Exercise 0.1 (Laplacian of composition of norm and linear mapping). For x and $y \in \mathbf{R}^n$, recall that $\langle x, y \rangle = x^t y$ where x^t denotes the transpose of the column vector $x \in \mathbf{R}^n$; and furthermore, that $||x|| = \sqrt{\langle x, x \rangle}$. Fix $A \in \text{Lin}(\mathbf{R}^n, \mathbf{R}^p)$ and recall ker $A = \{x \in \mathbf{R}^n \mid Ax = 0\}$. Now define

 $f: \mathbf{R}^n \setminus \ker A \to \mathbf{R}$ by $f = \|\cdot\| \circ A$, i.e. $f(x) = \|Ax\|$; and set $f^2(x) = f(x)^2$.

- (i) Give an argument without computations that f is a positive C^{∞} function.
- (ii) By application of the chain rule to f^2 show, for $x \in \mathbf{R}^n \setminus \ker A$ and $h \in \mathbf{R}^n$,

$$Df(x)h = \frac{\langle Ax, Ah \rangle}{f(x)}$$

Deduce that

$$Df(x) \in \text{Lin}(\mathbf{R}^n, \mathbf{R})$$
 is given by $Df(x) = \frac{1}{f(x)}x^t A^t A.$

Denote by (e_1, \ldots, e_n) the standard basis vectors in \mathbb{R}^n .

(iii) For $1 \le j \le n$, derive from part (ii) that

$$D_j f(x) = \frac{\langle Ax, Ae_j \rangle}{f(x)} \quad \text{and deduce} \quad D_j^2 f(x) = \frac{\|Ae_j\|^2}{f(x)} - \frac{\langle Ax, Ae_j \rangle^2}{f^3(x)}$$

As usual, write $\Delta = \sum_{1 \le j \le n} D_j^2$ for the Laplace operator acting in \mathbb{R}^n and $||A||_{\text{Eucl}}^2 = \sum_{1 \le j \le n} ||Ae_j||^2$.

- (iv) Now demonstrate $\Delta(\|\cdot\|\circ A)(x) = \frac{\|A\|_{\text{Eucl}}^2 \|Ax\|^2 \|A^t Ax\|^2}{\|Ax\|^3}.$
- (v) Which form takes the preceding identity if A equals the identity mapping in \mathbb{R}^n ?

Solution of Exercise 0.1

- (i) The function $\sqrt{\cdot}$: $]0, \infty[\rightarrow \mathbb{R}$ is of class C^{∞} . Hence, f is the composition of C^{∞} functions, therefore the assertion follows from the chain rule.
- (ii) $f^2(x) = \langle Ax, Ax \rangle$ implies $Df^2(x)h = 2\langle Ax, Ah \rangle$ according to Corollary 2.4.3.(ii). Hence the desired formula follows from $2f(x) Df(x)h = Df^2(x)h = 2\langle Ax, Ah \rangle$ on account of the chain rule. Furthermore

$$Df(x)h = \frac{\langle Ax, Ah \rangle}{f(x)} = \frac{1}{f(x)} (Ax)^t Ah = \frac{1}{f(x)} x^t A^t Ah.$$

(iii) We have

$$D_j f(x) = Df(x)e_j = \frac{\langle Ax, Ae_j \rangle}{f(x)}$$

Application of Corollary 2.4.3.(iii) and (ii) as well as part (ii) implies

$$D_j^2 f(x) = D(D_j f)(x) e_j = \frac{\|Ae_j\|^2}{f(x)} - \frac{\langle Ax, Ae_j \rangle^2}{f^3(x)}.$$

(iv) Summation of the preceding identity for j running from 1 to n and $\langle Ax, Ae_j \rangle = \langle A^t Ax, e_j \rangle$ gives

$$\Delta f(x) = \sum_{1 \le j \le n} D_j^2 f(x) = \frac{1}{f(x)} \sum_{1 \le j \le n} \|Ae_j\|^2 - \frac{1}{f^3(x)} \sum_{1 \le j \le n} \langle A^t Ax, e_j \rangle^2.$$

Furthermore, note that, for all $y \in \mathbf{R}^n$,

$$\sum_{1 \le j \le n} \langle y, e_j \rangle^2 = \left\| \sum_{1 \le j \le n} \langle y, e_j \rangle e_j \right\|^2 = \|y\|^2.$$

(v) In this case we obtain $\Delta(\|\cdot\|)(x) = \frac{n-1}{\|x\|}$, for $x \in \mathbf{R}^n \setminus \{0\}$ (compare with Exercise 2.40.(iii)).