Exercise $\mathbf{0 . 1}$ (Laplacian of composition of norm and linear mapping). For x and $y \in \mathbf{R}^{n}$, recall that $\langle x, y\rangle=x^{t} y$ where x^{t} denotes the transpose of the column vector $x \in \mathbf{R}^{n}$; and furthermore, that $\|x\|=\sqrt{\langle x, x\rangle}$. Fix $A \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$ and recall ker $A=\left\{x \in \mathbf{R}^{n} \mid A x=0\right\}$. Now define
$f: \mathbf{R}^{n} \backslash \operatorname{ker} A \rightarrow \mathbf{R} \quad$ by $\quad f=\|\cdot\| \circ A, \quad$ i.e. $\quad f(x)=\|A x\| ; \quad$ and set $\quad f^{2}(x)=f(x)^{2}$.
(i) Give an argument without computations that f is a positive C^{∞} function.
(ii) By application of the chain rule to f^{2} show, for $x \in \mathbf{R}^{n} \backslash \operatorname{ker} A$ and $h \in \mathbf{R}^{n}$,

$$
D f(x) h=\frac{\langle A x, A h\rangle}{f(x)} .
$$

Deduce that

$$
D f(x) \in \operatorname{Lin}\left(\mathbf{R}^{n}, \mathbf{R}\right) \quad \text { is given by } \quad D f(x)=\frac{1}{f(x)} x^{t} A^{t} A .
$$

Denote by $\left(e_{1}, \ldots, e_{n}\right)$ the standard basis vectors in \mathbf{R}^{n}.
(iii) For $1 \leq j \leq n$, derive from part (ii) that

$$
D_{j} f(x)=\frac{\left\langle A x, A e_{j}\right\rangle}{f(x)} \quad \text { and deduce } \quad D_{j}^{2} f(x)=\frac{\left\|A e_{j}\right\|^{2}}{f(x)}-\frac{\left\langle A x, A e_{j}\right\rangle^{2}}{f^{3}(x)}
$$

As usual, write $\Delta=\sum_{1 \leq j \leq n} D_{j}^{2}$ for the Laplace operator acting in \mathbf{R}^{n} and $\|A\|_{\text {Eucl }}^{2}=\sum_{1 \leq j \leq n}\left\|A e_{j}\right\|^{2}$.
(iv) Now demonstrate

$$
\Delta(\|\cdot\| \circ A)(x)=\frac{\|A\|_{\text {Eucl }}^{2}\|A x\|^{2}-\left\|A^{t} A x\right\|^{2}}{\|A x\|^{3}}
$$

(v) Which form takes the preceding identity if A equals the identity mapping in \mathbf{R}^{n} ?

Solution of Exercise 0.1

(i) The function $\sqrt{\cdot}:] 0, \infty\left[\rightarrow \mathbf{R}\right.$ is of class C^{∞}. Hence, f is the composition of C^{∞} functions, therefore the assertion follows from the chain rule.
(ii) $f^{2}(x)=\langle A x, A x\rangle$ implies $D f^{2}(x) h=2\langle A x, A h\rangle$ according to Corollary 2.4.3.(ii). Hence the desired formula follows from $2 f(x) D f(x) h=D f^{2}(x) h=2\langle A x, A h\rangle$ on account of the chain rule. Furthermore

$$
D f(x) h=\frac{\langle A x, A h\rangle}{f(x)}=\frac{1}{f(x)}(A x)^{t} A h=\frac{1}{f(x)} x^{t} A^{t} A h .
$$

(iii) We have

$$
D_{j} f(x)=D f(x) e_{j}=\frac{\left\langle A x, A e_{j}\right\rangle}{f(x)} .
$$

Application of Corollary 2.4.3.(iii) and (ii) as well as part (ii) implies

$$
D_{j}^{2} f(x)=D\left(D_{j} f\right)(x) e_{j}=\frac{\left\|A e_{j}\right\|^{2}}{f(x)}-\frac{\left\langle A x, A e_{j}\right\rangle^{2}}{f^{3}(x)}
$$

(iv) Summation of the preceding identity for j running from 1 to n and $\left\langle A x, A e_{j}\right\rangle=\left\langle A^{t} A x, e_{j}\right\rangle$ gives

$$
\Delta f(x)=\sum_{1 \leq j \leq n} D_{j}^{2} f(x)=\frac{1}{f(x)} \sum_{1 \leq j \leq n}\left\|A e_{j}\right\|^{2}-\frac{1}{f^{3}(x)} \sum_{1 \leq j \leq n}\left\langle A^{t} A x, e_{j}\right\rangle^{2}
$$

Furthermore, note that, for all $y \in \mathbf{R}^{n}$,

$$
\sum_{1 \leq j \leq n}\left\langle y, e_{j}\right\rangle^{2}=\left\|\sum_{1 \leq j \leq n}\left\langle y, e_{j}\right\rangle e_{j}\right\|^{2}=\|y\|^{2}
$$

(v) In this case we obtain $\Delta(\|\cdot\|)(x)=\frac{n-1}{\|x\|}$, for $x \in \mathbf{R}^{n} \backslash\{0\}$ (compare with Exercise 2.40.(iii)).

