Exercise 0.1. Define $$g: \mathbf{R}^3 \to \mathbf{R}$$ by $g(x) = x_1^2 + x_2^2 - (1 - x_3)x_3^2$ and $V = \{x \in \mathbf{R}^3 \mid g(x) = 0\}.$ (i) Verify that $V \subset \{x \in \mathbf{R}^3 \mid x_3 \le 1\}$. Given an arbitrary point $x \in V$, the result in (i) suggests to write $x_3 = 1 - s^2$ for some $s \in \mathbf{R}$. (ii) Conclude $$V \subset \operatorname{im}(\phi)$$ with $\phi : \mathbf{R}^2 \to \mathbf{R}^3$ given by $\phi(s, t) = (1 - s^2)(s \cos t, s \sin t, 1)$. Show that actually one has $V = \operatorname{im}(\phi)$. (iii) Demonstrate that ϕ is an immersion at all points of \mathbb{R}^2 with the exception of the points $(\pm 1, t)$ and (0, t), for arbitrary $t \in \mathbb{R}$. More precisely, prove $$\dim \ker (D\phi(\pm 1, t)) = \dim \ker (D\phi(0, t)) = 1.$$ Verify $$\phi(\pm 1, t) = 0$$ and $\phi(0, t) = (0, 0, 1) = n$, for all $t \in \mathbf{R}$. ## Illustration for Exercise 0.1 In the illustration we note nothing of particular interest at the point $n \in \mathbb{R}^3$ (on the contrary, we do so at $0 \in \mathbb{R}^3$). (iv) Prove that V is a C^{∞} submanifold in \mathbb{R}^3 of dimension 2 at every point belonging to $V \setminus \{0\}$. **Background.** The fact of ϕ not being an immersion at the points (0, t), therefore, is peculiar to ϕ ; in this case, it does not imply singular behavior of $\operatorname{im}(\phi)$ itself near n. Finally, without proof, we mention that V is not a submanifold in \mathbb{R}^3 of dimension 2 at 0. **Solution of Exercise 0.1.** (i) $x \in V$ implies $0 \le x_1^2 + x_2^2 = (1 - x_3)x_3^2$, therefore $0 \le 1 - x_3$, that is, $x_3 \le 1$. (ii) If $$x_3 = 1 - s^2$$, then $1 - x_3 = s^2$. Accordingly, for $x \in V$, $$x_1^2 + x_2^2 = (1 - x_3)x_3^2 = (s(1 - s^2))^2$$, so $(x_1, x_2) = s(1 - s^2)(\cos t, \sin t)$, for suitable $t \in \mathbf{R}$, on account of the parametrization of a circle by trigonometric functions. Thus we obtain $V \subset \operatorname{im}(\phi)$. Conversely, for every $x \in \operatorname{im}(\phi)$, $$x_1^2 + x_2^2 = (s(1-s^2))^2$$ and $(1-x_3)x_3^2 = s^2(1-s^2)^2$, that is $g(x) = 0$. (iii) Suppose, for $h \in \mathbf{R}^2$, $$D\phi(s,t)h = \begin{pmatrix} (1-3s^2)\cos t & -s(1-s^2)\sin t \\ (1-3s^2)\sin t & s(1-s^2)\cos t \\ -2s & 0 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \star \\ \star \\ -2sh_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$ If $s \neq 0$, it follows that $h_1 = 0$. The two top equations above then give $$h_2 s(1-s^2) \sin t = h_2 s(1-s^2) \cos t = 0$$, so $s(1-s^2)h_2 = 0$. Accordingly, if $s \notin \{-1, 0, 1\}$, then $h_2 = 0$ too; and therefore ϕ is immersive in this case. On the other hand, $$D\phi(\pm 1, t) = -2 \begin{pmatrix} \cos t & 0 \\ \sin t & 0 \\ \pm 1 & 0 \end{pmatrix}, \qquad D\phi(0, t) = \begin{pmatrix} \cos t & 0 \\ \sin t & 0 \\ 0 & 0 \end{pmatrix},$$ which shows that all three of these mappings in $\text{Lin}(\mathbf{R}^2, \mathbf{R}^3)$ have a one-dimensional kernel. It is direct from the definition that $\phi(\pm 1, t) = 0$ and $\phi(0, t) = n$, for all $t \in \mathbf{R}$. (iv) We have, for $x \in V$, $$Dg(x) = (2x_1, 2x_2, -2x_3 + 3x_3^2) \in Lin(\mathbf{R}^3, \mathbf{R}).$$ This mapping fails to be surjective only if all its entries equal 0, which is the case only if x = 0 (the solution with $x_3 = \frac{2}{3}$ does not belong to V). Hence, g is submersive at all points of $V \setminus \{0\}$; and on the strength of the Submersion Theorem 4.5.2 we now obtain that V is a C^{∞} manifold in \mathbb{R}^3 of dimension 2 at all of its points, with the possible exception of the point 0.