Exercise $\mathbf{0 . 1}$ (Area of surface in \mathbf{C}^{2}). As usual, we identify $z=y_{1}+i y_{2} \in \mathbf{C}$ with $y=\left(y_{1}, y_{2}\right) \in$ \mathbf{R}^{2}. In particular, an open set $D \subset \mathbf{C}$ is identified with the corresponding $D \subset \mathbf{R}^{2}$ and a complexdifferentiable function $f: D \rightarrow \mathbf{C}$ with the vector field $f=\left(f_{1}, f_{2}\right): D \rightarrow \mathbf{R}^{2}$. Thus, we will study $\operatorname{graph}(f) \subset \mathbf{C}^{2}$ in the form of the following set:

$$
\begin{gathered}
V=\left\{(y, f(y)) \in \mathbf{R}^{4} \mid y \in D \subset \mathbf{R}^{2}\right\}=\operatorname{im}(\phi) \quad \text { with } \\
\phi: D \rightarrow \mathbf{R}^{4} \quad \text { given by } \quad \phi(y)=\left(y_{1}, y_{2}, f_{1}(y), f_{2}(y)\right) .
\end{gathered}
$$

It is obvious that V is a C^{∞} submanifold in \mathbf{R}^{4} of dimension 2 and that ϕ is a C^{∞} embedding.
(i) Compute the Euclidean 2-dimensional density ω_{ϕ} on V determined by ϕ. Next, use the CauchyRiemann equations $D_{1} f_{1}=D_{2} f_{2}$ and $D_{1} f_{2}=-D_{2} f_{1}$ to show the following identity of functions on \mathbf{R}^{2} :

$$
\omega_{\phi}=1+\left\|\operatorname{grad} f_{1}\right\|^{2}=1+\left\|\operatorname{grad} f_{2}\right\|^{2} .
$$

Suppose D to be a bounded open Jordan measurable set and deduce

$$
\operatorname{vol}_{2}(V)=\operatorname{area}(D)+\int_{D}\left\|\operatorname{grad} f_{1}(y)\right\|^{2} d y
$$

(ii) Suppose $D=\{z \in \mathbf{C}| | z \mid<1\}$ and $f(z)=z^{2}$. In this case verify that $\operatorname{vol}_{2}(V)=3 \pi$.

Solution of Exercise 0.1

(i) According to Lemma 8.3.10.(i) and (ii) the Cauchy-Riemann equations apply to the real and imaginary parts f_{1} and f_{2} of the holomorphic function f; consequently, we have the following equality of mappings $\mathbf{R}^{2} \rightarrow \operatorname{Mat}(2, \mathbf{R})$:

$$
\begin{aligned}
(D \phi)^{t} D \phi & =\left(\begin{array}{cccc}
1 & 0 & D_{1} f_{1} & D_{1} f_{2} \\
0 & 1 & D_{2} f_{1} & D_{2} f_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
D_{1} f_{1} & D_{2} f_{1} \\
D_{1} f_{2} & D_{2} f_{2}
\end{array}\right) \\
& =\left(\begin{array}{rl}
1+\left(D_{1} f_{1}\right)^{2}+\left(D_{1} f_{2}\right)^{2} & D_{1} f_{1} D_{2} f_{1}+D_{1} f_{2} D_{2} f_{2} \\
D_{1} f_{1} D_{2} f_{1}+D_{1} f_{2} D_{2} f_{2} & 1+\left(D_{2} f_{1}\right)^{2}+\left(D_{2} f_{2}\right)^{2}
\end{array}\right) \\
& =\left(\begin{array}{rr}
1+\left\|\operatorname{grad} f_{1}\right\|^{2} & 0 \\
0 & 1+\left\|\operatorname{grad} f_{1}\right\|^{2}
\end{array}\right) .
\end{aligned}
$$

Indeed, the coefficient of index $(2,1)$ equals $D_{1} f_{1} D_{2} f_{1}-D_{2} f_{1} D_{1} f_{1}=0$. In view of Definition 7.3.1. - Theorem we obtain

$$
\omega_{\phi}=\sqrt{\operatorname{det}\left((D \phi)^{t} D \phi\right)}=\sqrt{\left(1+\left\|\operatorname{grad} f_{1}\right\|^{2}\right)^{2}}=1+\left\|\operatorname{grad} f_{1}\right\|^{2} .
$$

The last assertion now follows, because

$$
\operatorname{vol}_{2}(V)=\int_{V} d_{2} x=\int_{D} \omega_{\phi}(y) d y=\int_{D}\left(1+\left\|\operatorname{grad} f_{1}(y)\right\|^{2}\right) d y
$$

(ii) $f_{1}(y)=\operatorname{Re}\left(y_{1}+i y_{2}\right)^{2}=y_{1}^{2}-y_{2}^{2}$, hence $\operatorname{grad} f_{1}(y)=2\left(y_{1},-y_{2}\right)$ and so $\left\|\operatorname{grad} f_{1}(y)\right\|^{2}=$ $4\|y\|^{2}$. Introducing polar coordinates (r, α) in $\mathbf{R}^{2} \backslash\left\{\left(y_{1}, 0\right) \in \mathbf{R}^{2} \mid y_{1} \leq 0\right\}$, which leads to a C^{1} change of coordinates, we find

$$
\int_{D}\left\|\operatorname{grad} f_{1}(y)\right\|^{2} d y=\int_{-\pi}^{\pi} \int_{0}^{1} 4 r^{3} d r d \alpha=2 \pi\left[r^{4}\right]_{0}^{1}=2 \pi
$$

The assertion is now a consequence from area $(D)=\pi$.

