Solution of Exercise 8.5.

(i) The vectors ¢(t4) — ¢(t—) and ¢(t;) — ¢(t) € R? span a parallelogram of twice the area of that
of the triangle; hence, the latter area equals
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This quadratic function in ¢ attains its maximum at ¢t = % = {p.

(ii) The direction of the tangent line to P at ¢(¢) is given by ¢'(t) = (1, 2t) and therefore the slope
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—— =ty +t_. Thus, ¢t = t.

of the tangent equals 2¢. The slope of [(t4,t_) is ﬁj

(iii)) We begin with the proof by successive integration. We have
Wty t) ={o(t-) +to(ty) —¢(t=)) [0 <t <1}
Thus, x € I(t4,t_) if and only if there exists ¢ € R such that
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So t(ty —t_) = x1 — t_, which implies
Ty =12 4 (z1 —t)(ty +1_) = (to — 6)® + 2to(z1 — t_).

Obviously, this leads to the desired description of S(¢,¢_), since points in S(t4,t_) lie above
P but below [(t4,t_). Furthermore,
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= (to — 0)%(ty —t_) +to(t2 —t2) — 2tgt_(t4 —t_) — (¢t} —t3)
= 2(tg — 0)%6 + 4136 — 4tgd(tg — 0) — 753 — 225

= 2026 — 4t? + 26° 2_ 253 gp2 4—53

For the proof by means of Green’s Integral Theorem 8.3.5 we note that the positive parametriza-
tion of the boundary of S(t;,t_) consists of the following two pieces:

AS(tiito) = {6(t) |- <t<ti),
rS(t t-) = {6(t4) + Ho(t-) — 6(t4)) [0 <t <1}



In view of Formula (8.26) we compute for 01.S(t4,t_)
($165 = dad)(t) =t -2t —t*- 1 =12,
while for 025 (¢4, t_) we have
(vh —yosh) (1) = (bt — t)E — ) — (2 + 12 — )t —t4)
=t (2 —13) =L (t- —t) = (- —t)(tpt- + 17 —17)

- t+t, (t, - t+)
Accordingly
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The third proof is by recognizing S(t,,t_) as the set-theoretical difference of the trapezoid with
vertices (t—,0), ¢(t—), ¢(t+) and (¢4,0) and the graph of ¢ above [t_, ¢, |. This leads to
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area (S(ty,t_)) = 5(152_ + 2ty —t) — / t2dt = 5(752_ )ty —t) — g(1&3’r —3)
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== 6(t+ - t_)(gt_ + 3t+ - 2t+ - 2t+t_ — 2t_) == 6(t+ - t_) = ?
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(iv) The endomorphism of R? with matrix § < ) is invertible, having determinant equal to

2t
83 > 0. Therefore U is an invertible affine transformation and consequently a C* diffeomor-
phism of R2. We have
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Since a point belongs to P if and only if it is of the form ¢(¢), for some ¢ € R, it follows that ¥
maps P into itself. Furthermore

U( L1 =Toa( 1)=olty+8)=alts),  (0,0) =¥ o(0) = b(to),
U(—1,1) = W o p(~1) = blto — 9) = B(t_).

U being an affine mapping, it now follows that ¥ maps the triangle A(1, —1) onto the triangle
A(t4,t_) and that, in addition, it maps the sector S(1, —1) onto the sector S(¢,¢_).

(v) In part (iv) it has been proved that ¥ has constant Jacobi determinant equal to §2. The rectangle
with vertices (—1,0), ¢(—1), ¢(1) and (1,0) has area 2 and the graph of ¢ above [—1,1] has
area f_ll t2dt = %; hence, S(1,—1) has area % while A(1,—1) has area 1. That shows that the
formula for the quadrature of the parabola is valid in this case. Furthermore, ¥ maps this special
configuration onto the general configuration under multiplication of areas with the same factor,
which implies the quadrature of the parabola in the general case.



