Solution of Exercise 7.65.

(i) Suppose $f \in F$ to be harmonic on Ω and $g \in F_{0}$. On the basis of $\Delta f=0$ and $g=0$ on $\partial \Omega$ one obtains from Green's first identity (7.65)

$$
\begin{aligned}
0 & =\int_{\Omega}(g \Delta f)(x) d x=\int_{\partial \Omega}\left(g \frac{\partial f}{\partial \nu}\right)(y) d_{n-1} y-\int_{\Omega}\langle\operatorname{grad} f, \operatorname{grad} g\rangle(x) d x \\
& =-\int_{\Omega}\langle\operatorname{grad} f, \operatorname{grad} g\rangle(x) d x
\end{aligned}
$$

which amounts to (\star). Conversely, if (\star) is valid for all $g \in F_{0}$, then again by Green's first identity

$$
\int_{\Omega}(g \Delta f)(x) d x=0 ; \quad \text { thus } \quad \Delta f(x)=0 \quad(x \in \Omega)
$$

(ii) Suppose ($\star \star$) to be true and consider $f \in F_{k}$ and $g \in F_{0}$. Note that $D(t)$ as in the hint satisfies

$$
D(t)=\int_{\Omega}\|\operatorname{grad} f(x)\|^{2} d x+2 t \int_{\Omega}\langle\operatorname{grad} f(x), \operatorname{grad} g(x)\rangle d x+t^{2} \int_{\Omega}\|\operatorname{grad} g(x)\|^{2} d x
$$

Because $D(t)$ attains its minimum at $t=0$, one obtains

$$
D^{\prime}(0)=2 \int_{\Omega}\langle\operatorname{grad} f(x), \operatorname{grad} g(x)\rangle d x=0
$$

Then f is harmonic according to part (i). The converse statement follows directly from the hint.

