Exercise 0.1 (Two-step recurrences for hyperarea and volume). Write S^{n-1} and B^n for the unit sphere and the interior of the unit ball in \mathbb{R}^n , respectively, and set

$$a_{n-1} = \text{hyperarea}_{n-1}(S^{n-1})$$
 and $v_n = \text{vol}_n(B^n).$

Here is a table of these numbers for low values of n:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a_{n-1}	2	2π	4π	$2\pi^2$	$\frac{8\pi^2}{3}$	π^3	$\frac{16\pi^3}{15}$	$\frac{\pi^4}{3}$	$\frac{32\pi^4}{105}$	$\frac{\pi^5}{12}$	$\frac{64\pi^5}{945}$	$\frac{\pi^6}{60}$	$\frac{128\pi^6}{10395}$	$\frac{\pi^7}{360}$
v_n	2	π	$\frac{4\pi}{3}$	$\frac{\pi^2}{2}$	$\frac{8\pi^2}{15}$	$\frac{\pi^3}{6}$	$\frac{16\pi^3}{105}$	$\frac{\pi^4}{24}$	$\frac{32\pi^4}{945}$	$\frac{\pi^5}{120}$	$\frac{64\pi^5}{10395}$	$\frac{\pi^6}{720}$	$\frac{128\pi^6}{135135}$	$\frac{\pi^7}{5040}$

(i) In the table we see $a_{n-1} = n v_n$, for $1 \le n \le 14$. Prove this identity for all $n \in \mathbb{N}$, for instance, by applying Gauss' Divergence Theorem.

The table also suggests that the powers of π are given by the integral part of half the dimension and, furthermore, that there exist two-step recurrences

$$(\star)$$
 $a_{n-1} = \frac{2\pi}{n-2} a_{n-3}$ and $v_n = \frac{2\pi}{n} v_{n-2}.$

In the following we will prove these identities geometrically (that is, without analyzing values of the Gamma function), for all $n \in \mathbb{N}$ sufficiently large. To this end, define the function $s : B^{n-2} \to \mathbb{R}_+$ by $s(x) = \sqrt{1 - \|x\|^2}$ and the mapping

$$\phi: D := B^{n-2} \times] -\pi, \pi [\to \mathbf{R}^n \qquad \text{by} \qquad \phi(x, \alpha) = \begin{pmatrix} x \\ s(x) \cos \alpha \\ s(x) \sin \alpha \end{pmatrix}$$

(ii) Firstly, consider the case of n = 3. Prove that ϕ is injective and that $im(\phi) = S^2$ except for a set which is negligible for 2-dimensional integration. Note that ϕ induces the mapping

$$\psi: C^2 := B^1 \times S^1 \to S^2$$
 given by $\psi(x, y) = \phi(x, \arg(y)) = \begin{pmatrix} x \\ s(x)y_1 \\ s(x)y_2 \end{pmatrix}$.

Show that ψ is a bijection between the cylinder C^2 and the sphere minus two points. Furthermore, describe ψ in geometric terms, that is, as a projection (the inverse of ψ is known as *Lambert's cylindrical projection* of the sphere onto a tangent cylinder, see the next page for an illustration).

(iii) Next, consider the case of general $n \ge 3$. Prove $D_j s(x) = -\frac{x_j}{s(x)}$, for $1 \le j \le n-2$ and $x \in B^{n-2}$. Furthermore, write I_{n-2} for the identity matrix in $Mat(n-2, \mathbf{R})$ and also x^t for the row vector obtained from $x \in B^{n-2}$ by means of transposition. Show that, for all $(x, \alpha) \in D$,

$$D\phi(x,\alpha) \in \operatorname{Lin}(\mathbf{R}^{n-1},\mathbf{R}^n)$$
 and $D\phi(x,\alpha)^t D\phi(x,\alpha) \in \operatorname{End}(\mathbf{R}^{n-1})$

has the following matrix, respectively:

$$\begin{pmatrix} I_{n-2} & 0_{n-2} \\ -\frac{\cos\alpha}{s(x)}x^t & -s(x)\sin\alpha \\ -\frac{\sin\alpha}{s(x)}x^t & s(x)\cos\alpha \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} I_{n-2} + \frac{1}{s(x)^2}xx^t & 0 \\ 0^t & s(x)^2 \end{pmatrix}.$$

Illustration for part (ii): Lambert's projection from sphere onto tangent cylinder

- (iv) Generalize the results from part (ii). Specifically, applying results from part (iii), verify that ϕ is a C^{∞} embedding having an open part of S^{n-1} with negligible complement as an image.
- (v) By considering the behavior of the following determinant (see part (iii)) under rotations of the element $x \in B^{n-2}$, show

$$\det\left(I_{n-2} + \frac{1}{s(x)^2}xx^t\right) = \frac{1}{s(x)^2} \quad \text{and deduce} \quad \omega_{\phi}(x,\alpha) = 1,$$

where ω_{ϕ} is the Euclidean density function associated with $\phi: D \to S^{n-1}$.

(vi) On the basis of parts (v) and (i) prove the first equality in (\star) and then deduce the second one. In particular, prove by mathematical induction over $n \in \mathbb{N}$

$$v_{2n} = \frac{\pi^n}{n!}, \qquad v_{2n-1} = \frac{2^{2n} \pi^{n-1} n!}{(2n)!} \qquad \text{and} \qquad a_{2n-1} = \frac{2\pi^n}{(n-1)!}$$

Next, we use the formula for v_{2n} in order to compute the volume of the standard (n + 1)-tope Δ^n in \mathbb{R}^n given by

$$\Delta^{n} = \{ y \in \mathbf{R}^{n}_{+} \mid \sum_{1 \le j \le n} y_{j} < 1 \}. \quad \text{In fact, we claim} \quad (\star\star) \quad \operatorname{vol}_{n}(\Delta^{n}) = \frac{1}{n!}.$$

For proving this, introduce
$$\Psi : \Delta^{n} \times] -\pi, \pi [\ ^{n} \to B^{2n} \quad \text{with} \quad \Psi(y, \alpha) = \begin{pmatrix} \sqrt{y_{1}} \cos \alpha_{1} \\ \sqrt{y_{1}} \sin \alpha_{1} \\ \vdots \\ \sqrt{y_{n}} \cos \alpha_{n} \\ \sqrt{y_{n}} \sin \alpha_{n} \end{pmatrix}.$$

(vii) Show that Ψ is a C^{∞} diffeomorphism onto an open dense subset of B^{2n} with Jacobi determinant in absolute value equal to 2^{-n} and deduce (**).

Background. The preceding results imply that B^{2n} is diffeomorphic with the Cartesian product of n circles with a polytope of dimension n. Analogously, B^{2n+1} is diffeomorphic with the Cartesian product of n circles with the segment of the circular paraboloid of dimension n + 1 given by

$$\{(y,z) \in \mathbf{R}^{n}_{+} \times \mathbf{R} \mid \sum_{1 \le j \le n} y_{j} + z^{2} < 1\}$$

In v_n there occur as many factors π as there are independent ways to turn around in space, that is, the number of linearly independent (two-dimensional) planes. Phrased differently, the powers of π are given by the integral part of half the dimension.

(viii) According to the table above or the illustration below the sequence $(a_n)_{n=0}^6$ is strictly monotonically increasing while $a_6 > a_7 > a_8$. Combine these facts with (\star) to prove that $(a_n)_{n=6}^{\infty}$ is strictly monotonically decreasing. Then apply part (vi) to show that $\lim_{n\to\infty} a_n = 0$. Deduce that also $(v_n)_{n=5}^{\infty}$ is strictly monotonically decreasing with $\lim_{n\to\infty} v_n = 0$. Hint: One might use the following consequence of (\star) :

$$a_{n-1} = \frac{2\pi}{n-2} \frac{2\pi}{n-4} \cdots \begin{cases} \frac{2\pi}{7} a_6, & n \ge 7 \text{ odd}; \\ \frac{2\pi}{8} a_7, & n \ge 8 \text{ even.} \end{cases}$$

Accordingly, $a_6 = 33.073 \cdots$ is the absolute maximum over all dimensions of the hyperareas of the corresponding unit spheres while $v_5 = 5.263 \cdots$ is the absolute maximum over all dimensions of the volumes of the corresponding unit balls.

Illustration: Hyperarea a_{n-1} of unit sphere and volume v_n of unit ball, for $1 \le n \le 30$

Solution of Exercise 0.1

- (i) See Example 7.9.1.
- (ii) $\phi(x, \alpha) = \phi(x', \alpha')$ implies by projection onto the first coordinate that x = x'. Consideration of the last two coordinates then leads to $\cos \alpha = \cos \alpha'$ and $\sin \alpha = \sin \alpha'$, that is $\alpha = \alpha'$. It is straightforward that $\operatorname{im}(\phi)$ is all of S^2 except the half-circle $\{(x, -s(x), 0) \in S^2 \mid |x| \le 1\}$ connecting the opposite points $x_{\pm} := (\pm 1, 0, 0)$. The half-circle is compact and of dimension 1 which implies that it is negligible for 2-dimensional integration (see page 526). We have

$$C^{2} = \{ x \in \mathbf{R}^{3} \mid |x_{1}| < 1, \, x_{2}^{2} + x_{3}^{2} = 1 \},\$$

which shows that it is a cylinder, parallel to the x_1 -axis. The preceding argument implies that ψ induces a bijection between C^2 and $S^2 \setminus \{x_{\pm}\}$. Given $(x, y) \in C^2$, its image $\psi(x, y) \in S^2$ may be obtained in the following geometrical manner. Denote by ℓ the unique straight line in \mathbb{R}^3 containing (x, y) that is parallel to the plane $\{x \in \mathbb{R}^3 \mid x_1 = 0\}$ and that intersects the x_1 -axis. Next define $\psi(x, y)$ to be the point of intersection of ℓ with S^2 of shortest distance to (x, y).

Illustration: Map of the surface of the Earth based on Lambert's cylindrical projection

(iii) On the basis of the chain rule one sees

$$D_j s(x) = \frac{1}{2s(x)} (-2x_j) = -\frac{x_j}{s(x)}; \quad \text{in other words} \quad \text{grad } s(x) = -\frac{1}{s(x)} x^t,$$

which leads to the matrix for $D\phi(x, \alpha)$. Obviously $D\phi(x, \alpha)^t D\phi(x, \alpha)$ has the following matrix:

$$\begin{pmatrix} I_{n-2} & -\frac{\cos\alpha}{s(x)}x & -\frac{\sin\alpha}{s(x)}x \\ 0_{n-2} & -s(x)\sin\alpha & s(x)\cos\alpha \end{pmatrix} \begin{pmatrix} I_{n-2} & 0_{n-2} \\ -\frac{\cos\alpha}{s(x)}x^t & -s(x)\sin\alpha \\ -\frac{\sin\alpha}{s(x)}x^t & s(x)\cos\alpha \end{pmatrix}.$$

A-priori one knows the resulting matrix to be symmetric. Therefore, when multiplying the *i*-th row in the first matrix with the *j*-th column in the second, one has to distinguish only three cases: $1 \le i, j \le n-2$, which leads to the upper-left matrix belonging to $Mat(n-2, \mathbf{R})$ in the answer; i = j = n - 1, which gives the lower-right entry as a consequence of $\sin^2 + \cos^2 = 1$; and i = n - 1 and $1 \le j \le n - 2$, which leads to $\sin \alpha \cos \alpha x_j - \cos \alpha \sin \alpha x_j = 0$.

(iv) ϕ is of class C^{∞} since all of its component functions are. Next $im(\phi) \subset S^{n-1}$; indeed, for $(x, \alpha) \in D$,

$$\|\phi(x,\alpha)\|^2 = \|x\|^2 + s(x)^2(\cos^2\alpha + \sin^2\alpha) = \|x\|^2 + 1 - \|x\|^2 = 1$$

Actually, $\operatorname{im}(\phi)$ is all of S^{n-1} except the set $\{(x, -s(x), 0) \in S^{n-1} \mid x \in \overline{B^{n-2}}\}$. This set is compact and of dimension $= \dim(B^{n-2}) = n-2$; that implies that it is negligible for (n-1)-dimensional integration (see page 526). Furthermore, ϕ is an embedding if it is immersive, injective and has a continuous inverse upon restriction to its image. Now, suppose $h \in \mathbb{R}^{n-1}$ satisfies $\mathbb{R}^n \ni D\phi(x, \alpha)h = 0$. In view of part (iii) the upper n-2 entries of the image vector give $h_1 = \cdots = h_{n-2} = 0$, while the two bottom entries lead to $(\sin^2 \alpha + \cos^2 \alpha)h_{n-1} =$ $h_{n-1} = 0$. Accordingly, $D\phi(x, \alpha)$ is injective, for all $(x, \alpha) \in D$. As in part (ii) one shows directly that ϕ is injective on D. Finally, if $\phi(x, \alpha) = y \in \mathbb{R}^n$, then projection of y onto its upper n-2 entries produces x, while $\alpha = 2 \arctan(\frac{y_n}{1+y_{n-1}})$. This implies that the inverse mapping $\phi^{-1}: \phi(D) \to D$ with $\phi(x, \alpha) \mapsto (x, \alpha)$ is continuous.

(v) Exactly the same arguments as in the solution to Exercise 6.23.(iii) imply

$$\det\left(I_{n-2} + \frac{1}{s(x)^2}xx^t\right) = 1 + \frac{\|x\|^2}{s(x)^2} = \frac{1}{s(x)^2}.$$

As a consequence

$$\omega_{\phi}(x,\alpha) = \sqrt{\det\left(D\phi(x,\alpha)^{t} D\phi(x,\alpha)\right)} = \frac{1}{s(x)}s(x) = 1.$$

(vi) $im(\phi) = S^{n-1}$ up to a negligible set according to part (iv), therefore one obtains from parts (v) and (i)

$$a_{n-1} = \int_{S^{n-1}} d_{n-1}y = \int_D \omega_\phi(y) \, dy = \int_{B^{n-2}} dx \int_{-\pi}^{\pi} d\alpha = 2\pi v_{n-2} = 2\pi \frac{a_{n-3}}{n-2}.$$

This implies directly

$$v_n = \frac{1}{n}a_{n-1} = \frac{2\pi}{n}\frac{a_{n-3}}{n-2} = \frac{2\pi}{n}v_{n-2}$$

The formulae for v_n are a direct consequence of the identities $v_2 = \pi$ and $v_1 = 2$, while the formula for a_{2n-1} follows from part (i).

(vii) It is straightforward that Ψ is a C^{∞} diffeomorphism onto its image. This image consists of B^{2n} under omission of the union of the origin and of all the sets (this union is negligible for 2n-dimensional integration)

$$\{(x_1, \dots, x_{2j-1}, -z_j, 0, x_{2j+1}, \dots, x_{2n}) \in B^{2n} \mid 0 < z_j < 1\} \qquad (1 \le j \le n).$$

Write $\Psi(y, \alpha) = \Psi'(y_1, \alpha_1, \cdots, y_n, \alpha_n)$. Since the difference between Ψ and Ψ' is a permutation of the coordinates, one has

$$|\det D\Psi(y,\alpha)| = |\det D\Psi'(y_1,\alpha_1,\cdots,y_n,\alpha_n)| = \prod_{1 \le j \le n} \begin{vmatrix} \frac{\cos \alpha_j}{2\sqrt{y_j}} & -\sqrt{y_j}\sin \alpha_j \\ \frac{\sin \alpha_j}{2\sqrt{y_j}} & \sqrt{y_j}\cos \alpha_j \end{vmatrix} = \frac{1}{2^n}.$$

On the basis of the Change of Variables Theorem 6.6.1 it is obvious now that

$$\frac{\pi^n}{n!} = v_{2n} = \int_{B_{2n}} dx = \int_{\Delta^n \times]-\pi, \pi [n]} \frac{1}{2^n} dy \, d\alpha = \pi^n \operatorname{vol}_n(\Delta^n).$$

(viii) According to (\star) we have

$$a_{n-1} = \frac{2\pi}{n-2} \frac{2\pi}{n-4} \cdots \begin{cases} \frac{2\pi}{7} a_6, & n \ge 7 \text{ odd}; \\ \frac{2\pi}{8} a_7, & n \ge 8 \text{ even}. \end{cases}$$

Now, for $n \ge 4$,

$$\frac{2\pi}{2n-2}\frac{2\pi}{2n-4}\cdots\frac{2\pi}{7}a_6 > \frac{2\pi}{2n-1}\frac{2\pi}{2n-3}\cdots\frac{2\pi}{8}a_7 > \frac{2\pi}{2n}\frac{2\pi}{2n-2}\cdots\frac{2\pi}{9}a_8,$$

which together with the preceding assertion leads to the desired strict monotonicity

$$a_{2n-1} > a_{2n} > a_{2n+1}.$$

According to part (vi), for $n \ge 4$,

$$0 < a_{2n-1} = \frac{2\pi^n}{(n-1)!} = 2\pi \prod_{1 \le k < n} \frac{\pi}{k} \le \frac{\pi^4}{3} \prod_{4 \le k < n} \frac{\pi}{4} = \frac{\pi^4}{3} \left(\frac{\pi}{4}\right)^{n-4}.$$

As $\frac{\pi}{4} < 1$, this implies $\lim_{n\to\infty} a_{2n-1} = 0$, which gives $\lim_{n\to\infty} a_n = 0$ in view of the preceding result. Applying part (i) we get the desired monotonicity for $(v_n)_{n=7}^{\infty}$; and, as a consequence, for $(v_n)_{n=5}^{\infty}$ too because $v_5 > v_6 > v_7$ can be gleaned from the table. Furthermore, the limit statement for the v_n follows directly from the one for the a_n , again on the basis of part (i).