Solution of Exercise 7.53

(i) The equality follows upon introduction of the new variable $\eta \in S^{n-1}$ by means of $x+r \eta=$ $y \in S(x ; r)$ in the integral defining $m_{f}(x, r)$. Furthermore, use hyperarea ${ }_{n-1}(S(x ; r))=$ $r^{n-1}\left|S^{n-1}\right|$ and $d_{n-1} y=r^{n-1} d_{n-1} \eta$.
(ii) For every $y \in S^{n-1}$ one has $\nu(y)=y$, while the chain rule implies

$$
\frac{\partial f}{\partial r}(x+r y)=D f(x+r y) y=\langle\operatorname{grad} f(x+r y), y\rangle=\langle\operatorname{grad} f(x+r y), \nu(y)\rangle
$$

As a consequence the desired formula follows from the identity in part (i) by means of the Differentiation Theorem 6.12.4.
(iii) As in part (ii) the formula is a direct consequence of the chain rule.
(iv) Recognize the integral in part (ii) as the right-hand side (up to a scalar) of the identity in Gauss' Divergence Theorem 7.8.5, with the role of f played by the vector field from part (iii). The formula from part (iii) taken in conjunction with Gauss' Divergence Theorem then leads to the desired identity.
(v) If f is harmonic on Ω, then the right-hand side of the identity in part (iv) vanishes and as a consequence $r \mapsto m_{f}(x, r)$ is a constant function, for $r>0$ sufficiently small. From $\lim _{r \downarrow 0} m_{f}(x, r)=$ $f(x)$ one deduces that f possesses the mean value property on Ω. Conversely, suppose this to be the case for f and assume f to be of class C^{2}. Then use the identity in (iv) once again to obtain $\int_{B^{n}} \Delta f\left(x+r x^{\prime}\right) d x^{\prime}=0$, for all $x \in \Omega$ and admissible $r>0$. In view of the continuity of Δf this only is possible if $\Delta f(x)=0$, for all $x \in \Omega$.
(vi) Let $D \subset \mathbf{R}^{n-1}$ be open and $\phi: D \rightarrow S^{n-1}$ a C^{1} parametrization of an open subset of S^{n-1} having negligible complement. Introduce the open unit ball $B^{n}(r)$ in \mathbf{R}^{n} of center 0 and of radius r and further

$$
\Psi:] 0, r\left[\times D \rightarrow B^{n}(r) \quad \text { by } \quad \Psi(\rho, y)=\rho \phi(y)\right.
$$

As in Example 7.4.12 one sees that Ψ is a diffeomorphism onto an open dense subset of $B^{n}(r)$ satisfying

$$
|\operatorname{det} D \Psi(\rho, y)|=|\operatorname{det}(\phi(y) \mid \rho D \phi(y))|=\rho^{n-1} \omega_{\phi}(y)
$$

Next use the Change of Variables Theorem 6.6.1 to deduce

$$
\begin{aligned}
r^{n} \int_{B^{n}} f\left(x+r x^{\prime}\right) d x^{\prime} & =\int_{B^{n}(r)} f(x+z) d z=\int_{0}^{r} \rho^{n-1} \int_{S^{n-1}} f(x+\rho y) d_{n-1} y d \rho \\
& =\left|S^{n-1}\right| \int_{0}^{r} \rho^{n-1} m_{f}(x, \rho) d \rho
\end{aligned}
$$

(vii) According to the parts (iv) and (vi) one has

$$
\frac{\partial m_{f}}{\partial r}(x, r)=\frac{r^{n}}{r^{n-1}\left|S^{n-1}\right|} \Delta_{x}\left(\int_{B^{n}} f\left(x+r x^{\prime}\right) d x^{\prime}\right)=\frac{1}{r^{n-1}} \Delta_{x}\left(\int_{0}^{r} \rho^{n-1} m_{f}(x, \rho) d \rho\right)
$$

which implies by means of the Fundamental Theorem 2.10.1 of Integral Calculus on \mathbf{R}

$$
\begin{aligned}
\frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial m_{f}}{\partial r}(x, r)\right) & =\frac{\partial}{\partial r} \Delta_{x}\left(\int_{0}^{r} \rho^{n-1} m_{f}(x, \rho) d \rho\right) \\
& =\Delta_{x} \frac{\partial}{\partial r}\left(\int_{0}^{r} \rho^{n-1} m_{f}(x, \rho) d \rho\right)=\Delta_{x}\left(r^{n-1} m_{f}(x, r)\right) \\
& =r^{n-1} \Delta_{x} m_{f}(x, r)
\end{aligned}
$$

Darboux's equation (\star) now follows from

$$
\frac{1}{r^{n-1}} \frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial}{\partial r}\right)=\frac{\partial^{2}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial}{\partial r} .
$$

