Exercise 0.1 (Left-invariant integration on $\operatorname{Mat}(n, \mathbf{R})$). As usual, we write $C_{0}\left(\mathbf{R}^{n}\right)$ for the linear space of continuous functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ having bounded support. Furthermore, we identify the linear space $\operatorname{Mat}(n, \mathbf{R})$ of $n \times n$ matrices over \mathbf{R} with $\mathbf{R}^{n^{2}}$; in this way, by using n^{2}-dimensional integration, we assign a meaning to

$$
\int_{\operatorname{Mat}(n, \mathbf{R})} f(X) d X \quad\left(f \in C_{0}(\operatorname{Mat}(n, \mathbf{R}))\right)
$$

(i) In particular, suppose $n=2$ and consider the subgroup

$$
\mathbf{S O}(2, \mathbf{R})=\left\{\left.\left(\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \in \operatorname{Mat}(2, \mathbf{R}) \right\rvert\,-\pi<\alpha \leq \pi\right\}
$$

of all orthogonal matrices in $\operatorname{Mat}(2, \mathbf{R})$ of determinant 1. Without proof one may use that ϕ is a C^{∞} embedding if we define

$$
\phi:]-\pi, \pi\left[\rightarrow \mathbf{R}^{4} \quad \text { by } \quad \phi(\alpha)=(\cos \alpha, \sin \alpha,-\sin \alpha, \cos \alpha) .\right.
$$

Now prove $\operatorname{vol}_{1}(\mathbf{S O}(2, \mathbf{R}))=2 \pi \sqrt{2}$.
(ii) Prove, for any $f \in C_{0}(\mathbf{R})$ with $0 \notin \operatorname{supp} f$ and any $0 \neq y \in \mathbf{R}$,

$$
\int_{\mathbf{R}} \frac{f(y x)}{x} d x=\int_{\mathbf{R}} \frac{f(x)}{x} d x
$$

We now generalize the identity in part (ii) to $\operatorname{Mat}(n, \mathbf{R})$. We shall prove, for every $f \in C_{0}(\operatorname{Mat}(n, \mathbf{R}))$ with $\operatorname{supp} f \subset \mathbf{G L}(n, \mathbf{R})$ (= the group of invertible matrices in $\operatorname{Mat}(n, \mathbf{R})$) and $Y \in \mathbf{G L}(n, \mathbf{R})$,

$$
\int_{\operatorname{Mat}(n, \mathbf{R})} \frac{f(Y X)}{|\operatorname{det} X|^{n}} d X=\int_{\operatorname{Mat}(n, \mathbf{R})} \frac{f(X)}{|\operatorname{det} X|^{n}} d X
$$

Given $Y \in \mathbf{G L}(n, \mathbf{R})$, define

$$
\Phi_{Y}: \operatorname{Mat}(n, \mathbf{R}) \rightarrow \operatorname{Mat}(n, \mathbf{R}) \quad \text { by } \quad \Phi_{Y}(X)=Y X
$$

(iii) Show that Φ_{Y} is a C^{∞} diffeomorphism satisfying $D \Phi_{Y}(X)=\Phi_{Y}$, for all $X \in \operatorname{Mat}(n, \mathbf{R})$.

Denote by e_{1}, \ldots, e_{n} the standard basis (column) vectors in \mathbf{R}^{n}, then a basis for Mat (n, \mathbf{R}) is formed by the matrices

$$
E_{i, j}=\left(0 \cdots 0 e_{i} 0 \cdots 0\right) \quad(1 \leq i, j \leq n),
$$

where e_{i} occurs in the j-th column. The ordering is lexicographic, but first with respect to j and then to i. In the case of $n=2$ we thus obtain, in the following order:

$$
E_{1,1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2,1}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{1,2}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{2,2}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

(iv) Verify $\Phi_{Y}\left(E_{i, j}\right)=\left(0 \ldots 0 Y e_{i} 0 \ldots 0\right)$. Deduce that the matrix of Φ_{Y} with respect to the $\left(E_{i, j}\right)$ is given in block diagonal form with a copy of Y in each block and that $\operatorname{det} \Phi_{Y}=(\operatorname{det} Y)^{n}$.
Hint: First consider explicitly the case of $n=2$, where the matrix of Φ_{Y} belongs to $\operatorname{Mat}(4, \mathbf{R})$. Then treat the general case.
(v) Prove $\Phi_{Y}(\mathbf{G L}(n, \mathbf{R})) \subset \mathbf{G L}(n, \mathbf{R})$. Now show the validity of (\star) above by applying parts (iii) and (iv).
(vi) Select $Y \in \mathbf{G L}(n, \mathbf{R})$ satisfying $\operatorname{det} Y=-1$ and set $f(X)=\operatorname{det} X$. With these data (\star) implies $-1=1$. Explain!

Solution of Exercise 0.1

(i) We have

$$
\|D \phi(\alpha)\|=\|(-\sin \alpha, \cos \alpha,-\cos \alpha,-\sin \alpha)\|=\sqrt{2}
$$

Therefore integration of the constant function 1 over the submanifold $\mathbf{S O}(2, \mathbf{R})$ with respect to the Euclidean density gives $\int_{-\pi}^{\pi} \sqrt{2} d \alpha=2 \pi \sqrt{2}$.
(ii) The formula is a direct consequence of the substitution $x \mapsto y x$ in the right-hand side of the given formula.
(iii) The coefficients of the product matrix $Y X$ are given by polynomial functions in the coefficients of Y and X, therefore Φ_{Y} is a C^{∞} mapping. As $Y \in \mathbf{G L}(n, \mathbf{R})$, the mapping Φ_{Y} is invertible, with $\Phi_{Y^{-1}}$ as its inverse; and this shows that Φ_{Y} is a C^{∞} diffeomorphism. The formula for $D \Phi_{Y}$ follows from Example 2.2.5, because Φ_{Y} is a linear mapping.
(iv) On account of the properties of matrix multiplication we have

$$
\begin{aligned}
\Phi_{Y}\left(E_{i, j}\right) & =Y E_{i, j}=Y\left(0 \cdots 0 e_{i} 0 \cdots 0\right)=\left(Y 0 \cdots Y 0 Y e_{i} Y 0 \cdots Y 0\right) \\
& =\left(0 \cdots 0 Y e_{i} 0 \cdots 0\right) .
\end{aligned}
$$

The matrix of Φ_{Y} is obtained by successively applying Φ_{Y} to all the basis vectors in $\operatorname{Mat}(n, \mathbf{R})$. Since the resulting $n^{2} \times n^{2}$ matrix contains n identical blocks along the diagonal, the formula for $\operatorname{det} \Phi_{Y}$ follows.
(v) The inclusion is a consequence of the multiplicative property of the determinant. Application of the Change of Variables Theorem 6.6 .1 with $\Psi=\Phi_{Y}$ leads to $(*)$, because $\left|\operatorname{det} D \Phi_{Y}(X)\right|=$ $\left|\operatorname{det} \Phi_{Y}\right|=|\operatorname{det} Y|^{n}$, for all $X \in \operatorname{Mat}(n, \mathbf{R})$.
(vi) In this case, the function f has no bounded support. Actually, the integral on the right-hand side of $(*)$ is divergent.

