Exercise 0.1 (Left-invariant integration on $Mat(n, \mathbf{R})$). As usual, we write $C_0(\mathbf{R}^n)$ for the linear space of continuous functions $f : \mathbf{R}^n \to \mathbf{R}$ having bounded support. Furthermore, we identify the linear space $Mat(n, \mathbf{R})$ of $n \times n$ matrices over \mathbf{R} with \mathbf{R}^{n^2} ; in this way, by using n^2 -dimensional integration, we assign a meaning to

$$\int_{\operatorname{Mat}(n,\mathbf{R})} f(X) \, dX \qquad \big(f \in C_0(\operatorname{Mat}(n,\mathbf{R}))\big).$$

(i) In particular, suppose n = 2 and consider the subgroup

$$\mathbf{SO}(2,\mathbf{R}) = \left\{ \left(\begin{array}{c} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{array} \right) \in \operatorname{Mat}(2,\mathbf{R}) \ \middle| \ -\pi < \alpha \le \pi \right\}$$

of all orthogonal matrices in $Mat(2, \mathbf{R})$ of determinant 1. Without proof one may use that ϕ is a C^{∞} embedding if we define

$$\phi:] -\pi, \pi[\rightarrow \mathbf{R}^4 \qquad \text{by} \qquad \phi(\alpha) = (\cos \alpha, \sin \alpha, -\sin \alpha, \cos \alpha).$$

Now prove $\operatorname{vol}_1(\mathbf{SO}(2, \mathbf{R})) = 2\pi\sqrt{2}$.

(ii) Prove, for any $f \in C_0(\mathbf{R})$ with $0 \notin \operatorname{supp} f$ and any $0 \neq y \in \mathbf{R}$,

$$\int_{\mathbf{R}} \frac{f(yx)}{x} \, dx = \int_{\mathbf{R}} \frac{f(x)}{x} \, dx$$

We now generalize the identity in part (ii) to $Mat(n, \mathbf{R})$. We shall prove, for every $f \in C_0(Mat(n, \mathbf{R}))$ with supp $f \subset \mathbf{GL}(n, \mathbf{R})$ (= the group of invertible matrices in $Mat(n, \mathbf{R})$) and $Y \in \mathbf{GL}(n, \mathbf{R})$,

(*)
$$\int_{\operatorname{Mat}(n,\mathbf{R})} \frac{f(YX)}{|\det X|^n} dX = \int_{\operatorname{Mat}(n,\mathbf{R})} \frac{f(X)}{|\det X|^n} dX.$$

Given $Y \in \mathbf{GL}(n, \mathbf{R})$, define

$$\Phi_Y : \operatorname{Mat}(n, \mathbf{R}) \to \operatorname{Mat}(n, \mathbf{R}) \qquad \text{by} \qquad \Phi_Y(X) = Y X.$$

(iii) Show that Φ_Y is a C^{∞} diffeomorphism satisfying $D\Phi_Y(X) = \Phi_Y$, for all $X \in Mat(n, \mathbf{R})$.

Denote by e_1, \ldots, e_n the standard basis (column) vectors in \mathbb{R}^n , then a basis for $Mat(n, \mathbb{R})$ is formed by the matrices

$$E_{i,j} = (0 \cdots 0 \ e_i \ 0 \cdots 0) \qquad (1 \le i, j \le n),$$

where e_i occurs in the *j*-th column. The ordering is lexicographic, but first with respect to *j* and then to *i*. In the case of n = 2 we thus obtain, in the following order:

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- (iv) Verify $\Phi_Y(E_{i,j}) = (0 \dots 0 Y e_i 0 \dots 0)$. Deduce that the matrix of Φ_Y with respect to the $(E_{i,j})$ is given in block diagonal form with a copy of Y in each block and that $\det \Phi_Y = (\det Y)^n$. **Hint:** First consider explicitly the case of n = 2, where the matrix of Φ_Y belongs to $Mat(4, \mathbf{R})$. Then treat the general case.
- (v) Prove $\Phi_Y(\mathbf{GL}(n, \mathbf{R})) \subset \mathbf{GL}(n, \mathbf{R})$. Now show the validity of (*) above by applying parts (iii) and (iv).

(vi) Select $Y \in \mathbf{GL}(n, \mathbf{R})$ satisfying det Y = -1 and set $f(X) = \det X$. With these data (*) implies -1 = 1. Explain!

Solution of Exercise 0.1

(i) We have

$$\|D\phi(\alpha)\| = \|(-\sin\alpha, \cos\alpha, -\cos\alpha, -\sin\alpha)\| = \sqrt{2}.$$

Therefore integration of the constant function 1 over the submanifold $SO(2, \mathbf{R})$ with respect to the Euclidean density gives $\int_{-\pi}^{\pi} \sqrt{2} d\alpha = 2\pi\sqrt{2}$.

- (ii) The formula is a direct consequence of the substitution $x \mapsto yx$ in the right-hand side of the given formula.
- (iii) The coefficients of the product matrix Y X are given by polynomial functions in the coefficients of Y and X, therefore Φ_Y is a C^{∞} mapping. As $Y \in \mathbf{GL}(n, \mathbf{R})$, the mapping Φ_Y is invertible, with $\Phi_{Y^{-1}}$ as its inverse; and this shows that Φ_Y is a C^{∞} diffeomorphism. The formula for $D\Phi_Y$ follows from Example 2.2.5, because Φ_Y is a linear mapping.
- (iv) On account of the properties of matrix multiplication we have

$$\Phi_Y(E_{i,j}) = Y E_{i,j} = Y (0 \cdots 0 e_i \ 0 \cdots 0) = (Y 0 \cdots Y 0 Y e_i \ Y 0 \cdots Y 0)$$

= (0 \dots 0 Y e_i \ 0 \dots 0).

The matrix of Φ_Y is obtained by successively applying Φ_Y to all the basis vectors in Mat (n, \mathbf{R}) . Since the resulting $n^2 \times n^2$ matrix contains n identical blocks along the diagonal, the formula for det Φ_Y follows.

- (v) The inclusion is a consequence of the multiplicative property of the determinant. Application of the Change of Variables Theorem 6.6.1 with Ψ = Φ_Y leads to (*), because |det DΦ_Y(X)| = |det Φ_Y| = |det Y|ⁿ, for all X ∈ Mat(n, **R**).
- (vi) In this case, the function f has no bounded support. Actually, the integral on the right-hand side of (*) is divergent.