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and vice versa. Figure 1 below shows the smooth surface N in R3 ; such a surface is called a hyperbolic

paraboloid.

p(z,y) = 2% + 2y12 + ¥o.
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given by
Figure 1: Hyperbolic paraboloid

N ={(z,y) e RxR*|p(z,y)

R’ >R

~

p: R x R?

p(z,y) = 22+2y12+y> in the real variable x with real coefficients 2y; and y2 asa functionp : R3 — R
(i) Prove

of all three variables simultaneously, thus
In turn, the illustration immediately raises new questions: we see that N contains downward parabolae

in planes perpendicular to the y-axis as well as hyperbolae in planes perpendicular to the y,-axis.
this exercise we will study these more closely. We begin by surveying some of the well-known algebraic

Various properties of the quadratic equation can be read off from geometric properties of the zero-set
aspects.

Exercise 0.1 (Geometry of quadratic equation). In this exercise we consider the polynomial function

Y1 — Y2;

Ay)

where

(z+y1)* = A(y)
— Reis the discriminant of the quadratic equation. Now suppose that (z,y) € R3?

z,y)

(

0}.

Aly) = (z+91)* 2 0
0 if and only if

and that there exist at most two distinct solutions = to p(z,y) = 0. Furthermore, conclude that =

is a solution of multiplicity 2 of p(z, y)

{($,91)6R2|i’3+y1

(IL’, yl) € S

A : R?

satisfies p(x,y) = 0. Deduce that

in fact,



(if) Verify that N = im(¢) where
$:R?> - R? is defined by oz, 1) = (z,y1, —2° — 2p12).
Deduce that NV is a C> submanifold in R? of dimension 2.

(iii) Compute the rank of Dp(z,y) € Lin(R3,R), for all (z,3) € R3. Now prove once more, but
by a method different from the one employed in part (ii), that IV is a C'> submanifold in R? of
dimension 2.

Denote by 7 : R x R? — R? the orthogonal projection 7 (z, y) = y and define

_ "R2 _ R2 i _ (!
d=rnop:R> >R e, ®x,y)= ( TS )
(iv) Compute D®(x,y;) € End(R?) as well as det D®(x, 7). Show that the set of singular points
of @ is equal to the straight line S as defined in part (i). Verify that the rank of D®(x, y1) is equal
to 1, forall (z,y1) € S.

In Figure 2 below we see the image set of ®. Obviously, it has been obtained by projection of the
surface from Figure 1 onto the y-plane.
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Figure 2: im(®)
(v) Prove that the image ®(S) c R? equals the upward parabola (in the notation from part (i))
P={yeR?*|A(y)=0}.
Furthermore, verify
®(R*\S)={y e R*|A(y) > 0};

in other words, this image consists of the open subset of R? consisting of elements lying below
the parabola P. Prove also on the basis of part (i) that ®~!({y}) ¢ R? always consists of two
elements if y € ®(R?\ S). Translate these results into an assertion about the intersection of N
by straight lines parallel to the z-axis.



(vi) On the basis of part (v) show that ¢(S) = =—!(P) and also that this set equals the space curve
Y=im(c)c N with o:R—R3> givenby o(z)=(z,—z,2?).

In Figure 3 below we see the plane curve X. Prove

Y= {(2,y) e Rx R? | p(x,y) = Dip(x,y) = 0}.

Figure 3: The straight line .S, the plane curve ¥ and the parabola P

(vii) Verify that the intersection of N with a plane { (z,y) € R x R? | y; is constant } (i.e., a plane
perpendicular to the y;-as) is a downward parabola having its vertex at the point o (—y1).

(viii) Give a parametrization of the geometric tangent line A(z) of the curve X at the point o(z), for
every r € R.

In the Figures 1 and 4 we also see straight lines running on the surface N in planes that appear to be
perpendicular to the z-axis. We will prove the existence of such lines. To this end, let x € R be fixed
and define N (z) to be the orthogonal projection of A(z) onto the plane { (z,y) € R3 | y € R?} (that
is, the plane passing through o (z) and perpendicular to the x-axis).

(ix) Verify that N (z) is the straight line o(x) + R(0, —1, 2z) and that the surface NV is the disjoint
union of the lines N(x), for all z € R. Show that every line N(z) intersects the curve X in
exactly one point.

Background. Given x € R, the line N (x) parametrizes all quadratic equations with prescribed zero x
while o () represents the unique quadratic equation having the zero = occurring with multiplicity two.
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Figure 4

(x) Introduce the numbers ¢+ = %(1 + /5) and note that ¢ equals the golden ratio satisfying
—p1p_ = 1. Next define the matrices

o:L<V‘P+ V_90> A:(l 1) D:(‘p+ 0 )
5\ V- —Ver ) 1 0/ 0 -
Show that O is both symmetric and orthogonal, while

O'AO = D.

In addition, introduce new coordinates z in R3 by means of

(Zl):Ot<x ) and 23 = Yo,

zZ2 Y1

4



and deduce using Formula (2.29)
T+ 21T+ Yo = iz + 25 + 23 = = (\/_+ 1)z27 (\/5—1)22-1—23

Recall the classification of quadrics as discussed in linear algebra and conclude that the quadric
N is a hyperbolic paraboloid.

Solution of Exercise 0.1

(i)

(i)

(iii)

(iv)

v)

(vi)

We have
p(z,y) =2® + 2z +yf — (Yf — v2) = (z+31)° — A(y).

If p(z,y) = 0 then the assertion of (x) is obvious as squares are nonnegative. It follows that
every solution z € R of p(x,y) = 0is given by z+ = —y; + \/A(y); accordingly, maximally
two do exist. Obviously . = x_ if and only if A(y) = 0; hence, the final assertion is a direct
consequence of (x).

The equality p(z,y) = 0 is equivalent with yo = —z? — 2y, which shows that N = im(¢).
Furthermore, N = graph(f) where f : R? — R with f(z,y1) = —2? — 2y, isa C* function;
therefore N is a C'> submanifold of R? of dimension 2 on the basis of Definition 4.2.1.

The identity Dp(z,y) = (x,*, 1) shows that the rank of Dp(z,y) equals 1 everywhere; in other
words, Dp(z,y) is surjective, for all (z,y) € R3. Hence the second assertion is a direct conse-
guence of the Submersion Theorem 4.5.2.

Differentiation immediately yields the following formulae:

0 1

Do(x,y1) = ( w2y -2 > and det D®(z,y1) = 2(x + y1).
By definition, the determinant vanishes at singular points. Hence, the identification of the set of
singular points with .S follows directly, whereas the equation above obviously is that of a straight

line. The assertion on the rank of D®(x,y1), for (x,y1) € S, follows from the fact that in this
case
0 1
DO(z,y1) = < 0 % )

Suppose (z,y) € R? satisfies ®(z,y1) = y. Then, in particular, we have p(z,y) = 0 and so we
obtain from (x) in part (i) that A(y) > 0. Hence the inclusions ®(S) c Pand ®(R2\S) C {y €
R? | A(y) > 0} are obvious on the basis of (x) again. Now we prove the reverse inclusions.
According to part (i) the condition A(y) = 0 ony € R? ensures that there is a unique solution
xz € Rforp(z,y) =0, i.e., y = ®(z,y1); furthermore, (x) then implies that (x,y1) € S. Next,
suppose y € R? satisfies A(y) > 0. From part (i) we then obtain the existence of two different
solutions x4 of the equation p(z, y) = 0, and this gives two distinct elements (z,y;) € R? both
belonging to ®~1({y}). Using (x) once more, we actually get (z+,v;) € R?\ S. In geometric
terms, lines in R3 parallel to the z-axis, which means being of the form { (z,y) ¢ R® |z € R},
intersect the surface IV once, and twice, if A(y) is 0, and positive, respectively, and in no other
case.

By definition ® = 7 o ¢; hence, we obtain 7! o ® = ¢ (abusing the notation for the inverse
image). Application of this identity to the set S gives the equality ¢(S) = 7~ !(P). Next, suppose



(vii)

(viii)

(ix)

(x,91) € S, in other words, y; = —z. Then ¢(z,11) = (z, —z,1y2) € ¢(S) = 7~ 1(P) implies
yo = x2. Accordingly

o(z,y1) = (z, -z, 2%) = o(z), that is, #(S) C X.
Conversely, (z,y) € X implies
(z,y) = o(z) = (z, *SL‘,SE2) = ¢(z, —x), ie., X C ¢(9).

Now the last assertion. (x,y) € ¥ means that z is a solution of p(X,y) = (X — )% =
X2 — 22X + 22 = 0, and as a consequence x is a solution of Dip(X,y) = 2(X — z) too.
Accordingly, p(x,y) = Dip(z,y) = 0. Conversely, suppose (z,y) € R? satisfies p(x,y) = 0
and Dip(x,y) = 2(x + y1) = 0; hence, in particular, y; = —z. Hence (z,y) € ¢(S) = X.

If y1 is fixed and p(z,y) = 0, we get from (x) in part (i)

y2=yi — Aly) =i — (z + )%

The right-hand side is maximal if z +y; = 0 and if this is the case it assumes the value y7. Hence
the vertex of the parabola has coordinates (—y1,y1,y3) = o(—y1) and it also opens downward.

In view of Do(z) = (1,—1,2x), a parametric representation for A(x) is given by o(z) +
R(1,—-1,2z).

(0, —1, 2x) is the orthogonal projection of Do (x) onto the (y1, y2)-plane along the z-axis; hence,
N (x) may be described as given. By definition, the lines N (x) are disjoint, for distinct = € R.
Furthermore, consider (z,y) € N(x), that is, satisfying y; = —z — X and yo = 22 + 2z, for
some A € R. Then (z,y) € N as follows from

p(z,y) = 22 + 22 + Yo = 2% — 2(z + Nz + 22 + 2\z = 0.

Accordingly, every N (z) is contained in N. Conversely, suppose = € R is fixed and (z, ) € R3
belongs to N. Then there exists A € R such that y; = —z — A, while p(z, y) = 0 now implies

yp = —x2 — 2y = 2% 4 2\x; e, (z,y) € N(x).

The equality N(z) = o(x) +R(0, —1, 2z) implies that N (x) intersects X in o(x), and this is the
only point of intersection as the elements of X are uniquely determined by their first component.

(x) Straightforward computation. The quadric NV is a hyperbolic paraboloid since the corresponding

guadratic form has two nonzero eigenvalues of opposite sign as well as a linear term.



