Exercise 0.1 (Quintic analog of Descartes’ folium). Recall that R, = { x € R | x > 0 } and define
1
$:R2 - R% by O(x) = 72(‘%?,‘%3)

(i) Prove that ® is a C* mapping and that det D®(z) = 5, for all z € R?.

(i1) Verify that @ is a C'*° diffeomorphism and that its inverse is given by
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U:R2 SRE with  U(y) = (nwe)s (5, ).
Compute det D¥(y), forall y € R?.
Let @ > 0 and define
g:R*>R by g(x) = 25 + 25 — ba(z120)2.
Now consider the bounded open sets
U={2z€R2|g(x)<0} and V={yecR2 |y +y2<5a}.

Then U has a curved boundary, while V' is an isosceles rectangular triangle.

(iii) Show that g o ¥(y) = (y1y2)%(y1 + y2 — ba), for all y € R%. Deduce that the restriction
Vly, : V — U is a diffeomorphism.

Background. By means of parts (ii) and (iii) one immediately computes the area of U to be %
Denote by F' the zero-set of g (see the curve in the illustration above).

(iv) Prove that F is a C°° submanifold in R? of dimension 1 at every point of '\ {0}.
(v) By means of intersection with lines through 0 obtain the following parametrization of a part of
F:

2
¢:R\{-1} — R? satisfying o(t) = %( 1 >

(vi) Compute that Sal ( 9 _ 3¢5 >
t

(1+15)2\ ¢(3 —2t°)

Show that ¢ is an immersion except at 0.

o (1) =

(vii) Demonstrate that F is not a C° submanifold in R? of dimension 1 at 0.

For |x5| small, 23 is negligible; hence, after division by the common factor 22 the equation g(x) = 0
takes the form x3 = 5ax3, which is the equation of an ordinary cusp. This suggests that ' has a cusp
at 0.



(viii) Prove that I actually possesses two cusps at 0. This can be done with simple calculations; if

necessary, however, one may use without proof

50 = 10a ( 610 — 1845 + 1 )
T (1453 (310 — 195+ 3) )7

o) = 30a ( 5t4(2t10 — 16t° 4+ 7) )
T (A4 4P - 175+ 13) -1 )7

Solution of Exercise 0.1

®

(i)

(iii)

(iv)

)

® is a composition of C'**° mappings. We have

() ()
D®(z) = T2 T2 andso  det D®(z) =9 — 4 =5.
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Given arbitrary y € R?2 , consider the equation ®(z) = y forx € R%r; then i—é =y and i—% = Y.
Multiplication and division of these equalities leads to
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So  x1x2 = Y1Y0 and Y ;

Y2 X2

ﬂ>5:y_1

T1T2 = Y192 and (
x2
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and multiplication of the equalities now gives :L'% = ylg yQ% . Accordingly, 1 = ylg yz% = (y1y2) 5 yl%
because x1, y; and yo € R . Similarly, we obtain the desired formula for x5. It follows that ®
and W are each other’s inverses. On R%r the mapping W is of class C'°°, which implies that ® is a
C*° diffeomorphism. From part (i) and the multiplicative property of the determinant we obtain
det DU (y) = %

We find

8
5

g0 U(y) = (1192)2 (W1 +v2) — 5a(y1y2) 5 (y1y2) = (y1y2)*(y1 + y2 — Ba).

This implies z = ¥(y) € U if and only if g(x) = (y12)*(y1 + y2 — 5a) < 0 if and only
y1 +y2—dSa < Oifandonlyify € V.

We have
Dg(x) = 5(z1 (23 — 2az3), zo(x5 — 2ax?)).

This matrix is of rank 1 unless (a) x = 0 or (b) :E‘z’ = 2a:p% and :L'% = 2ax%. In case (b) we may
assume x # 0 and we also obtain 7 = 8a3z§ = 32a°x1, thatis, z§ = (2a)5, which holds if and
only if 21 = 2a. In turn this implies 2 = 2a, but g(2a, 2a) = 64a® — 80a® = —16a® < 0; in
other words, (2a, 2a) ¢ F. It follows that g is submersive at every point of '\ {0}. The desired
conclusion follows from the Submersion Theorem 4.5.2.(ii).

We eliminate xo from the equations g(x) = 0 and z9 = txq, for fixed ¢ € R. This leads to

(1 + t5)2 = 5at?z}, with solutions x; = 0 (as was to be expected) or 1 = fitti, thus the
desired formula for ¢ holds.




(vi)

(vii)

(viii)

The formula for ¢’ is a consequence of

o) = —2 <2t(1+t5)—t25t4>:(5at (t(2—|—2t5—5t5>

(1+15)2\ 3t2(1 +t°) — 3 5¢4 1+ 3)2\ (3 + 3t° — 5¢°)

If t # 0, then the assumption ¢/(¢) = 0 implies 2 — 3t> = 0 and 3 — 2t> = 0. This gives
9t> = 6 = 4¢°, that is 5t° = 0, and so arrived at a contradiction. Therefore ¢'(t) #0ift # 0
hence ¢/ (t) is of rank 1, which proves that ¢ is everywhere immersive except at 0.

F has self-intersection at 0 as follows from lim; .+, ¢(t) = 0 = ¢(0). Indeed, ¢:R\{-1} —
R? with ¢(u) = ¢(2) also defines a parametrization of F. Now ¢(t) approaches 0 in a vertical

direction as ¢ | 0, while QNS(u) approaches 0 in a horizontal direction as « | 0.

Select £y > 0 sufficiently small, that is, suppose 2 — 3t8 > 0and 3 — 2t8 > 0. For ¢ running from
—1 to to, the sign of the first component ¢(2 — 3t7) of ¢’ (¢) changes from negative to positive at
t = 0, whereas the sign of the second component #?(3 — 2¢) remains nonnegative and vanishes
for t = 0 only. This behavior of ¢’ near 0 is characteristic for a vertical cusp of F' at 0. Mutatis
mutandis, the same argument applied to ¢ gives the existence of a second, horizontal, cusp of F’
at 0. Alternatively, it follows that

¢"(0) = 10a( (1) ) and  ¢"(0) = 30a( (1) )

According to Definition 5.3.9 this implies the existence of an ordinary cusp of F' at 0.



