Multidimensional Real Analysis Corrigenda and Addenda

Mathematical mistakes are indicated by the symbol $\mathbf{\nabla}$; the majority of the corrections are minor textual changes.

Sentence preceding Definition 1.4.4 on page 3. Replace the sentence by the following: Thus, $\langle e_j, e_j \rangle = 1$, while e_i and e_j , for distinct *i* and *j*, are mutually orthogonal vectors.

Example 1.3.10 on page 16. *Insert the following words immediately after* **Example 1.3.10***:* **(Plücker's conoid).**

Lemma 2.1.1 on page 40. There exists a slightly less computational proof of this lemma. In fact, apply Lemma 1.1.7.(ii) to $Ah = \sum_{1 \le j \le n} h_j Ae_j$, which follows from Formula (1.1), in order to obtain

$$|Ah|| \le \sum_{1 \le j \le n} |h_j| \, ||Ae_j|| = \langle \, (|h_1|, \dots, |h_n|), \, (||Ae_1||, \dots, ||Ae_n||) \, \rangle.$$

Now the Cauchy-Schwarz inequality from Proposition 1.1.6 immediately yields

$$||Ah|| \le ||h|| \sqrt{\sum_{1 \le j \le n} ||Ae_j||^2} = ||h|| ||A||_{\text{Eucl}}$$

Penultimate sentence preceding Proposition 2.2.1 on page 42. *Add the following to the sentence:* , as will be shown in Definition 2.2.2.

Definition 2.2.2 on page 43 *Replace the first part of the second sentence in the definition by the following:*

Then the mapping f is said to be *differentiable* at a

Lemma 2.2.7 on page 45. As additional motivation for the proof of Hadamard's Lemma one may offer the following argument.

On the one hand, for differentiable f, one requires

$$f(x) - f(a) = \phi_a(x)(x - a).$$

On the other hand, in view of $||x - a||^2 = (x - a)^t (x - a) \in \mathbf{R}$, the reformulation of differentiability in Formula (2.10) implies

$$f(x) - f(a) = Df(a)(x - a) + \epsilon_a(x - a)$$

= $Df(a)(x - a) + \frac{1}{\|x - a\|^2} \epsilon_a(x - a)(x - a)^t (x - a)$

A formal division of the right-hand side by x - a now suggests the formula for $\phi_a(x)$ as given in the proof.

Theorem 2.4.1 on page 51. *Replace the last sentence in the assertion of the chain rule by the follow-ing:*

And, if f is differentiable on U with $f(U) \subset V$ and g is differentiable on V,

$$D(g \circ f) = ((Dg) \circ f) \circ Df : U \to \operatorname{Lin}(\mathbf{R}^n, \mathbf{R}^q).$$

Proof of Corollary 2.4.3 on page 53. Replace the first sentence by the following: From Example 2.2.5 we know that $f : \mathbf{R}^n \to \mathbf{R}^p \times \mathbf{R}^p$ is differentiable at a if $f(x) = (f_1(x), f_2(x))$, while $Df(a)h = (Df_1(a)h, Df_2(a)h)$, for $(a, h \in \mathbf{R}^n)$.

Lemma 2.4.7 on page 54. *Replace the displayed formula by the following:* D(Lf)(a) = LDf(a).

Corollary 2.5.5 and its proof on page 58. *Replace the assertion of the corollary and its proof by the following:*

Let $K \subset \mathbf{R}^n$ be compact and $O \subset \mathbf{R}^n$ open with $K \subset O$. If $f : O \to \mathbf{R}^p$ is a C^1 mapping, then the restriction $f|_K$ of f to K is Lipschitz continuous.

Proof. Suppose f is not Lipschitz continuous on K. Define $g: O \times O \rightarrow [0, \infty]$ by

$$g(x, x') = \begin{cases} \frac{\|f(x) - f(x')\|}{\|x - x'\|}, & x \neq x'; \\ 0, & x = x'. \end{cases}$$

Then there exist sequences $(x_l)_{l \in \mathbb{N}}$ and $(x'_l)_{l \in \mathbb{N}}$ of points in K such that $\lim_{l \to \infty} g(x_l, x'_l) = \infty$. On account of Theorem 1.8.8 the sequence $(||f(x_l) - f(x'_l)||)_{l \in \mathbb{N}}$ is bounded, which implies that $\lim_{l \to \infty} ||x_l - x'_l|| = 0$. In turn, the sequential compactness of K leads to the existence of subsequences in K, which will also be denoted by $(x_l)_{l \in \mathbb{N}}$ and $(x'_l)_{l \in \mathbb{N}}$, and $x \in K$ satisfying $\lim_{l \to \infty} x_l = \lim_{l \to \infty} x'_l = x$. Next select a convex open set $U \subset \mathbb{R}^n$ such that $x \in U \subset O$. Then x_l and x'_l belong to U if l is sufficiently large. For such l, the Mean Value Theorem 2.5.3 gives the existence of k > 0 having the property $g(x_l, x'_l) \leq k$, which is a contradiction.

Definition 3.1.2 on page 88. *Replace the displayed formula by the following:*

$$\Psi^* f = f \circ \Psi : V \to \mathbf{R}^p$$
, that is $\Psi^* f(y) = f(\Psi(y))$ $(y \in V)$,

Subsection 3.4.(C) on page 98. Replace the first display in this subsection by the following:

 $\mathbf{R}^p \supset \mathbf{R}^n \times \mathbf{R}^p \supset \mathbf{R}^n \qquad \text{given by} \qquad y \stackrel{\psi \times I}{\longmapsto} (\psi(y), y) \stackrel{f}{\mapsto} f(\psi(y), y) = 0.$

Theorem 3.5.1 on page 100. *Replace the sentence following the first display in the theorem by the following:*

Then there exist open neighborhoods U of x^0 in \mathbb{R}^n and V of y^0 in \mathbb{R}^p with the following properties: $U \times V \subset W$ and

Application A on page 101. *Replace the last sentence (on page 102) in the application by the follow-ing:*

That theorem in algebra asserts that there does not exist a formula which gives the zeros of a general polynomial function of degree n in terms of the coefficients of that function by means of addition, subtraction, multiplication, division and extraction of roots, if $n \ge 5$ and one even works over C.

Application C on page 103. *Replace the second sentence by the following:* Consider the following equation for $x \in \mathbf{R}$ with $y \in \mathbf{R}$ as a parameter

Application D on page 104. *Replace the sentence following the second display by the following:* Now, for all $(x; y) \in \mathbf{R}^n \times \mathbf{R}^{n^2+n}$ and $1 \le i, j \le n$,

Text preceding Definition 4.1.2 on page 108. *Replace the last sentence preceding the definition by the following:*

There are two other common ways of specifying sets V: in Definitions 4.1.2 and 4.1.3 the set V is described as an **image**, or **inverse image**, respectively, under a mapping.

Proof of Rank Lemma 4.2.7 on page 113. *Replace the first part of the proof by the following:*

Only (i) \Rightarrow (ii) needs verification. In view of the equality dim(ker A) + r = n, we can find a basis (a_{r+1}, \ldots, a_n) of ker $A \subset \mathbf{R}^n$ and vectors a_1, \ldots, a_r complementing this basis to a basis of \mathbf{R}^n . Define $\Psi \in \operatorname{Aut}(\mathbf{R}^n)$ setting $\Psi e_j = a_j$, for $1 \leq j \leq n$. Then $(A\Psi)e_j = Aa_j$, for $1 \leq j \leq r$, and $(A\Psi)e_j = 0$, for $r < j \leq n$. The vectors $b_j = Aa_j$, for $1 \leq j \leq r$, form a basis of im $A \subset \mathbf{R}^p$. Let us complement them by vectors b_{r+1}, \ldots, b_p to a basis of \mathbf{R}^p . Define $\Phi \in \operatorname{Aut}(\mathbf{R}^p)$ by $\Phi b_i = e'_i$, for $1 \leq i \leq p$. Then the operators Φ and Ψ are the required ones, since

$$(\Phi \circ A \circ \Psi)e_j = \begin{cases} e'_j, & 1 \le j \le r; \\ 0, & r < j \le n. \end{cases}$$

Proof of Rank Lemma 4.2.7 on page 114. *Replace the final part of the proof by the following:* such that $Aa_i = e'_i$, for $1 \le i \le p$. Then $\Phi = I$.

Proof of Rank Lemma 4.2.7 on page 114. Insert the following immediately after the proof: Alternatively, the equality of the ranks of A and A^t may be verified as follows. We have $\mathbf{R}^n = \ker A \oplus \operatorname{im} A^t$. In fact,

$$\begin{array}{ll} x \in \ker A & \iff & Ax = 0 & \iff & \langle Ax, y \rangle = 0 & (y \in \mathbf{R}^p) \\ \Leftrightarrow & \langle x, A^t y \rangle = 0 & (y \in \mathbf{R}^p) & \iff & x \in (\operatorname{im} A^t)^{\perp} \end{array}$$

Hence $(\ker A)^{\perp} = (\operatorname{im} A^t)^{\perp \perp} = \operatorname{im} A^t$ and so the equality follows from $\mathbf{R}^n = \ker A \oplus (\ker A)^{\perp}$. Furthermore, we know $\dim \mathbf{R}^n = \dim \ker A + \operatorname{rank} A$.

Theorem 4.3.1 on page 114. Replace the first sentence of the theorem by the following: Let d < n and let $D_0 \subset \mathbf{R}^d$ be an open subset, let $k \in \mathbf{N}_{\infty}$ and let $\phi : D_0 \to \mathbf{R}^n$ be a C^k mapping.

Theorem 4.3.1 on page 114. *Replace the first part of the first sentence of (ii) in the theorem by the following:*

There exist an open neighborhood U of x^0 in \mathbb{R}^n that contains $\phi(D)$ and

Corollary 4.3.2 on page 116. Replace the initial part of the first sentence of the corollary by the following: Let let $d \in \mathbf{n}$ and $D \in \mathbf{R}^d$ be a parametry open subset suppose $h \in \mathbf{N}$.

Let let $d \leq n$ and $D \subset \mathbf{R}^d$ be a nonempty open subset, suppose $k \in \mathbf{N}_{\infty}$,

Proof of Corollary 4.3.2 on page 116. Replace $\phi^{-1}(\phi(D) \cap U) = D(y)$ in the fourth sentence of the proof by the following: $\phi^{-1}(U) = D(y)$. **Example 4.5.1 on page 121.** Replace the last sentence of the first paragraph by the following: Note that in these (y, c)-coordinates a circle is locally described as the **affine** submanifold of \mathbb{R}^3 given by c equals a constant vector.

Theorem 4.5.2 on page 121. *Replace assertion (i) of the theorem by the following:*

The restriction of g to U is an open surjection onto C.

Replace assertion (iii) of the theorem by the following:

There exists a C^k diffeomorphism $\Phi: U \to \Phi(U) \subset \mathbf{R}^n$ such that Φ maps the manifold $N(c) \cap U$ in \mathbf{R}^n into the affine submanifold of \mathbf{R}^n given by

 $\{(x_1,\ldots,x_n)\in\mathbf{R}^n\mid (x_{d+1},\ldots,x_n)=c\}.$

Remark on page 124. *Replace the last sentence by the following:*

The fibers N(c) together form a *fiber bundle*: under the diffeomorphism Φ from the Submersion Theorem they are locally transferred into the affine submanifolds of \mathbb{R}^n given by the last n - d coordinates being constant.

Example 4.6.2 on page 124. *Add the following sentence at the end of the example:*

See Exercises 4.22 and 5.58 for an explicit description of $SO(3, \mathbf{R})$ and Exercise 4.23 for more details on $SO(n, \mathbf{R})$, the subgroup of $O(n, \mathbf{R})$ consisting of matrices of determinant 1.

Theorem 4.7.1 on page 126. *Replace the display in assertion (iii) of the theorem by the following:*

$$V \cap U = N(g, 0) = \{ x \in U \mid g(x) = 0 \}.$$

Replace the initial part of assertion (iv) of the theorem by the following: There exist an open neighborhood U in \mathbf{R}^n of x, a C^k diffeomorphism $\Phi : U \to \Phi(U)$ in \mathbf{R}^n and an open subset Y of \mathbf{R}^d such that

Remark on page 128. *Add the following at the end of the remark:* Furthermore, if *V* is not smooth it is often called an *affine algebraic variety*.

Remark on page 135. Replace the first sentence by the following: In classical textbooks, and in drawings, it is more common to refer to the affine manifold $x + T_x V$ as the tangent space of V at the point x: the affine manifold which has a contact of order 1 with V at x.

Example 5.3.2 on page 138. Add the following sentence at the end of the example: Therefore the angle itself always equals $\frac{\pi}{4}$.

Example 5.3.3 on page 138. *Insert the following words immediately after* **Example 5.3.***3:* (Parametrized surface).

Example 5.3.4 on page 139. *Insert the following words immediately after* **Example 5.3.4***:* **(Space curve given by equations).**

Example 5.3.4 on page 140. *Add the following at the end of the example:* Phrased differently in terms of the cross product, we have

 $T_x V = \mathbf{R}(\operatorname{grad} g_1(x) \times \operatorname{grad} g_2(x)).$

Example 5.3.5 on page 140. *Replace the second displayed formula of the example by the following:*

$$Dg(x)h = 0 \quad \iff \quad \langle \operatorname{grad} g_1(x), h \rangle = \cdots = \langle \operatorname{grad} g_{n-d}(x), h \rangle = 0$$

Add the following at the end of the example:

Equations for the geometric tangent space $x + T_x V$ are obtained as follows. Consider $h \in x + T_x V$, then h = x + k where $k \in T_x V$. Thus, k = h - x implies

$$0 = Dg(x)k = Dg(x)(h-x) = Dg(x)h - Dg(x)x.$$

In other words, $x + T_x V$ arises as the set of solutions $h \in \mathbf{R}^n$ of a system of n - d inhomogeneous linear equations or, more precisely,

$$x + T_x V = \{ h \in \mathbf{R}^n \mid Dg(x)h = Dg(x)x \}.$$

Example 5.3.8 on page 144. Replace the two sentences preceding the first display in the example as well as the display by: Note that $\gamma'(t) = (2t, 3t^2) \in \text{Lin}(\mathbf{R}, \mathbf{R}^2)$ is injective, unless t = 0. Furthermore, $\|\gamma'(t)\| = 2|t|\sqrt{1 + (\frac{3}{2}t)^2}$. For $t \neq 0$ we therefore have the normalized tangent vector

$$T(t) = \|\gamma'(t)\|^{-1}\gamma'(t) = \frac{\operatorname{sgn} t}{\sqrt{1 + (\frac{3}{2}t)^2}} \begin{pmatrix} 1\\ \frac{3t}{2} \end{pmatrix}.$$

The superscript t in the first formula for $\gamma'(t)$ indicates taking the transpose, but might cause confusion.

Example 5.3.11 on page 145. *Replace the first sentence following the fourth display from below on page 146 by:*

Therefore, if e_1, \ldots, e_{n-1} are the standard basis vectors of \mathbf{R}^{n-1} , it follows that $T_x V$ is spanned by the vectors $u_j := (e_j, D_j h(x'))$, for $1 \le j < n$.

Example 5.5.1 on page 151. Replace the final part of the second and the third sentence by: here $a \in S$ and $c \in \mathbf{R}$ is nonnegative. (Verify that every affine submanifold of dimension n - 1 can be represented in this form.)

Example 5.5.1 on page 151. *Insert the following at the end of the example:* Recall that Theorem 1.8.8 implies that the distance attains a minimal value.

Example 5.5.3 on page 152. Insert the following at the end of the example on page 153:

Geometrically, Hadamard's inequality follows from the following observations. The volume of the parallelepiped spanned by the vectors a_1, \ldots, a_n does not change upon replacement of the vector a_n by its component p_n perpendicular to the hyperplane spanned by the vectors a_1, \ldots, a_{n-1} , because the determinant is a multilinear and antisymmetric function. Furthermore $||p_n|| \le ||a_n||$ by Pythagoras' Theorem. Hence one obtains by downward mathematical induction on $n \ge j \ge 1$

$$|\det(a_1\cdots a_n)| = \prod_{1\le j\le n} \|p_j\| \le \prod_{1\le j\le n} \|a_j\|.$$

Text preceding Definition 5.6.1 on page 154. Replace the first part of the third sentence by: Our next goal is to define the Hessian of $f|_V$ at a critical point x^0 , ▼ Exercise 0.3 on page 177. *Replace the exercise by the following:* We have

$$\arctan x + \arctan \frac{1}{x} = \pm \frac{\pi}{2} \qquad (x \ge 0).$$

Prove this by means of the following three methods.

- (i) Set $\arctan x = \alpha$ and express $\frac{1}{x}$ in terms of α .
- (ii) Use differentiation.
- (iii) Recall that $\arctan x = \int_0^x \frac{1}{1+t^2} dt$, and make a substitution of variables.

Deduce $\lim_{x\to\infty} x(\frac{\pi}{2} - \arctan x) = 1$.

(iv) More generally show, for all x and $y \in \mathbf{R}$,

$$\arctan x + \arctan y = \begin{cases} \arctan\left(\frac{x+y}{1-xy}\right), & xy < 1; \\ \pm \frac{\pi}{2}, & xy = 1, y \ge 0; \\ \arctan\left(\frac{x+y}{1-xy}\right) \pm \pi, & xy > 1, y \ge 0. \end{cases}$$

Exercise 0.5 on page 178. *Replace in parts (i) and (ii)* " R_+e_1 " by the following: \mathbf{R}_+e_1

Exercise 0.18 on page 189. Add to the **Background** on page 190 the following: See Example 16.24 in Duistermaat, J.J., Kolk, J.A.C.: *Distributions: Proofs and Applications*. Birkhäuser, Boston 2010 for another and more detailed derivation of the results above.

Exercise 0.20 on page 191. *Replace the final part of the second sentence by the following:*

$$\zeta(2n) := \sum_{k \in \mathbf{N}} \frac{1}{k^{2n}} = (-1)^{n-1} \frac{1}{2} (2\pi)^{2n} \frac{B_{2n}}{(2n)!}.$$

Exercise 2.39.(v) on page 230. *Replace the last part of the last sentence by the following:* $(A \in \mathbf{O}(n, \mathbf{R}))$.

Exercise 2.76.(ii) on page 251. Replace the initial part of the fourth sentence by the following: On the strength of Lemma 2.7.4 we obtain $\phi_{k+1} \in C^{\infty}(U, \operatorname{Lin}^{k+1}(\mathbf{R}^n, \mathbf{R}^p))$

Exercise 4.8.(ii) on page 296. Replace the assertion by the following: Prove that a point $x \in \mathbf{R}^3$ belongs to the helicoid if and only if $x_1 \sin \frac{x_3}{a} - x_2 \cos \frac{x_3}{a} = 0$.

Exercise 5.18.(iii) on page 323. *Replace the assertion by the following:* Show that $\begin{bmatrix} \pi & \pi \end{bmatrix}$

$$L = \{ (r, \alpha) \in [-1, 1] \times \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \mid r^2 = \cos 2\alpha \}.$$

Exercise 5.51.(ii) on page 357. *Replace the first sentence by the following:* Using the substitution $\sqrt{1-t^2} = y$, prove

Exercise 5.71.(i) on page 393. *Replace the last part of the last sentence above the last display by the following:* $\lambda := D\overline{L}(I) : \mathfrak{sl}(2, \mathbb{C}) = \mathfrak{su}(2) \oplus \mathfrak{p} \to \mathfrak{lo}(4)$ (see Exercise 5.69) with

Index on page 414. *Replace "critical point of diffeomorphism" by the following:* critical point of C^1 mapping

Index on page 420. *Replace "singular point of diffeomorphism" by the following:* singular point of C^1 mapping

▼ **Proof. of Theorem 6.2.8 on page 428.** *Replace the first display by the following:*

 $\sup_{B} f - \inf_{B} f = (\sup_{B} f_{+} - \inf_{B} f_{+}) + (\sup_{B} f_{-} - \inf_{B} f_{-});$

Remark on page 436. Add the following at the end of the remark: A simpler example is given by $f = 1_{(\mathbf{Q} \cap [0,1]) \times \{0\}}$.

Example 6.6.4 on page 447. Replace the initial part of the sentence following the third display in the example by the following: Consider $-\pi \le \alpha_1 \le \alpha_2 \le \pi$ and $\phi \in C(]\alpha_1, \alpha_2[)$ and suppose $\phi > 0$,

Example 6.6.8 on page 450. *Replace the fifth display in the example by the following:*

$$\det (x'(s) \ x'(s)) + \det (x(s) \ x''(s)) = \det (x(s) \ x''(s)) = 0.$$

Section 7.1 on page 487. *Replace the first sentence in the second paragraph of the section by the following:*

First we consider this problem locally, that is, in a sufficiently small neighborhood U in \mathbb{R}^n of a point $x \in V$.

Example 7.4.1 on page 498. *Replace the last sentence in the first paragraph on page 499 by the following:*

Indeed, the ellipse is the image under the embedding $t \mapsto (a \sin t, b \cos t)$.

▼ Footnote on page 504. *The proof as given in the reference is erroneous, but other, correct, proofs do exist.*

For more details, see Casselman, B.: The difficulties of kissing in three dimensions. Notices Amer. Math. Soc. 51 (2004), 884-885.

Notation on page 512. Replace the first sentence after the second display by the following: For $x = \phi(y) \in \partial\Omega \cap U$ the column vectors $D_j\phi(y)$ in the matrix $D\phi(y)$, for $1 \le j < n$, form a basis for $T_x(\partial\Omega)$, the tangent space to $\partial\Omega$ at x.

▼ Notation on page 512. *Replace the initial part of the first sentence after the sixth display by the following:* Note that $\partial \Omega \cap U \supset \Psi(\{0\} \times D)$; **Third display on page 523.** Replace the sentence containing this display by the following: Begin by assuming that S is a closed (and hence compact) subset of $\partial\Omega$ such that

$$\partial'\Omega := \partial\Omega \setminus S$$

is in fact an (n-1)-dimensional C^1 manifold, with Ω at one side of $\partial'\Omega$ at each point of $\partial'\Omega$. Perform the substitution of W by $\partial'\Omega$ systematically up till Gauss' Divergence Theorem 7.8.5. In particular, replace Formula (7.54) by the following:

$$\int_{\Omega} D_j((1-\chi)f)(x) \, dx = \int_{\partial'\Omega} \left((1-\chi)f\,\nu_j\right)(y) \, d_{n-1}y.$$

Replace the first sentence on page 524 by the following:

As a result, the left-hand side in (7.54) converges to $\int_{\Omega} (D_j f)(x) dx$, if $\epsilon \downarrow 0$; and the right-hand side in (7.54) converges to $\int_{\partial'\Omega} (f \nu_j)(y) d_{n-1}y$, if U shrinks to S.

Replace the last sentence of Gauss' Divergence Theorem 7.8.5 on page 529 by the following: Then

$$\int_{\Omega} \operatorname{div} f(x) \, dx = \int \langle f, \nu \rangle(y) \, d_{n-1}y,$$

where the integration on the right-hand side is performed over $\partial \Omega$ or $\partial' \Omega$, respectively.

Example 7.8.4 on page 528. *Replace the initial part of the fourth sentence by the following:* Note that if n > 2 (see Exercises 2.30 and 2.40.(iv))

Examples 7.9.6 and 7.9.7 on pages 534 and 535. *Both examples are not applications of Gauss' Divergence Theorem 7.8.5, but of Corollary 7.6.2. Hence they should be moved to Section 7.6.*

Definition 8.3.1 on page 552. Replace the first part of the second sentence by: Assume that $I \to \partial \Omega$ with $t \mapsto y(t)$ is a C^1 parametrization of $\partial \Omega$ by the disjoint union I of finitely many intervals in **R**,

Theorem 8.4.4 on page 560. *Replace the title of the theorem by:* **Theorem 8.4.4 (Stokes' Integral Theorem).**

Text following Proposition 8.5.5 on page 567. *Replace the last part of the second sentence by:* whether we may choose such an Ω so that it lies inside of U.

Definition 8.6.1 on page 568. *Replace the last word of the last sentence by:* transpositions of neighbors.

Example 8.6.5 on page 570. *Replace the middle part of the seventh sentence by:* $b_{n-1}v$, for $v = (v_1, \ldots, v_n) \in \mathbf{R}^n$,

Text on top of page 575. *Add to the first sentence:* , in the notation of Definition 8.7.4 below,

Text preceding Lemma 8.7.1 on page 577. *Replace the last word of the penultimate sentence by:* transpositions of neighbors

Example 8.8.3 on page 583. *Replace the last paragraph by the following:*

Now assume K to be a convex set. Every C^2 mapping $f: U \to \mathbb{R}^n$ which maps K into itself has a fixed point in K, in other words, there exists an $x \in K$ with f(x) = x. Indeed, if $x \neq f(x)$ for all $x \in K$, one can assign to x the unique point of intersection g(x) with ∂K of the half-line from f(x) to x. The mapping $g: K \to \partial K$ thus defined can be extended to a C^2 mapping $g: U \to \partial K$ for an open neighborhood U of B, but this leads to a contradiction with the foregoing.

▼ Exercise 6.9 on page 600. Replace the second sentence by the following: Prove $\int_B ||x||^{-1} dx = 8 \log(1 + \sqrt{2}).$

Exercise 6.20 on page 602. *Replace the second sentence by the following:* Prove, for all $y \in \mathbf{R}^3 \setminus \{0\}$,

Exercise 6.39 on page 612. *Add to the* **Background** *on page 613 the following:* Using this functional equation one sees at once

$$\sum_{n \in \mathbf{N}} \frac{1}{2^n n^2} = \frac{\pi^2}{12} - \frac{\log^2 2}{2}.$$

Replace the sentence on page 614 preceding the second display by the following: Furthermore, the Clausen function $Cl_2 : \mathbf{R} \to \mathbf{R}$, and the Lobachevsky function $\Pi : \mathbf{R} \to \mathbf{R}$ are defined by (see Exercise 0.18.(i) and use termwise integration)

Add the following at the end of the exercise:

(vii) Use $\int_0^{\frac{\pi}{2}} \log(\sin x) dx = -\frac{\pi}{2} \log 2$ and the substitution $x = \arctan \frac{1}{t}$ to derive

$$\int_0^\infty \frac{\log(1+t^2)}{1+t^2} \, dt = \pi \log 2$$

Exercise 6.96 on page 657. *Replace the second formula in the display in part (i) by the following:* $\mu := \int_{\mathbf{R}} x f_{\alpha, \lambda}(x) dx = \frac{\alpha}{\lambda}$,

Exercise 6.99 on page 660. Replace the first sentence in part (x) by the following: Prove that there exists a harmonic function u on $\bigcup_{\pm} \mathbf{R}^{n+1}_{\pm}$ with Replace the last symbol of the first sentence in the **Background** by the following: $\bigcup_{\pm} \mathbf{R}^{n+1}_{\pm}$

Exercise 6.102 on page 665. *Replace the final part of the first sentence by the following:* **– needed for Exercises 7.30 and 8.20**

Exercise 7.46 on page 704. Add the following sentence at the end: Deduce hyperarea_{n-1}(S^{n-1}) = $n \operatorname{vol}_n(B^n)$ (compare with Example 7.9.1 and Exercises 7.21.(iv), 7.35.(iii) and 7.45.(ii)).

Exercise 7.53 on page 706. Add the following sentence at the end of part (v): In doing so, assume a function having the mean value property to belong to $C^2(\Omega)$.

▼ Exercise 8.7.(i) on page 731. *Replace the assertion by the following:* Prove

$$\int_C \langle f(s), d_1 s \rangle = -3 \int_{\{x \in \mathbf{R}^2 \mid \|x\| \le 1\}} \|x\|^2 \, dx = -\frac{3\pi}{2}$$

Exercise 8.31.(viii) on page 755. *Replace the first sentence by the following:* Try to find \mathcal{G} such that the *Lorenz gauge condition* $d^*\mathcal{G} = 0$ is satisfied. *Replace the last sentence by the following:* In general, $\mathcal{G} + df$ will satisfy the Lorenz gauge condition if $\Box f = 0$.

Index on page 785. *Replace "critical point of diffeomorphism" by the following:* critical point of C^1 mapping

Index on page 791. *Replace the last entry by the following:* Lorenz gauge condition 755

Index on page 796. *Replace "singular point of diffeomorphism" by the following:* singular point of C^1 mapping