Exercise 0.1 (Area of n-gon). Let $\Omega \subset \mathbf{R}^{2}$ be the bounded open subset bounded by the n-gon with successive vertices $x^{(1)}, \ldots, x^{(n)} \in \mathbf{R}^{2}$ in counterclockwise orientation. Taking the upper indices cyclically modulo n, one has

$$
(\star) \quad \operatorname{area}(\Omega)=\frac{1}{2} \sum_{1 \leq k \leq n}\left(x_{1}^{(k+1)}+x_{1}^{(k)}\right)\left(x_{2}^{(k+1)}-x_{2}^{(k)}\right)
$$

(i) Prove (\star) by means of application of Green's Integral Theorem to Ω and the vector field f : $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ with $f(x)=\left(0, x_{1}\right)$.
(ii) Write the n-gon as a union of n triangles and deduce

$$
\sum_{1 \leq k \leq n}\left(x_{1}^{(k+1)}+x_{1}^{(k)}\right)\left(x_{2}^{(k+1)}-x_{2}^{(k)}\right)=\sum_{1 \leq k \leq n}\left(x_{1}^{(k)} x_{2}^{(k+1)}-x_{1}^{(k+1)} x_{2}^{(k)}\right)
$$

Verify this identity also by rewriting its left-hand side.

Solution of Exercise 0.1

(i) We have curl $f(x)=1$, for all $x \in \mathbf{R}^{2}$, hence Green's Integral Theorem 8.3.5 implies

$$
\operatorname{area}(\Omega)=\int_{\Omega} \operatorname{curl} f(x) d x=\int_{\partial \Omega}\left\langle f(y), d_{1} y\right\rangle=\sum_{1 \leq k \leq n} \int_{\partial \Omega_{k}}\left\langle f(y), d_{1} y\right\rangle
$$

where

$$
\partial \Omega_{k}=\left\{y^{(k)}(t):=x^{(k)}+t\left(x^{(k+1)}-x^{(k)}\right) \in \mathbf{R}^{2} \mid 0 \leq t \leq 1\right\}
$$

As a consequence,

$$
\begin{aligned}
& f \circ y^{(k)}(t)=\left(0, x_{1}^{(k)}+t\left(x_{1}^{(k+1)}-x_{1}^{(k)}\right)\right), \quad D y^{(k)}(t)=x^{(k+1)}-x^{(k)} \\
& \left\langle f \circ y^{(k)}(t), D y^{(k)}(t)\right\rangle=\left(x_{2}^{(k+1)}-x_{2}^{(k)}\right)\left(x_{1}^{(k)}+t\left(x_{1}^{(k+1)}-x_{1}^{(k)}\right)\right) \\
& \int_{\partial \Omega_{k}}\left\langle f(y), d_{1} y\right\rangle=\left(x_{2}^{(k+1)}-x_{2}^{(k)}\right) \int_{0}^{1}\left(x_{1}^{(k)}+t\left(x_{1}^{(k+1)}-x_{1}^{(k)}\right)\right) d t \\
& \quad=\left(x_{2}^{(k+1)}-x_{2}^{(k)}\right)\left(x_{1}^{(k)}+\frac{1}{2}\left(x_{1}^{(k+1)}-x_{1}^{(k)}\right)\right)=\frac{1}{2}\left(x_{1}^{(k+1)}+x_{1}^{(k)}\right)\left(x_{2}^{(k+1)}-x_{2}^{(k)}\right)
\end{aligned}
$$

(ii) Write Ω as a union of n triangles with vertices $0, x_{1}^{(k)}$ and $x_{1}^{(k+1)}$, for $1 \leq k \leq n$. Next, note that the area of such a triangle equals half the area of the parallelogram spanned by the vectors $x_{1}^{(k)}$ and $x_{1}^{(k+1)}$, where the latter area is given by

$$
\left|\begin{array}{cc}
x_{1}^{(k)} & x_{1}^{(k+1)} \\
x_{2}^{(k)} & x_{2}^{(k+1)}
\end{array}\right|=x_{1}^{(k)} x_{2}^{(k+1)}-x_{1}^{(k+1)} x_{2}^{(k)}
$$

For another proof of the identity in part (ii), expand the products at its left-hand side and observe that

$$
\sum_{1 \leq k \leq n} x_{1}^{(k+1)} x_{2}^{(k+1)}-\sum_{1 \leq k \leq n} x_{1}^{(k)} x_{2}^{(k)}=0
$$

