
Exercise 0.1 (Formulae of Serret–Frenet and tubular neighborhood of curve). Let J ⊂ R be an

open interval in R and let γ : J → R3 be a C∞ curve in R3. For any s ∈ J , denote by ⊥(s) the plane

in R
3 that contains the point γ(s) and is perpendicular to the tangent vector T (s) := γ ′(s) ∈ R

3 of

im(γ) at γ(s). In this exercise, ′ denotes the derivative of a mapping defined on J with respect to the

variable in J .

ΓHsL+THsL

ΓHsL+NHsL

ΓHsL+BHsL

imHΓL

¦HsL

(i) Prove ⊥(s) = { x ∈ R3 | 〈 x− γ(s), T (s) 〉 = 0 }.

(ii) Consider x ∈ R3 and suppose the function s 7→ ‖x − γ(s)‖ attains a minimum at s0 ∈ J . Show

x ∈⊥(s0).

Now suppose that γ be parametrized by arc length, in other words, that ‖T (s)‖ = 1, and furthermore,

that γ ′′(s) 6= 0, for all s ∈ J . Consider the mutually perpendicular unit vectors T (s), N (s) and

B(s) ∈ R
3 from Definition 5.8.1.

(iii) Deduce that N (s)× B(s) = T (s) and B(s) × T (s) = N (s), for all s ∈ J .

(iv) Show that ⊥(s) = { γ(s) + λ1N (s) + λ2B(s) ∈ R3 | λ ∈ R2 }.

Tubular surface.

Define tub(r), the tubular surface at a distance r > 0 from the curve γ , by means of

tub(r) :=
⋃

s∈J

tub(s, r) :=
⋃

s∈J

{ x ∈⊥(s) | ‖x− γ(s)‖ = r }.
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(v) Prove that tub(r) = im(φ) where

φ : J × ]−π, π ] → R
3 is given by φ(s, α) = γ(s) + r cos αN (s) + r sin α B(s).

(vi) Using the formulae of Frenet–Serret from Section 5.8 show

∂φ

∂s
(s, α) = (1 − rκ(s) cosα)T (s)− rτ(s) sinα N (s) + rτ(s) cosα B(s),

∂φ

∂α
(s, α) = −r sinα N (s) + r cos αB(s),

∥

∥

∥

∂φ

∂s
× ∂φ

∂α
(s, α)

∥

∥

∥
= r(1 − rκ(s) cosα).

(vii) Verify that φ is an immersion under the assumption that κ(s) < 1
r , for all s ∈ J . Deduce that for

every point in J × ]−π, π ] there exists a neighborhood D such that φ(D) ⊂ tub(r) is a C∞

submanifold in R
3 of dimension 2.

(viii) Suppose that γ is an embedding and that, for every x ∈ tub(r), there exists a unique s ∈ J such

that ‖x − γ(s)‖ ≤ r. Use part (ii) to prove that φ is an embedding.

From now on assume that γ and φ are embeddings and that γ is of finite length.

(ix) Conclude area2(tub(r)) = 2πr length(γ).

Next, define Tub(r), the open tubular neighborhood of radius r of the curve γ , by means of

Tub(r) :=
⋃

0≤ρ<r

tub(ρ).

(x) Prove vol3(Tub(r)) = πr2 length(γ).

Furthermore, consider the C∞ mapping

Ψ : J × R
2 → R

3 given by Ψ(s, t) = γ(s) + t1 N (s) + t2 B(s).

(xi) Compute

det DΨ(s, t) =
〈 ∂Ψ

∂s
,

∂Ψ

∂t1
× ∂Ψ

∂t2

〉

(s, t) = 1 − κ(s) t1.

Suppose D(s) ⊂ R
2 is an open and Jordan measurable set and introduce the planar sets U(s) ⊂⊥(s),

for s ∈ J , and the solid U ⊂ R3 by

U(s) = {Ψ(s, t) ∈ R
3 | t ∈ D(s) } and U =

⋃

s∈J

U(s).

(xii) Assume that Ψ :
⋃

s∈J{s}×D(s) → U is a C∞ diffeomorphism with positive Jacobi determinant

and write a(s) = area2(U(s)). Prove

vol3(U) =

∫

J

(

area (D(s)) − κ(s)

∫

D(s)

t1 dt
)

ds

=

∫

im(γ)

(

a(s) − κ(s)

∫

U (s)
〈 y − γ(s), N (s) 〉 d2y

)

d1s.

(xiii) Apply the formula from the previous part in the case of the helix γ : J =: ]−π, π [ → R3

as in Example 5.8.2 with a = b = 1
2

√
2 and D(s) = ] 0, 1 [ 2, for all s ∈ J , to show that

vol3(U) = 2π(1−
√

2
4 ) = 4.061 743 · · · in this case.
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Background. The result in part (x) above is a very special case of a result of H. Weyl: On the volume

of tubes, Amer. J. Math. 61 (1939) 461-472. This paper has been very influential in modern differential

geometry. Remarkable is that the formulae in parts (ix) and (x) are independent of the amount of

“twisting” of the curve im(γ).

Illustration for part (ix).
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Solution of Exercise 0.1

(i) Straightforward application of linear algebra.

(ii) Consider s 7→ ‖x− γ(s)‖2 = 〈x− γ(s), x− γ(s)〉. As it attains a minimum at s0, its derivative

has to vanish at s0, in other words, on the basis of Corollary 2.4.3.(ii)

〈 x − γ(s0), γ ′(s0) 〉 = 〈 x − γ(s0), T (s0) 〉 = 0, that is x ∈⊥(s0).

(iii) The matrix O(s) from Definition 5.8.1 maps the standard basis vectors e1, e2 and e3 in R
3 to

T (s), N (s) and B(s), respectively, and being an element of SO(3, R) preserves outer products.

As ej × ej+1 = ej+2 where the indices are taken modulo 3, the desired identities follow.

(iv) N (s) and B(s) span the linear subspace of vectors in R
3 perpendicular to T (s).

(v) If x = φ(s, α), then x = γ(s) + λ1N (s) + λ2B(s) ∈⊥(s) according to part (iv). Furthermore

‖x − γ(s)‖ = r‖ cosα N (s) + sin αB(s)‖ = r,

since N (s) and B(s) are mutually perpendicular unit vectors. Thus, imφ ⊂ tub(r). Conversely,

suppose x ∈ tub(r), then x ∈ tub(s, r), for some s ∈ J . Hence x ∈⊥(s) and ‖x − γ(s)‖ = r,

that is

x = γ(s) + r cosα N (s) + r sin αB(s) = φ(s, α),

for some α ∈ ]−π, π ]. Therefore, tub(r) ⊂ imφ.

(vi) Using part (iii) one finds

∂φ

∂s
(s, α) = γ ′(s) + r cosα N ′(s) + r sinα B′(s)

= T (s) + r cosα
(

− κ(s) T (s) + τ(s) B(s)
)

− r sinα τ(s) N (s)

= (1 − rκ(s) cosα)T (s) − rτ(s) sinα N (s) + rτ(s) cosα B(s),

∂φ

∂α
(s, α) = −r sin αN (s) + r cos α B(s),

∂φ

∂s
× ∂φ

∂α
(s, α) = −r sin α

(

1− rκ(s) cosα
)

B(s) − r cosα
(

1 − rκ(s) cosα
)

N (s)

−r2τ(s) sinα cos α T (s) + r2τ(s) sinα cos αT (s)

= −r
(

1 − rκ(s) cosα
)(

cosα N (s) + sinα B(s)
)

,
∥

∥

∥

∂φ

∂s
× ∂φ

∂α
(s, α)

∥

∥

∥
= r(1 − rκ(s) cosα).

(vii) In view of the preceding part

r κ(s) < 1 =⇒ 1 − rκ(s) cosα > 0 =⇒ ∂φ

∂s
× ∂φ

∂α
(s, α) 6= 0,

which implies that
∂φ
∂s (s, α) and

∂φ
∂α (s, α) are linearly independent, that is rankDφ(s, α) = 2, in

other words, φ is an immersion. The second assertion is the Immersion Theorem 4.3.1.(i).
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(viii) Consider x ∈ tub(r). According to part (ii) we have x ∈⊥ (s), for a unique s ∈ J . Hence

x ∈ tub(r, s), and by part (v) this implies x = φ(s, α), for a unique α ∈ ]−π, π ]; hence φ is

injective. Next, suppose x = φ(s, α). Then

〈 x− γ(s), N (s) 〉 = r cos α and 〈 x− γ(s), B(s) 〉 = r sin α

yield that α depends continuously on x. As γ(s) = x − r cosα N (s) − r sinα B(s), it follows

that γ(s) depends continuously on x; and so s itself too, because γ is an embedding. This proves

that φ is an embedding.

(ix) As φ is an embedding one obtains from (v)

area2((tub(r)) =

∫

J× ]−π, π ]

∥

∥

∥

∂φ

∂s
× ∂φ

∂α
(s, α)

∥

∥

∥
d(s, α)

=

∫

J

(

∫ π

−π

r(1 − rκ(s) cosα) dα
)

dr = 2πr length(γ).

(x) Part (ix) implies directly

vol3(Tub(r)) =

∫ r

0
area2(tub(r)) dr = πr2 length(γ).

(xi) Since ∂Ψ
∂t1

× ∂Ψ
∂t2

= N × B = T , we only need to know the component of ∂Ψ
∂s along T for the

computation of the inner product. Now we have, applying the formulae of Frenet–Serret once

more,
∂Ψ

∂s
= γ ′(s) + t1 N ′(s) + t2 B′(s) ≡ T − κt1 T = (1 − κ t1) T.

(xii) The Change of Variables Theorem 6.6.1 implies

vol3(U) =

∫

U

dx =

∫

S

s∈J
({s}×D(s))

(1 − κ(s) t1) d(s, t)

=

∫

J

(

∫

D(s)
(1 − κ(s) t1) dt ds =

∫

J

(

area (D(s)) − κ(s)

∫

D(s)
t1 dt

)

ds

=

∫

im(γ)

(

a(s) − κ(s)

∫

U (s)
〈 y − γ(s), N (s) 〉 d2y

)

d1s.

The last equality follows upon noting that t 7→ (〈Ψ(t)− γ(s), N (s) 〉, 〈Ψ(t)− γ(s), B(s) 〉) is

the identity mapping in R2.

Introduce the moments mB(s) and mN (s) of the planar set U(s) about the lines γ(s) + RB(s) and

γ(s) + RN (s) ⊂⊥(s), respectively, by

mB(s) =

∫

U (s)
〈 y − γ(s), N (s) 〉 d2y and mN (s) =

∫

U (s)
〈 y − γ(s), B(s) 〉 d2y.

Then the centroid c(s) ∈⊥(s) of U(s) with respect to γ(s) is defined by

c(s) =
1

a(s)
(mB(s), mN(s)).

These definitions then lead to the formulae

vol3(U) =

∫

im(γ)

(

a(s) − κ(s) mB(s)
)

d1s =

∫

im(γ)
a(s)(1− κ(s) c1(s)) d1s.
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(xiii) Note that the helix is parametrized by arc length and that κ(s) = 1
2

√
2 for all s ∈ J . Furthermore,

Ψ is a diffeomorphism in this case, a(s) = 1 and
∫

D(s) t1 dt =
∫ 1
0 t1 dt1 = 1

2 . Thus, the assertion

is a direct application of the formula in the preceding part.
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