new variable $\eta \in S^{n-1}$ by means of $x + r\eta = y \in S(x;r)$ in the integral defining $m_f(x,r)$. Furthermore, use hyperarea_{n-1} $(S(x;r)) = r^{n-1}|S^{n-1}|$ and $d_{n-1}y = r^{n-1} d_{n-1}\eta$.
- (ii) For every $y \in S^{n-1}$ one has $\nu(y) = y$, while the chain rule implies

$$\frac{\partial f}{\partial r}(x+ry) = Df(x+ry) \, y = \langle \operatorname{grad} f(x+ry), y \rangle = \langle \operatorname{grad} f(x+ry), \nu(y) \rangle.$$

As a consequence the desired formula follows from the identity in part (i) by means of the Differentiation Theorem 6.12.4.

- (iii) As in part (ii) the formula is a direct consequence of the chain rule.
- (iv) Recognize the integral in part (ii) as the right-hand side (up to a scalar) of the identity in Gauss' Divergence Theorem 7.8.5, with the role of f played by the vector field from part (iii). The formula from part (iii) taken in conjunction with Gauss' Divergence Theorem then leads to the desired identity.
- (v) If f is harmonic on Ω, then the right-hand side of the identity in part (iv) vanishes and as a consequence r → m_f(x, r) is a constant function, for r > 0 sufficiently small. From lim_{r↓0} m_f(x, r) = f(x) one deduces that f possesses the mean value property on Ω. Conversely, suppose this to be the case for f and assume f to be of class C². Then use the identity in (iv) once again to obtain ∫_{Bⁿ} Δf(x + rx') dx' = 0, for all x ∈ Ω and admissible r > 0. In view of the continuity of Δf this only is possible if Δf(x) = 0, for all x ∈ Ω.
- (vi) Let $D \subset \mathbf{R}^{n-1}$ be open and $\phi : D \to S^{n-1}$ a C^1 parametrization of an open subset of S^{n-1} having negligible complement. Introduce the open unit ball $B^n(r)$ in \mathbf{R}^n of center 0 and of radius r and further

$$\Psi:]0, r[\times D \to B^n(r)$$
 by $\Psi(\rho, y) = \rho \phi(y).$

As in Example 7.4.12 one sees that Ψ is a diffeomorphism onto an open dense subset of $B^n(r)$ satisfying

$$\det D\Psi(\rho, y)| = |\det (\phi(y) | \rho D\phi(y))| = \rho^{n-1}\omega_{\phi}(y).$$

Next use the Change of Variables Theorem 6.6.1 to deduce

$$r^{n} \int_{B^{n}} f(x + rx') dx' = \int_{B^{n}(r)} f(x + z) dz = \int_{0}^{r} \rho^{n-1} \int_{S^{n-1}} f(x + \rho y) d_{n-1} y d\rho$$
$$= |S^{n-1}| \int_{0}^{r} \rho^{n-1} m_{f}(x, \rho) d\rho.$$

(vii) According to the parts (iv) and (vi) one has

$$\frac{\partial m_f}{\partial r}(x,r) = \frac{r^n}{r^{n-1}|S^{n-1}|} \Delta_x \left(\int_{B^n} f(x+rx') \, dx' \right) = \frac{1}{r^{n-1}} \Delta_x \left(\int_0^r \rho^{n-1} m_f(x,\rho) \, d\rho \right),$$

which implies by means of the Fundamental Theorem 2.10.1 of Integral Calculus on ${f R}$

$$\frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial m_f}{\partial r}(x, r) \right) = \frac{\partial}{\partial r} \Delta_x \left(\int_0^r \rho^{n-1} m_f(x, \rho) \, d\rho \right)$$
$$= \Delta_x \frac{\partial}{\partial r} \left(\int_0^r \rho^{n-1} m_f(x, \rho) \, d\rho \right) = \Delta_x (r^{n-1} m_f(x, r))$$
$$= r^{n-1} \Delta_x m_f(x, r).$$

Darboux's equation (\star) now follows from

$$\frac{1}{r^{n-1}}\frac{\partial}{\partial r}\left(r^{n-1}\frac{\partial}{\partial r}\right) = \frac{\partial^2}{\partial r^2} + \frac{n-1}{r}\frac{\partial}{\partial r}.$$