Exercise 0.1 (Two-step recurrences for hyperarea and volume). Write S^{n-1} and B^{n} for the unit sphere and the interior of the unit ball in \mathbf{R}^{n}, respectively, and set

$$
a_{n-1}=\operatorname{hyperarea}_{n-1}\left(S^{n-1}\right) \quad \text { and } \quad v_{n}=\operatorname{vol}_{n}\left(B^{n}\right)
$$

Here is a table of these numbers for low values of n :

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a_{n-1}	2	2π	4π	$2 \pi^{2}$	$\frac{8 \pi^{2}}{3}$	π^{3}	$\frac{16 \pi^{3}}{15}$	$\frac{\pi^{4}}{3}$	$\frac{32 \pi^{4}}{105}$	$\frac{\pi^{5}}{12}$	$\frac{64 \pi^{5}}{945}$	$\frac{\pi^{6}}{60}$	$\frac{128 \pi^{6}}{10395}$	$\frac{\pi^{7}}{360}$
v_{n}	2	π	$\frac{4 \pi}{3}$	$\frac{\pi^{2}}{2}$	$\frac{8 \pi^{2}}{15}$	$\frac{\pi^{3}}{6}$	$\frac{16 \pi^{3}}{105}$	$\frac{\pi^{4}}{24}$	$\frac{32 \pi^{4}}{945}$	$\frac{\pi^{5}}{120}$	$\frac{64 \pi^{5}}{10395}$	$\frac{\pi^{6}}{720}$	$\frac{128 \pi^{6}}{135135}$	$\frac{\pi^{7}}{5040}$

(i) In the table we see $a_{n-1}=n v_{n}$, for $1 \leq n \leq 14$. Prove this identity for all $n \in \mathbf{N}$, for instance, by applying Gauss' Divergence Theorem.

The table also suggests that the powers of π are given by the integral part of half the dimension and, furthermore, that there exist two-step recurrences

$$
(\star) \quad a_{n-1}=\frac{2 \pi}{n-2} a_{n-3} \quad \text { and } \quad v_{n}=\frac{2 \pi}{n} v_{n-2} .
$$

In the following we will prove these identities geometrically (that is, without analyzing values of the Gamma function), for all $n \in \mathbf{N}$ sufficiently large. To this end, define the function $s: B^{n-2} \rightarrow \mathbf{R}_{+}$by $s(x)=\sqrt{1-\|x\|^{2}}$ and the mapping

$$
\left.\phi: D:=B^{n-2} \times\right]-\pi, \pi\left[\rightarrow \mathbf{R}^{n} \quad \text { by } \quad \phi(x, \alpha)=\left(\begin{array}{c}
x \\
s(x) \cos \alpha \\
s(x) \sin \alpha
\end{array}\right)\right.
$$

(ii) Firstly, consider the case of $n=3$. Prove that ϕ is injective and that $\operatorname{im}(\phi)=S^{2}$ except for a set which is negligible for 2-dimensional integration. Note that ϕ induces the mapping

$$
\psi: C^{2}:=B^{1} \times S^{1} \rightarrow S^{2} \quad \text { given by } \quad \psi(x, y)=\phi(x, \arg (y))=\left(\begin{array}{c}
x \\
s(x) y_{1} \\
s(x) y_{2}
\end{array}\right)
$$

Show that ψ is a bijection between the cylinder C^{2} and the sphere minus two points. Furthermore, describe ψ in geometric terms, that is, as a projection (the inverse of ψ is known as Lambert's cylindrical projection of the sphere onto a tangent cylinder, see the next page for an illustration).
(iii) Next, consider the case of general $n \geq 3$. Prove $D_{j} s(x)=-\frac{x_{j}}{s(x)}$, for $1 \leq j \leq n-2$ and $x \in B^{n-2}$. Furthermore, write I_{n-2} for the identity matrix in $\operatorname{Mat}(n-2, \mathbf{R})$ and also x^{t} for the row vector obtained from $x \in B^{n-2}$ by means of transposition. Show that, for all $(x, \alpha) \in D$,

$$
D \phi(x, \alpha) \in \operatorname{Lin}\left(\mathbf{R}^{n-1}, \mathbf{R}^{n}\right) \quad \text { and } \quad D \phi(x, \alpha)^{t} D \phi(x, \alpha) \in \operatorname{End}\left(\mathbf{R}^{n-1}\right)
$$

has the following matrix, respectively:

$$
\left(\begin{array}{cr}
I_{n-2} & 0_{n-2} \\
-\frac{\cos \alpha}{s(x)} x^{t} & -s(x) \sin \alpha \\
-\frac{\sin \alpha}{s(x)} x^{t} & s(x) \cos \alpha
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
I_{n-2}+\frac{1}{s(x)^{2}} x x^{t} & 0 \\
0^{t} & s(x)^{2}
\end{array}\right)
$$

Illustration for part (ii): Lambert's projection from sphere onto tangent cylinder
(iv) Generalize the results from part (ii). Specifically, applying results from part (iii), verify that ϕ is a C^{∞} embedding having an open part of S^{n-1} with negligible complement as an image.
(v) By considering the behavior of the following determinant (see part (iii)) under rotations of the element $x \in B^{n-2}$, show

$$
\operatorname{det}\left(I_{n-2}+\frac{1}{s(x)^{2}} x x^{t}\right)=\frac{1}{s(x)^{2}} \quad \text { and deduce } \quad \omega_{\phi}(x, \alpha)=1
$$

where ω_{ϕ} is the Euclidean density function associated with $\phi: D \rightarrow S^{n-1}$.
(vi) On the basis of parts (v) and (i) prove the first equality in (\star) and then deduce the second one. In particular, prove by mathematical induction over $n \in \mathbf{N}$

$$
v_{2 n}=\frac{\pi^{n}}{n!}, \quad v_{2 n-1}=\frac{2^{2 n} \pi^{n-1} n!}{(2 n)!} \quad \text { and } \quad a_{2 n-1}=\frac{2 \pi^{n}}{(n-1)!} .
$$

Next, we use the formula for $v_{2 n}$ in order to compute the volume of the standard $(n+1)$-tope Δ^{n} in \mathbf{R}^{n} given by

$$
\Delta^{n}=\left\{y \in \mathbf{R}_{+}^{n} \mid \sum_{1 \leq j \leq n} y_{j}<1\right\} . \quad \text { In fact, we claim } \quad(\star \star) \quad \operatorname{vol}_{n}\left(\Delta^{n}\right)=\frac{1}{n!}
$$

For proving this, introduce

$$
\begin{aligned}
& \text { his, introduce } \\
& \left.\Psi: \Delta^{n} \times\right]-\pi, \pi\left[{ }^{n} \rightarrow B^{2 n} \quad \text { with } \quad \Psi(y, \alpha)=\left(\begin{array}{c}
\sqrt{y_{1}} \cos \alpha_{1} \\
\sqrt{y_{1}} \sin \alpha_{1} \\
\vdots \\
\sqrt{y_{n}} \cos \alpha_{n} \\
\sqrt{y_{n}} \sin \alpha_{n}
\end{array}\right) .\right.
\end{aligned}
$$

(vii) Show that Ψ is a C^{∞} diffeomorphism onto an open dense subset of $B^{2 n}$ with Jacobi determinant in absolute value equal to 2^{-n} and deduce $(\star \star)$.

Background. The preceding results imply that $B^{2 n}$ is diffeomorphic with the Cartesian product of n circles with a polytope of dimension n. Analogously, $B^{2 n+1}$ is diffeomorphic with the Cartesian product of n circles with the segment of the circular paraboloid of dimension $n+1$ given by

$$
\left\{(y, z) \in \mathbf{R}_{+}^{n} \times \mathbf{R} \mid \sum_{1 \leq j \leq n} y_{j}+z^{2}<1\right\}
$$

In v_{n} there occur as many factors π as there are independent ways to turn around in space, that is, the number of linearly independent (two-dimensional) planes. Phrased differently, the powers of π are given by the integral part of half the dimension.
(viii) According to the table above or the illustration below the sequence $\left(a_{n}\right)_{n=0}^{6}$ is strictly monotonically increasing while $a_{6}>a_{7}>a_{8}$. Combine these facts with (\star) to prove that $\left(a_{n}\right)_{n=6}^{\infty}$ is strictly monotonically decreasing. Then apply part (vi) to show that $\lim _{n \rightarrow \infty} a_{n}=0$. Deduce that also $\left(v_{n}\right)_{n=5}^{\infty}$ is strictly monotonically decreasing with $\lim _{n \rightarrow \infty} v_{n}=0$.
Hint: One might use the following consequence of (\star) :

$$
a_{n-1}=\frac{2 \pi}{n-2} \frac{2 \pi}{n-4} \cdots \begin{cases}\frac{2 \pi}{7} a_{6}, & n \geq 7 \text { odd } \\ \frac{2 \pi}{8} a_{7}, & n \geq 8 \text { even }\end{cases}
$$

Accordingly, $a_{6}=33.073 \cdots$ is the absolute maximum over all dimensions of the hyperareas of the corresponding unit spheres while $v_{5}=5.263 \cdots$ is the absolute maximum over all dimensions of the volumes of the corresponding unit balls.

Illustration: Hyperarea a_{n-1} of unit sphere and volume v_{n} of unit ball, for $1 \leq n \leq 30$

Solution of Exercise 0.1

(i) See Example 7.9.1.
(ii) $\phi(x, \alpha)=\phi\left(x^{\prime}, \alpha^{\prime}\right)$ implies by projection onto the first coordinate that $x=x^{\prime}$. Consideration of the last two coordinates then leads to $\cos \alpha=\cos \alpha^{\prime}$ and $\sin \alpha=\sin \alpha^{\prime}$, that is $\alpha=\alpha^{\prime}$. It is straightforward that $\operatorname{im}(\phi)$ is all of S^{2} except the half-circle $\left\{(x,-s(x), 0) \in S^{2}| | x \mid \leq 1\right\}$ connecting the opposite points $x_{ \pm}:=(\pm 1,0,0)$. The half-circle is compact and of dimension 1 which implies that it is negligible for 2 -dimensional integration (see page 526). We have

$$
C^{2}=\left\{x \in \mathbf{R}^{3}| | x_{1} \mid<1, x_{2}^{2}+x_{3}^{2}=1\right\}
$$

which shows that it is a cylinder, parallel to the x_{1}-axis. The preceding argument implies that ψ induces a bijection between C^{2} and $S^{2} \backslash\left\{x_{ \pm}\right\}$. Given $(x, y) \in C^{2}$, its image $\psi(x, y) \in S^{2}$ may be obtained in the following geometrical manner. Denote by ℓ the unique straight line in \mathbf{R}^{3} containing (x, y) that is parallel to the plane $\left\{x \in \mathbf{R}^{3} \mid x_{1}=0\right\}$ and that intersects the x_{1}-axis. Next define $\psi(x, y)$ to be the point of intersection of ℓ with S^{2} of shortest distance to (x, y).

Illustration: Map of the surface of the Earth based on Lambert's cylindrical projection
(iii) On the basis of the chain rule one sees

$$
D_{j} s(x)=\frac{1}{2 s(x)}\left(-2 x_{j}\right)=-\frac{x_{j}}{s(x)} ; \quad \text { in other words } \quad \operatorname{grad} s(x)=-\frac{1}{s(x)} x^{t}
$$

which leads to the matrix for $D \phi(x, \alpha)$. Obviously $D \phi(x, \alpha)^{t} D \phi(x, \alpha)$ has the following matrix:

$$
\left(\begin{array}{ccc}
I_{n-2} & -\frac{\cos \alpha}{s(x)} x & -\frac{\sin \alpha}{s(x)} x \\
0_{n-2} & -s(x) \sin \alpha & s(x) \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
I_{n-2} & 0_{n-2} \\
-\frac{\cos \alpha}{s(x)} x^{t} & -s(x) \sin \alpha \\
-\frac{\sin \alpha}{s(x)} x^{t} & s(x) \cos \alpha
\end{array}\right)
$$

A-priori one knows the resulting matrix to be symmetric. Therefore, when multiplying the i-th row in the first matrix with the j-th column in the second, one has to distinguish only three cases: $1 \leq i, j \leq n-2$, which leads to the upper-left matrix belonging to $\operatorname{Mat}(n-2, \mathbf{R})$ in the answer; $i=j=n-1$, which gives the lower-right entry as a consequence of $\sin ^{2}+\cos ^{2}=1$; and $i=n-1$ and $1 \leq j \leq n-2$, which leads to $\sin \alpha \cos \alpha x_{j}-\cos \alpha \sin \alpha x_{j}=0$.
(iv) ϕ is of class C^{∞} since all of its component functions are. Next $\operatorname{im}(\phi) \subset S^{n-1}$; indeed, for $(x, \alpha) \in D$,

$$
\|\phi(x, \alpha)\|^{2}=\|x\|^{2}+s(x)^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=\|x\|^{2}+1-\|x\|^{2}=1
$$

Actually, $\operatorname{im}(\phi)$ is all of S^{n-1} except the set $\left\{(x,-s(x), 0) \in S^{n-1} \mid x \in \overline{B^{n-2}}\right\}$. This set is compact and of dimension $=\operatorname{dim}\left(B^{n-2}\right)=n-2$; that implies that it is negligible for $(n-1)$-dimensional integration (see page 526). Furthermore, ϕ is an embedding if it is immersive, injective and has a continuous inverse upon restriction to its image. Now, suppose $h \in \mathbf{R}^{n-1}$ satisfies $\mathbf{R}^{n} \ni D \phi(x, \alpha) h=0$. In view of part (iii) the upper $n-2$ entries of the image vector give $h_{1}=\cdots=h_{n-2}=0$, while the two bottom entries lead to $\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) h_{n-1}=$ $h_{n-1}=0$. Accordingly, $D \phi(x, \alpha)$ is injective, for all $(x, \alpha) \in D$. As in part (ii) one shows directly that ϕ is injective on D. Finally, if $\phi(x, \alpha)=y \in \mathbf{R}^{n}$, then projection of y onto its upper $n-2$ entries produces x, while $\alpha=2 \arctan \left(\frac{y_{n}}{1+y_{n-1}}\right)$. This implies that the inverse mapping $\phi^{-1}: \phi(D) \rightarrow D$ with $\phi(x, \alpha) \mapsto(x, \alpha)$ is continuous.
(v) Exactly the same arguments as in the solution to Exercise 6.23.(iii) imply

$$
\operatorname{det}\left(I_{n-2}+\frac{1}{s(x)^{2}} x x^{t}\right)=1+\frac{\|x\|^{2}}{s(x)^{2}}=\frac{1}{s(x)^{2}}
$$

As a consequence

$$
\omega_{\phi}(x, \alpha)=\sqrt{\operatorname{det}\left(D \phi(x, \alpha)^{t} D \phi(x, \alpha)\right)}=\frac{1}{s(x)} s(x)=1
$$

(vi) $\operatorname{im}(\phi)=S^{n-1}$ up to a negligible set according to part (iv), therefore one obtains from parts (v) and (i)

$$
a_{n-1}=\int_{S^{n-1}} d_{n-1} y=\int_{D} \omega_{\phi}(y) d y=\int_{B^{n-2}} d x \int_{-\pi}^{\pi} d \alpha=2 \pi v_{n-2}=2 \pi \frac{a_{n-3}}{n-2}
$$

This implies directly

$$
v_{n}=\frac{1}{n} a_{n-1}=\frac{2 \pi}{n} \frac{a_{n-3}}{n-2}=\frac{2 \pi}{n} v_{n-2}
$$

The formulae for v_{n} are a direct consequence of the identities $v_{2}=\pi$ and $v_{1}=2$, while the formula for $a_{2 n-1}$ follows from part (i).
(vii) It is straightforward that Ψ is a C^{∞} diffeomorphism onto its image. This image consists of $B^{2 n}$ under omission of the union of the origin and of all the sets (this union is negligible for $2 n$-dimensional integration)

$$
\left\{\left(x_{1}, \ldots, x_{2 j-1},-z_{j}, 0, x_{2 j+1}, \ldots, x_{2 n}\right) \in B^{2 n} \mid 0<z_{j}<1\right\} \quad(1 \leq j \leq n)
$$

Write $\Psi(y, \alpha)=\Psi^{\prime}\left(y_{1}, \alpha_{1}, \cdots, y_{n}, \alpha_{n}\right)$. Since the difference between Ψ and Ψ^{\prime} is a permutation of the coordinates, one has

$$
|\operatorname{det} D \Psi(y, \alpha)|=\left|\operatorname{det} D \Psi^{\prime}\left(y_{1}, \alpha_{1}, \cdots, y_{n}, \alpha_{n}\right)\right|=\prod_{1 \leq j \leq n}\left|\begin{array}{cc}
\frac{\cos \alpha_{j}}{2 \sqrt{y_{j}}} & -\sqrt{y_{j}} \sin \alpha_{j} \\
\frac{\sin \alpha_{j}}{2 \sqrt{y_{j}}} & \sqrt{y_{j}} \cos \alpha_{j}
\end{array}\right|=\frac{1}{2^{n}}
$$

On the basis of the Change of Variables Theorem 6.6.1 it is obvious now that

$$
\frac{\pi^{n}}{n!}=v_{2 n}=\int_{B_{2 n}} d x=\int_{\left.\Delta^{n} \times\right]-\pi, \pi[n} \frac{1}{2^{n}} d y d \alpha=\pi^{n} \operatorname{vol}_{n}\left(\Delta^{n}\right)
$$

(viii) According to (\star) we have

$$
a_{n-1}=\frac{2 \pi}{n-2} \frac{2 \pi}{n-4} \cdots \begin{cases}\frac{2 \pi}{7} a_{6}, & n \geq 7 \text { odd } \\ \frac{2 \pi}{8} a_{7}, & n \geq 8 \text { even }\end{cases}
$$

Now, for $n \geq 4$,

$$
\frac{2 \pi}{2 n-2} \frac{2 \pi}{2 n-4} \cdots \frac{2 \pi}{7} a_{6}>\frac{2 \pi}{2 n-1} \frac{2 \pi}{2 n-3} \cdots \frac{2 \pi}{8} a_{7}>\frac{2 \pi}{2 n} \frac{2 \pi}{2 n-2} \cdots \frac{2 \pi}{9} a_{8}
$$

which together with the preceding assertion leads to the desired strict monotonicity

$$
a_{2 n-1}>a_{2 n}>a_{2 n+1}
$$

According to part (vi), for $n \geq 4$,

$$
0<a_{2 n-1}=\frac{2 \pi^{n}}{(n-1)!}=2 \pi \prod_{1 \leq k<n} \frac{\pi}{k} \leq \frac{\pi^{4}}{3} \prod_{4 \leq k<n} \frac{\pi}{4}=\frac{\pi^{4}}{3}\left(\frac{\pi}{4}\right)^{n-4}
$$

As $\frac{\pi}{4}<1$, this implies $\lim _{n \rightarrow \infty} a_{2 n-1}=0$, which gives $\lim _{n \rightarrow \infty} a_{n}=0$ in view of the preceding result. Applying part (i) we get the desired monotonicity for $\left(v_{n}\right)_{n=7}^{\infty}$; and, as a consequence, for $\left(v_{n}\right)_{n=5}^{\infty}$ too because $v_{5}>v_{6}>v_{7}$ can be gleaned from the table. Furthermore, the limit statement for the v_{n} follows directly from the one for the a_{n}, again on the basis of part (i).

