Solution of Exercise 8.5.

(i) The vectors $\phi\left(t_{+}\right)-\phi\left(t_{-}\right)$and $\phi\left(t_{+}\right)-\phi(t) \in \mathbf{R}^{2}$ span a parallelogram of twice the area of that of the triangle; hence, the latter area equals

$$
\begin{aligned}
& \frac{1}{2} \operatorname{det}\left(\phi\left(t_{+}\right)-\phi\left(t_{-}\right) \phi\left(t_{+}\right)-\phi(t)\right)=\frac{1}{2}\left|\begin{array}{cc}
t_{+}-t_{-} & t_{+}-t \\
t_{+}^{2}-t_{-}^{2} & t_{+}^{2}-t^{2}
\end{array}\right| \\
& \quad=\frac{\left(t_{+}-t_{-}\right)\left(t_{+}-t\right)}{2}\left|\begin{array}{cc}
1 & 1 \\
t_{+}+t_{-} & t_{+}+t
\end{array}\right|=\frac{\left(t_{+}-t_{-}\right)\left(t_{+}-t\right)\left(t-t_{-}\right)}{2}
\end{aligned}
$$

This quadratic function in t attains its maximum at $t=\frac{t_{+}+t_{-}}{2}=t_{0}$.
(ii) The direction of the tangent line to P at $\phi(t)$ is given by $\phi^{\prime}(t)=(1,2 t)$ and therefore the slope of the tangent equals $2 t$. The slope of $l\left(t_{+}, t_{-}\right)$is $\frac{t_{+}^{2}-t_{-}^{2}}{t_{+}-t_{-}}=t_{+}+t_{-}$. Thus, $t=t_{0}$.
(iii) We begin with the proof by successive integration. We have

$$
l\left(t_{+}, t_{-}\right)=\left\{\phi\left(t_{-}\right)+t\left(\phi\left(t_{+}\right)-\phi\left(t_{=}\right)\right) \mid 0<t<1\right\} .
$$

Thus, $x \in l\left(t_{+}, t_{-}\right)$if and only if there exists $t \in \mathbf{R}$ such that

$$
\binom{x_{1}}{x_{2}}=\binom{t_{-}+t\left(t_{+}-t_{-}\right)}{t_{-}^{2}+t\left(t_{+}^{2}-t_{-}^{2}\right)}
$$

So $t\left(t_{+}-t_{-}\right)=x_{1}-t_{-}$, which implies

$$
x_{2}=t_{-}^{2}+\left(x_{1}-t_{-}\right)\left(t_{+}+t_{-}\right)=\left(t_{0}-\delta\right)^{2}+2 t_{0}\left(x_{1}-t_{-}\right)
$$

Obviously, this leads to the desired description of $S\left(t_{+}, t_{-}\right)$, since points in $S\left(t_{+}, t_{-}\right)$lie above P but below $l\left(t_{+}, t_{-}\right)$. Furthermore,

$$
\begin{aligned}
\operatorname{area}\left(S\left(t_{+}, t_{-}\right)\right) & =\int_{t_{-}}^{t_{+}} \int_{x_{1}^{2}}^{\left(t_{0}-\delta\right)^{2}+2 t_{0}\left(x_{1}-t_{-}\right)} d x_{2} d x_{1} \\
& =\int_{t_{-}}^{t_{+}}\left(\left(t_{0}-\delta\right)^{2}+2 t_{0}\left(x_{1}-t_{-}\right)-x_{1}^{2}\right) d x_{1} \\
& =\left(t_{0}-\delta\right)^{2}\left(t_{+}-t_{-}\right)+t_{0}\left(t_{+}^{2}-t_{-}^{2}\right)-2 t_{0} t_{-}\left(t_{+}-t_{-}\right)-\frac{1}{3}\left(t_{+}^{3}-t_{-}^{3}\right) \\
& =2\left(t_{0}-\delta\right)^{2} \delta+4 t_{0}^{2} \delta-4 t_{0} \delta\left(t_{0}-\delta\right)-\frac{2}{3} \delta^{3}-2 t_{0}^{2} \delta \\
& =2 t_{0}^{2} \delta-4 t_{0} \delta^{2}+2 \delta^{3}+4 t_{0} \delta^{2}-\frac{2}{3} \delta^{3}-2 t_{0}^{2} \delta=\frac{4 \delta^{3}}{3}
\end{aligned}
$$

For the proof by means of Green's Integral Theorem 8.3 .5 we note that the positive parametrization of the boundary of $S\left(t_{+}, t_{-}\right)$consists of the following two pieces:

$$
\begin{aligned}
& \partial_{1} S\left(t_{+}, t_{-}\right)=\left\{\phi(t) \mid t_{-}<t<t_{+}\right\} \\
& \partial_{2} S\left(t_{+}, t_{-}\right)=\left\{\phi\left(t_{+}\right)+t\left(\phi\left(t_{-}\right)-\phi\left(t_{+}\right)\right) \mid 0<t<1\right\} .
\end{aligned}
$$

In view of Formula (8.26) we compute for $\partial_{1} S\left(t_{+}, t_{-}\right)$

$$
\left(\phi_{1} \phi_{2}^{\prime}-\phi_{2} \phi_{1}^{\prime}\right)(t)=t \cdot 2 t-t^{2} \cdot 1=t^{2}
$$

while for $\partial_{2} S\left(t_{+}, t_{-}\right)$we have

$$
\begin{aligned}
\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right)(t) & =\left(t_{+}+t\left(t_{-}-t_{+}\right)\right)\left(t_{-}^{2}-t_{+}^{2}\right)-\left(t_{+}^{2}+t\left(t_{-}^{2}-t_{+}^{2}\right)\right)\left(t_{-}-t_{+}\right) \\
& =t_{+}\left(t_{-}^{2}-t_{+}^{2}\right)-t_{+}^{2}\left(t_{-}-t_{+}\right)=\left(t_{-}-t_{+}\right)\left(t_{+} t_{-}+t_{+}^{2}-t_{+}^{2}\right) \\
& =t_{+} t_{-}\left(t_{-}-t_{+}\right)
\end{aligned}
$$

Accordingly

$$
\begin{aligned}
\operatorname{area}\left(S\left(t_{+}, t_{-}\right)\right) & =\frac{1}{2} \int_{t_{-}}^{t_{+}} t^{2} d t+\frac{1}{2} \int_{0}^{1} t_{+} t_{-}\left(t_{-}-t_{+}\right) d t=\frac{1}{6}\left(t_{+}^{3}-t_{-}^{3}\right)-t_{+} t_{-} \delta \\
& =\frac{\delta^{3}}{3}+t_{0}^{2} \delta-t_{+} t_{-} \delta=\frac{\delta^{3}}{3}+\frac{\delta}{4}\left(t_{+}^{2}+t_{-}^{2}+2 t_{+} t_{-}-4 t_{+} t_{-}\right) \\
& =\frac{\delta^{3}}{3}+\delta \frac{\left(t_{+}-t_{-}\right)^{2}}{4}=\frac{4 \delta^{3}}{3}
\end{aligned}
$$

The third proof is by recognizing $S\left(t_{+}, t_{-}\right)$as the set-theoretical difference of the trapezoid with vertices $\left(t_{-}, 0\right), \phi\left(t_{-}\right), \phi\left(t_{+}\right)$and $\left(t_{+}, 0\right)$ and the graph of ϕ above $\left[t_{-}, t_{+}\right]$. This leads to

$$
\begin{aligned}
\operatorname{area}\left(S\left(t_{+}, t_{-}\right)\right) & =\frac{1}{2}\left(t_{-}^{2}+t_{+}^{2}\right)\left(t_{+}-t_{-}\right)-\int_{t_{-}}^{t_{+}} t^{2} d t=\frac{1}{2}\left(t_{-}^{2}+t_{+}^{2}\right)\left(t_{+}-t_{-}\right)-\frac{1}{3}\left(t_{+}^{3}-t_{-}^{3}\right) \\
& =\frac{1}{6}\left(t_{+}-t_{-}\right)\left(3 t_{-}^{2}+3 t_{+}^{2}-2 t_{+}^{2}-2 t_{+} t_{-}-2 t_{-}^{2}\right)=\frac{1}{6}\left(t_{+}-t_{-}\right)^{3}=\frac{4 \delta^{3}}{3}
\end{aligned}
$$

(iv) The endomorphism of \mathbf{R}^{2} with matrix $\delta\left(\begin{array}{cc}1 & 0 \\ 2 t_{0} & \delta\end{array}\right)$ is invertible, having determinant equal to $\delta^{3}>0$. Therefore Ψ is an invertible affine transformation and consequently a C^{∞} diffeomorphism of \mathbf{R}^{2}. We have

$$
\Psi(\phi(t))=\binom{t_{0}+\delta t}{t_{0}^{2}+2 t_{0} \delta t+\delta^{2} t^{2}}=\phi\left(t_{0}+\delta t\right)
$$

Since a point belongs to P if and only if it is of the form $\phi(t)$, for some $t \in \mathbf{R}$, it follows that Ψ maps P into itself. Furthermore

$$
\begin{aligned}
& \Psi(1,1)=\Psi \circ \phi(1)=\phi\left(t_{0}+\delta\right)=\phi\left(t_{+}\right), \quad \Psi(0,0)=\Psi \circ \phi(0)=\phi\left(t_{0}\right), \\
& \Psi(-1,1)=\Psi \circ \phi(-1)=\phi\left(t_{0}-\delta\right)=\phi\left(t_{-}\right)
\end{aligned}
$$

Ψ being an affine mapping, it now follows that Ψ maps the triangle $\Delta(1,-1)$ onto the triangle $\Delta\left(t_{+}, t_{-}\right)$and that, in addition, it maps the sector $S(1,-1)$ onto the sector $S\left(t_{+}, t_{-}\right)$.
(v) In part (iv) it has been proved that Ψ has constant Jacobi determinant equal to δ^{3}. The rectangle with vertices $(-1,0), \phi(-1), \phi(1)$ and $(1,0)$ has area 2 and the graph of ϕ above $[-1,1]$ has area $\int_{-1}^{1} t^{2} d t=\frac{2}{3}$; hence, $S(1,-1)$ has area $\frac{4}{3}$ while $\Delta(1,-1)$ has area 1 . That shows that the formula for the quadrature of the parabola is valid in this case. Furthermore, Ψ maps this special configuration onto the general configuration under multiplication of areas with the same factor, which implies the quadrature of the parabola in the general case.

