
Exercise 0.1 (Area of n-gon). Let Ω ⊂ R2 be the bounded open subset bounded by the n-gon with
successive vertices x(1), . . . , x(n) ∈ R2 in counterclockwise orientation. Taking the upper indices
cyclically modulo n, one has
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(i) Prove (?) by means of application of Green’s Integral Theorem to Ω and the vector field f :
R2 → R2 with f(x) = (0, x1).
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Verify this identity also by rewriting its left-hand side.

Solution of Exercise 0.1

(i) We have curl f(x) = 1, for all x ∈ R2, hence Green’s Integral Theorem 8.3.5 implies
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where ∂Ωk = { y(k)(t) := x(k) + t(x(k+1) − x(k)) ∈ R2 | 0 ≤ t ≤ 1 }.

As a consequence,
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(ii) Write Ω as a union of n triangles with vertices 0, x
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1 , for 1 ≤ k ≤ n. Next, note that
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For another proof of the identity in part (ii), expand the products at its left–hand side and observe
that ∑
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