Exercise 0.1. Define

$$g: \mathbf{R}^3 \to \mathbf{R}$$
 by $g(x) = x_1^2 + x_2^2 - (1 - x_3)x_3^2$ and $V = \{x \in \mathbf{R}^3 \mid g(x) = 0\}.$

(i) Verify that $V \subset \{x \in \mathbf{R}^3 \mid x_3 \le 1\}$.

Given an arbitrary point $x \in V$, the result in (i) suggests to write $x_3 = 1 - s^2$ for some $s \in \mathbf{R}$.

(ii) Conclude

$$V \subset \operatorname{im}(\phi)$$
 with $\phi : \mathbf{R}^2 \to \mathbf{R}^3$ given by $\phi(s, t) = (1 - s^2)(s \cos t, s \sin t, 1)$.
Show that actually one has $V = \operatorname{im}(\phi)$.

(iii) Demonstrate that ϕ is an immersion at all points of \mathbb{R}^2 with the exception of the points $(\pm 1, t)$ and (0, t), for arbitrary $t \in \mathbb{R}$. More precisely, prove

$$\dim \ker (D\phi(\pm 1, t)) = \dim \ker (D\phi(0, t)) = 1.$$

Verify
$$\phi(\pm 1, t) = 0$$
 and $\phi(0, t) = (0, 0, 1) = n$, for all $t \in \mathbf{R}$.

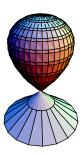


Illustration for Exercise 0.1

In the illustration we note nothing of particular interest at the point $n \in \mathbb{R}^3$ (on the contrary, we do so at $0 \in \mathbb{R}^3$).

(iv) Prove that V is a C^{∞} submanifold in \mathbb{R}^3 of dimension 2 at every point belonging to $V \setminus \{0\}$.

Background. The fact of ϕ not being an immersion at the points (0, t), therefore, is peculiar to ϕ ; in this case, it does not imply singular behavior of $\operatorname{im}(\phi)$ itself near n. Finally, without proof, we mention that V is not a submanifold in \mathbb{R}^3 of dimension 2 at 0.

Solution of Exercise 0.1. (i) $x \in V$ implies $0 \le x_1^2 + x_2^2 = (1 - x_3)x_3^2$, therefore $0 \le 1 - x_3$, that is, $x_3 \le 1$.

(ii) If
$$x_3 = 1 - s^2$$
, then $1 - x_3 = s^2$. Accordingly, for $x \in V$,

$$x_1^2 + x_2^2 = (1 - x_3)x_3^2 = (s(1 - s^2))^2$$
, so $(x_1, x_2) = s(1 - s^2)(\cos t, \sin t)$,

for suitable $t \in \mathbf{R}$, on account of the parametrization of a circle by trigonometric functions. Thus we obtain $V \subset \operatorname{im}(\phi)$. Conversely, for every $x \in \operatorname{im}(\phi)$,

$$x_1^2 + x_2^2 = (s(1-s^2))^2$$
 and $(1-x_3)x_3^2 = s^2(1-s^2)^2$, that is $g(x) = 0$.

(iii) Suppose, for $h \in \mathbf{R}^2$,

$$D\phi(s,t)h = \begin{pmatrix} (1-3s^2)\cos t & -s(1-s^2)\sin t \\ (1-3s^2)\sin t & s(1-s^2)\cos t \\ -2s & 0 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \star \\ \star \\ -2sh_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

If $s \neq 0$, it follows that $h_1 = 0$. The two top equations above then give

$$h_2 s(1-s^2) \sin t = h_2 s(1-s^2) \cos t = 0$$
, so $s(1-s^2)h_2 = 0$.

Accordingly, if $s \notin \{-1, 0, 1\}$, then $h_2 = 0$ too; and therefore ϕ is immersive in this case. On the other hand,

$$D\phi(\pm 1, t) = -2 \begin{pmatrix} \cos t & 0 \\ \sin t & 0 \\ \pm 1 & 0 \end{pmatrix}, \qquad D\phi(0, t) = \begin{pmatrix} \cos t & 0 \\ \sin t & 0 \\ 0 & 0 \end{pmatrix},$$

which shows that all three of these mappings in $\text{Lin}(\mathbf{R}^2, \mathbf{R}^3)$ have a one-dimensional kernel. It is direct from the definition that $\phi(\pm 1, t) = 0$ and $\phi(0, t) = n$, for all $t \in \mathbf{R}$.

(iv) We have, for $x \in V$,

$$Dg(x) = (2x_1, 2x_2, -2x_3 + 3x_3^2) \in Lin(\mathbf{R}^3, \mathbf{R}).$$

This mapping fails to be surjective only if all its entries equal 0, which is the case only if x = 0 (the solution with $x_3 = \frac{2}{3}$ does not belong to V). Hence, g is submersive at all points of $V \setminus \{0\}$; and on the strength of the Submersion Theorem 4.5.2 we now obtain that V is a C^{∞} manifold in \mathbb{R}^3 of dimension 2 at all of its points, with the possible exception of the point 0.