Solution of Exercise 8.5.

(i) The vectors $\phi(t_+) - \phi(t_-)$ and $\phi(t_+) - \phi(t) \in \mathbf{R}^2$ span a parallelogram of twice the area of that of the triangle; hence, the latter area equals

$$\frac{1}{2}\det\left(\phi(t_{+}) - \phi(t_{-}) \ \phi(t_{+}) - \phi(t)\right) = \frac{1}{2} \begin{vmatrix} t_{+} - t_{-} & t_{+} - t \\ t_{+}^{2} - t_{-}^{2} & t_{+}^{2} - t^{2} \end{vmatrix}$$

$$= \frac{(t_+ - t_-)(t_+ - t)}{2} \begin{vmatrix} 1 & 1 \\ t_+ + t_- & t_+ + t \end{vmatrix} = \frac{(t_+ - t_-)(t_+ - t)(t_- - t_-)}{2}.$$

This quadratic function in t attains its maximum at $t = \frac{t_+ + t_-}{2} = t_0$.

- (ii) The direction of the tangent line to P at $\phi(t)$ is given by $\phi'(t) = (1, 2t)$ and therefore the slope of the tangent equals 2t. The slope of $l(t_+, t_-)$ is $\frac{t_+^2 t_-^2}{t_+ t_-} = t_+ + t_-$. Thus, $t = t_0$.
- (iii) We begin with the proof by successive integration. We have

$$l(t_+, t_-) = \{ \phi(t_-) + t(\phi(t_+) - \phi(t_-)) \mid 0 < t < 1 \}.$$

Thus, $x \in l(t_+, t_-)$ if and only if there exists $t \in \mathbf{R}$ such that

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} t_- + t(t_+ - t_-) \\ t_-^2 + t(t_+^2 - t_-^2) \end{pmatrix}.$$

So $t(t_{+} - t_{-}) = x_1 - t_{-}$, which implies

$$x_2 = t_-^2 + (x_1 - t_-)(t_+ + t_-) = (t_0 - \delta)^2 + 2t_0(x_1 - t_-).$$

Obviously, this leads to the desired description of $S(t_+, t_-)$, since points in $S(t_+, t_-)$ lie above P but below $l(t_+, t_-)$. Furthermore,

$$\begin{aligned} \operatorname{area}\left(S(t_{+}, t_{-})\right) &= \int_{t_{-}}^{t_{+}} \int_{x_{1}^{2}}^{(t_{0}-\delta)^{2}+2t_{0}(x_{1}-t_{-})} dx_{2} dx_{1} \\ &= \int_{t_{-}}^{t_{+}} \left((t_{0}-\delta)^{2}+2t_{0}(x_{1}-t_{-})-x_{1}^{2}\right) dx_{1} \\ &= (t_{0}-\delta)^{2}(t_{+}-t_{-})+t_{0}(t_{+}^{2}-t_{-}^{2})-2t_{0}t_{-}(t_{+}-t_{-})-\frac{1}{3}(t_{+}^{3}-t_{-}^{3}) \\ &= 2(t_{0}-\delta)^{2}\delta+4t_{0}^{2}\delta-4t_{0}\delta(t_{0}-\delta)-\frac{2}{3}\delta^{3}-2t_{0}^{2}\delta \\ &= 2t_{0}^{2}\delta-4t_{0}\delta^{2}+2\delta^{3}+4t_{0}\delta^{2}-\frac{2}{3}\delta^{3}-2t_{0}^{2}\delta=\frac{4\delta^{3}}{3}. \end{aligned}$$

For the proof by means of Green's Integral Theorem 8.3.5 we note that the positive parametrization of the boundary of $S(t_+, t_-)$ consists of the following two pieces:

$$\begin{split} \partial_1 S(t_+, t_-) &= \{ \, \phi(t) \mid t_- < t < t_+ \, \}, \\ \partial_2 S(t_+, t_-) &= \{ \, \phi(t_+) + t(\phi(t_-) - \phi(t_+)) \mid 0 < t < 1 \, \}. \end{split}$$

In view of Formula (8.26) we compute for $\partial_1 S(t_+, t_-)$

$$(\phi_1\phi'_2 - \phi_2\phi'_1)(t) = t \cdot 2t - t^2 \cdot 1 = t^2,$$

while for $\partial_2 S(t_+, t_-)$ we have

$$(y_1y'_2 - y_2y'_1)(t) = (t_+ + t(t_- - t_+))(t_-^2 - t_+^2) - (t_+^2 + t(t_-^2 - t_+^2))(t_- - t_+)$$

= $t_+(t_-^2 - t_+^2) - t_+^2(t_- - t_+) = (t_- - t_+)(t_+t_- + t_+^2 - t_+^2)$
= $t_+t_-(t_- - t_+).$

Accordingly

area
$$(S(t_+, t_-))$$
 = $\frac{1}{2} \int_{t_-}^{t_+} t^2 dt + \frac{1}{2} \int_0^1 t_+ t_- (t_- - t_+) dt = \frac{1}{6} (t_+^3 - t_-^3) - t_+ t_- \delta$
= $\frac{\delta^3}{3} + t_0^2 \delta - t_+ t_- \delta = \frac{\delta^3}{3} + \frac{\delta}{4} (t_+^2 + t_-^2 + 2t_+ t_- - 4t_+ t_-)$
= $\frac{\delta^3}{3} + \delta \frac{(t_+ - t_-)^2}{4} = \frac{4\delta^3}{3}.$

The third proof is by recognizing $S(t_+, t_-)$ as the set-theoretical difference of the trapezoid with vertices $(t_-, 0)$, $\phi(t_-)$, $\phi(t_+)$ and $(t_+, 0)$ and the graph of ϕ above $[t_-, t_+]$. This leads to

$$\operatorname{area}\left(S(t_{+},t_{-})\right) = \frac{1}{2}(t_{-}^{2}+t_{+}^{2})(t_{+}-t_{-}) - \int_{t_{-}}^{t_{+}} t^{2} dt = \frac{1}{2}(t_{-}^{2}+t_{+}^{2})(t_{+}-t_{-}) - \frac{1}{3}(t_{+}^{3}-t_{-}^{3})$$
$$= \frac{1}{6}(t_{+}-t_{-})(3t_{-}^{2}+3t_{+}^{2}-2t_{+}^{2}-2t_{+}t_{-}-2t_{-}^{2}) = \frac{1}{6}(t_{+}-t_{-})^{3} = \frac{4\delta^{3}}{3}.$$

(iv) The endomorphism of \mathbf{R}^2 with matrix $\delta \begin{pmatrix} 1 & 0 \\ 2t_0 & \delta \end{pmatrix}$ is invertible, having determinant equal to $\delta^3 > 0$. Therefore Ψ is an invertible affine transformation and consequently a C^{∞} diffeomorphism of \mathbf{R}^2 . We have

$$\Psi(\phi(t)) = \begin{pmatrix} t_0 + \delta t \\ t_0^2 + 2t_0\delta t + \delta^2 t^2 \end{pmatrix} = \phi(t_0 + \delta t).$$

Since a point belongs to P if and only if it is of the form $\phi(t)$, for some $t \in \mathbf{R}$, it follows that Ψ maps P into itself. Furthermore

$$\Psi(-1,1) = \Psi \circ \phi(-1) = \phi(t_0 + \delta) = \phi(t_+), \qquad \Psi(0,0) = \Psi \circ \phi(0) = \phi(t_0),$$

$$\Psi(-1,1) = \Psi \circ \phi(-1) = \phi(t_0 - \delta) = \phi(t_-).$$

 Ψ being an affine mapping, it now follows that Ψ maps the triangle $\Delta(1, -1)$ onto the triangle $\Delta(t_+, t_-)$ and that, in addition, it maps the sector S(1, -1) onto the sector $S(t_+, t_-)$.

(v) In part (iv) it has been proved that Ψ has constant Jacobi determinant equal to δ^3 . The rectangle with vertices (-1,0), $\phi(-1)$, $\phi(1)$ and (1,0) has area 2 and the graph of ϕ above [-1,1] has area $\int_{-1}^{1} t^2 dt = \frac{2}{3}$; hence, S(1,-1) has area $\frac{4}{3}$ while $\Delta(1,-1)$ has area 1. That shows that the formula for the quadrature of the parabola is valid in this case. Furthermore, Ψ maps this special configuration onto the general configuration under multiplication of areas with the same factor, which implies the quadrature of the parabola in the general case.