
Exercise 0.1 (Two-step recurrences for hyperarea and volume). Write Sn−1 and Bn for the unit
sphere and the interior of the unit ball in Rn, respectively, and set

an−1 = hyperarean−1(S
n−1) and vn = voln(Bn).

Here is a table of these numbers for low values of n:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

an−1 2 2π 4π 2π2 8π2

3
π3 16π3

15
π4

3
32π4

105
π5

12
64π5

945
π6

60
128π6

10395
π7

360

vn 2 π
4π
3

π2

2
8π2

15
π3

6
16π3

105
π4

24
32π4

945
π5

120
64π5

10395
π6

720
128π6

135135
π7

5040

(i) In the table we see an−1 = n vn, for 1 ≤ n ≤ 14. Prove this identity for all n ∈ N, for instance,
by applying Gauss’ Divergence Theorem.

The table also suggests that the powers of π are given by the integral part of half the dimension and,
furthermore, that there exist two-step recurrences

(?) an−1 =
2π
n− 2

an−3 and vn =
2π
n
vn−2.

In the following we will prove these identities geometrically (that is, without analyzing values of the
Gamma function), for all n ∈ N sufficiently large. To this end, define the function s : Bn−2 → R+ by
s(x) =

√
1− ‖x‖2 and the mapping

φ : D := Bn−2 × ]−π, π [ → Rn by φ(x, α) =

 x
s(x) cosα

s(x) sinα

 .

(ii) Firstly, consider the case of n = 3. Prove that φ is injective and that im(φ) = S2 except for a set
which is negligible for 2-dimensional integration. Note that φ induces the mapping

ψ : C2 := B1 × S1 → S2 given by ψ(x, y) = φ(x, arg(y)) =

 x
s(x)y1

s(x)y2

 .

Show that ψ is a bijection between the cylinderC2 and the sphere minus two points. Furthermore,
describe ψ in geometric terms, that is, as a projection (the inverse of ψ is known as Lambert’s
cylindrical projection of the sphere onto a tangent cylinder, see the next page for an illustration).

(iii) Next, consider the case of general n ≥ 3. Prove Djs(x) = − xj

s(x) , for 1 ≤ j ≤ n − 2 and
x ∈ Bn−2. Furthermore, write In−2 for the identity matrix in Mat(n− 2,R) and also xt for the
row vector obtained from x ∈ Bn−2 by means of transposition. Show that, for all (x, α) ∈ D,

Dφ(x, α) ∈ Lin(Rn−1,Rn) and Dφ(x, α)tDφ(x, α) ∈ End(Rn−1)

has the following matrix, respectively:
In−2 0n−2

−cosα
s(x)

xt −s(x) sinα

−sinα
s(x)

xt s(x) cosα

 and

 In−2 +
1

s(x)2
xxt 0

0t s(x)2

 .
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Illustration for part (ii): Lambert’s projection from sphere onto tangent cylinder

(iv) Generalize the results from part (ii). Specifically, applying results from part (iii), verify that φ is
a C∞ embedding having an open part of Sn−1 with negligible complement as an image.

(v) By considering the behavior of the following determinant (see part (iii)) under rotations of the
element x ∈ Bn−2, show

det
(
In−2 +

1
s(x)2

xxt
)

=
1

s(x)2
and deduce ωφ(x, α) = 1,

where ωφ is the Euclidean density function associated with φ : D → Sn−1.

(vi) On the basis of parts (v) and (i) prove the first equality in (?) and then deduce the second one. In
particular, prove by mathematical induction over n ∈ N

v2n =
πn

n!
, v2n−1 =

22n πn−1 n!
(2n)!

and a2n−1 =
2πn

(n− 1)!
.

Next, we use the formula for v2n in order to compute the volume of the standard (n + 1)-tope ∆n in
Rn given by

∆n = { y ∈ Rn
+ |

∑
1≤j≤n

yj < 1 }. In fact, we claim (??) voln(∆n) =
1
n!
.

For proving this, introduce

Ψ : ∆n × ]−π, π [ n → B2n with Ψ(y, α) =


√
y1 cosα1√
y1 sinα1

...√
yn cosαn√
yn sinαn

 .
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(vii) Show that Ψ is a C∞ diffeomorphism onto an open dense subset of B2n with Jacobi determinant
in absolute value equal to 2−n and deduce (??).

Background. The preceding results imply that B2n is diffeomorphic with the Cartesian product of
n circles with a polytope of dimension n. Analogously, B2n+1 is diffeomorphic with the Cartesian
product of n circles with the segment of the circular paraboloid of dimension n+ 1 given by

{ (y, z) ∈ Rn
+ ×R |

∑
1≤j≤n

yj + z2 < 1 }

In vn there occur as many factors π as there are independent ways to turn around in space, that is,
the number of linearly independent (two-dimensional) planes. Phrased differently, the powers of π are
given by the integral part of half the dimension.

(viii) According to the table above or the illustration below the sequence (an)6n=0 is strictly monoto-
nically increasing while a6 > a7 > a8 . Combine these facts with (?) to prove that (an)∞n=6 is
strictly monotonically decreasing. Then apply part (vi) to show that limn→∞ an = 0. Deduce
that also (vn)∞n=5 is strictly monotonically decreasing with limn→∞ vn = 0.
Hint: One might use the following consequence of (?):

an−1 =
2π
n− 2

2π
n− 4

· · ·


2π
7
a6, n ≥ 7 odd;

2π
8
a7, n ≥ 8 even.

Accordingly, a6 = 33.073 · · · is the absolute maximum over all dimensions of the hyperareas of the
corresponding unit spheres while v5 = 5.263 · · · is the absolute maximum over all dimensions of the
volumes of the corresponding unit balls.
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Illustration: Hyperarea an−1 of unit sphere and volume vn of unit ball, for 1 ≤ n ≤ 30

Solution of Exercise 0.1

(i) See Example 7.9.1.

(ii) φ(x, α) = φ(x′, α′) implies by projection onto the first coordinate that x = x′. Consideration
of the last two coordinates then leads to cosα = cosα′ and sinα = sinα′, that is α = α′. It
is straightforward that im(φ) is all of S2 except the half-circle { (x,−s(x), 0) ∈ S2 | |x| ≤ 1 }
connecting the opposite points x± := (±1, 0, 0). The half-circle is compact and of dimension 1
which implies that it is negligible for 2-dimensional integration (see page 526). We have

C2 = {x ∈ R3 | |x1| < 1, x2
2 + x2

3 = 1 },
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which shows that it is a cylinder, parallel to the x1-axis. The preceding argument implies that
ψ induces a bijection between C2 and S2 \ {x±}. Given (x, y) ∈ C2, its image ψ(x, y) ∈ S2

may be obtained in the following geometrical manner. Denote by ` the unique straight line in R3

containing (x, y) that is parallel to the plane {x ∈ R3 | x1 = 0 } and that intersects the x1-axis.
Next define ψ(x, y) to be the point of intersection of ` with S2 of shortest distance to (x, y).

Illustration: Map of the surface of the Earth based on Lambert’s cylindrical projection

(iii) On the basis of the chain rule one sees

Djs(x) =
1

2s(x)
(−2xj) = − xj

s(x)
; in other words grad s(x) = − 1

s(x)
xt,

which leads to the matrix forDφ(x, α). ObviouslyDφ(x, α)tDφ(x, α) has the following matrix:

 In−2 −cosα
s(x)

x −sinα
s(x)

x

0n−2 −s(x) sinα s(x) cosα




In−2 0n−2

−cosα
s(x)

xt −s(x) sinα

−sinα
s(x)

xt s(x) cosα

 .

A-priori one knows the resulting matrix to be symmetric. Therefore, when multiplying the i-th
row in the first matrix with the j-th column in the second, one has to distinguish only three cases:
1 ≤ i, j ≤ n−2, which leads to the upper-left matrix belonging to Mat(n−2,R) in the answer;
i = j = n − 1, which gives the lower-right entry as a consequence of sin2 +cos2 = 1; and
i = n− 1 and 1 ≤ j ≤ n− 2, which leads to sinα cosαxj − cosα sinαxj = 0.

(iv) φ is of class C∞ since all of its component functions are. Next im(φ) ⊂ Sn−1; indeed, for
(x, α) ∈ D,

‖φ(x, α)‖2 = ‖x‖2 + s(x)2(cos2 α+ sin2 α) = ‖x‖2 + 1− ‖x‖2 = 1.
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Actually, im(φ) is all of Sn−1 except the set { (x,−s(x), 0) ∈ Sn−1 | x ∈ Bn−2 }. This
set is compact and of dimension = dim(Bn−2) = n − 2; that implies that it is negligible for
(n−1)-dimensional integration (see page 526). Furthermore, φ is an embedding if it is immersive,
injective and has a continuous inverse upon restriction to its image. Now, suppose h ∈ Rn−1

satisfies Rn 3 Dφ(x, α)h = 0. In view of part (iii) the upper n − 2 entries of the image vector
give h1 = · · · = hn−2 = 0, while the two bottom entries lead to (sin2 α + cos2 α)hn−1 =
hn−1 = 0. Accordingly, Dφ(x, α) is injective, for all (x, α) ∈ D. As in part (ii) one shows
directly that φ is injective on D. Finally, if φ(x, α) = y ∈ Rn, then projection of y onto its upper
n − 2 entries produces x, while α = 2 arctan ( yn

1+yn−1
). This implies that the inverse mapping

φ−1 : φ(D) → D with φ(x, α) 7→ (x, α) is continuous.

(v) Exactly the same arguments as in the solution to Exercise 6.23.(iii) imply

det
(
In−2 +

1
s(x)2

xxt
)

= 1 +
‖x‖2

s(x)2
=

1
s(x)2

.

As a consequence

ωφ(x, α) =
√

det (Dφ(x, α)tDφ(x, α)) =
1

s(x)
s(x) = 1.

(vi) im(φ) = Sn−1 up to a negligible set according to part (iv), therefore one obtains from parts (v)
and (i)

an−1 =
∫

Sn−1

dn−1y =
∫

D
ωφ(y) dy =

∫
Bn−2

dx

∫ π

−π
dα = 2πvn−2 = 2π

an−3

n− 2
.

This implies directly

vn =
1
n
an−1 =

2π
n

an−3

n− 2
=

2π
n
vn−2.

The formulae for vn are a direct consequence of the identities v2 = π and v1 = 2, while the
formula for a2n−1 follows from part (i).

(vii) It is straightforward that Ψ is a C∞ diffeomorphism onto its image. This image consists of
B2n under omission of the union of the origin and of all the sets (this union is negligible for
2n-dimensional integration)

{ (x1, . . . , x2j−1,−zj , 0, x2j+1, . . . , x2n) ∈ B2n | 0 < zj < 1 } (1 ≤ j ≤ n).

Write Ψ(y, α) = Ψ′(y1, α1, · · · , yn, αn). Since the difference between Ψ and Ψ′ is a permutation
of the coordinates, one has

|detDΨ(y, α)| = |detDΨ′(y1, α1, · · · , yn, αn)| =
∏

1≤j≤n

∣∣∣∣∣∣∣∣
cosαj

2√yj
−√yj sinαj

sinαj

2√yj

√
yj cosαj

∣∣∣∣∣∣∣∣ =
1
2n
.

On the basis of the Change of Variables Theorem 6.6.1 it is obvious now that

πn

n!
= v2n =

∫
B2n

dx =
∫

∆n×]−π,π [ n

1
2n
dy dα = πn voln(∆n).
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(viii) According to (?) we have

an−1 =
2π
n− 2

2π
n− 4

· · ·


2π
7
a6, n ≥ 7 odd;

2π
8
a7, n ≥ 8 even.

Now, for n ≥ 4,

2π
2n− 2

2π
2n− 4

· · · 2π
7
a6 >

2π
2n− 1

2π
2n− 3

· · · 2π
8
a7 >

2π
2n

2π
2n− 2

· · · 2π
9
a8,

which together with the preceding assertion leads to the desired strict monotonicity

a2n−1 > a2n > a2n+1.

According to part (vi), for n ≥ 4,

0 < a2n−1 =
2πn

(n− 1)!
= 2π

∏
1≤k<n

π

k
≤ π4

3

∏
4≤k<n

π

4
=
π4

3

(π
4

)n−4
.

As π
4 < 1, this implies limn→∞ a2n−1 = 0, which gives limn→∞ an = 0 in view of the preceding

result. Applying part (i) we get the desired monotonicity for (vn)∞n=7; and, as a consequence,
for (vn)∞n=5 too because v5 > v6 > v7 can be gleaned from the table. Furthermore, the limit
statement for the vn follows directly from the one for the an, again on the basis of part (i).
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