Exercise 0.1 (Formulae of Serret-Frenet and tubular neighborhood of curve). Let $J \subset \mathbf{R}$ be an open interval in \mathbf{R} and let $\gamma: J \rightarrow \mathbf{R}^{3}$ be a C^{∞} curve in \mathbf{R}^{3}. For any $s \in J$, denote by $\perp(s)$ the plane in \mathbf{R}^{3} that contains the point $\gamma(s)$ and is perpendicular to the tangent vector $T(s):=\gamma^{\prime}(s) \in \mathbf{R}^{3}$ of $\operatorname{im}(\gamma)$ at $\gamma(s)$. In this exercise, ' denotes the derivative of a mapping defined on J with respect to the variable in J.

(i) Prove $\perp(s)=\left\{x \in \mathbf{R}^{3} \mid\langle x-\gamma(s), T(s)\rangle=0\right\}$.
(ii) Consider $x \in \mathbf{R}^{3}$ and suppose the function $s \mapsto\|x-\gamma(s)\|$ attains a minimum at $s_{0} \in J$. Show $x \in \perp\left(s_{0}\right)$.

Now suppose that γ be parametrized by arc length, in other words, that $\|T(s)\|=1$, and furthermore, that $\gamma^{\prime \prime}(s) \neq 0$, for all $s \in J$. Consider the mutually perpendicular unit vectors $T(s), N(s)$ and $B(s) \in \mathbf{R}^{3}$ from Definition 5.8.1.
(iii) Deduce that $N(s) \times B(s)=T(s)$ and $B(s) \times T(s)=N(s)$, for all $s \in J$.
(iv) Show that $\perp(s)=\left\{\gamma(s)+\lambda_{1} N(s)+\lambda_{2} B(s) \in \mathbf{R}^{3} \mid \lambda \in \mathbf{R}^{2}\right\}$.

Tubular surface.
Define $\operatorname{tub}(r)$, the tubular surface at a distance $r>0$ from the curve γ, by means of

$$
\operatorname{tub}(r):=\bigcup_{s \in J} \operatorname{tub}(s, r):=\bigcup_{s \in J}\{x \in \perp(s) \mid\|x-\gamma(s)\|=r\} .
$$

(v) Prove that $\operatorname{tub}(r)=\operatorname{im}(\phi)$ where

$$
\phi: J \times]-\pi, \pi] \rightarrow \mathbf{R}^{3} \quad \text { is given by } \quad \phi(s, \alpha)=\gamma(s)+r \cos \alpha N(s)+r \sin \alpha B(s) .
$$

(vi) Using the formulae of Frenet-Serret from Section 5.8 show

$$
\begin{aligned}
& \frac{\partial \phi}{\partial s}(s, \alpha)=(1-r \kappa(s) \cos \alpha) T(s)-r \tau(s) \sin \alpha N(s)+r \tau(s) \cos \alpha B(s), \\
& \frac{\partial \phi}{\partial \alpha}(s, \alpha)=-r \sin \alpha N(s)+r \cos \alpha B(s), \quad\left\|\frac{\partial \phi}{\partial s} \times \frac{\partial \phi}{\partial \alpha}(s, \alpha)\right\|=r(1-r \kappa(s) \cos \alpha) .
\end{aligned}
$$

(vii) Verify that ϕ is an immersion under the assumption that $\kappa(s)<\frac{1}{r}$, for all $s \in J$. Deduce that for every point in $J \times]-\pi, \pi]$ there exists a neighborhood D such that $\phi(D) \subset \operatorname{tub}(r)$ is a C^{∞} submanifold in \mathbf{R}^{3} of dimension 2.
(viii) Suppose that γ is an embedding and that, for every $x \in \operatorname{tub}(r)$, there exists a unique $s \in J$ such that $\|x-\gamma(s)\| \leq r$. Use part (ii) to prove that ϕ is an embedding.

From now on assume that γ and ϕ are embeddings and that γ is of finite length.
(ix) $\operatorname{Conclude}^{\operatorname{area}}{ }_{2}(\operatorname{tub}(r))=2 \pi r$ length (γ).

Next, define $\operatorname{Tub}(r)$, the open tubular neighborhood of radius r of the curve γ, by means of

$$
\operatorname{Tub}(r):=\bigcup_{0 \leq \rho<r} \operatorname{tub}(\rho) .
$$

(x) $\operatorname{Prove}^{\operatorname{vol}}{ }_{3}(\operatorname{Tub}(r))=\pi r^{2}$ length (γ).

Furthermore, consider the C^{∞} mapping

$$
\Psi: J \times \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} \quad \text { given by } \quad \Psi(s, t)=\gamma(s)+t_{1} N(s)+t_{2} B(s) .
$$

(xi) Compute

$$
\operatorname{det} D \Psi(s, t)=\left\langle\frac{\partial \Psi}{\partial s}, \frac{\partial \Psi}{\partial t_{1}} \times \frac{\partial \Psi}{\partial t_{2}}\right\rangle(s, t)=1-\kappa(s) t_{1} .
$$

Suppose $D(s) \subset \mathbf{R}^{2}$ is an open and Jordan measurable set and introduce the planar sets $U(s) \subset \perp(s)$, for $s \in J$, and the solid $U \subset \mathbf{R}^{3}$ by

$$
U(s)=\left\{\Psi(s, t) \in \mathbf{R}^{3} \mid t \in D(s)\right\} \quad \text { and } \quad U=\bigcup_{s \in J} U(s)
$$

(xii) Assume that $\Psi: \bigcup_{s \in J}\{s\} \times D(s) \rightarrow U$ is a C^{∞} diffeomorphism with positive Jacobi determinant and write $a(s)=\operatorname{area}_{2}(U(s))$. Prove

$$
\begin{aligned}
\operatorname{vol}_{3}(U) & =\int_{J}\left(\operatorname{area}(D(s))-\kappa(s) \int_{D(s)} t_{1} d t\right) d s \\
& =\int_{\operatorname{im}(\gamma)}\left(a(s)-\kappa(s) \int_{U(s)}\langle y-\gamma(s), N(s)\rangle d_{2} y\right) d_{1} s .
\end{aligned}
$$

(xiii) Apply the formula from the previous part in the case of the helix $\gamma: J=$: $]-\pi, \pi\left[\rightarrow \mathbf{R}^{3}\right.$ as in Example 5.8.2 with $a=b=\frac{1}{2} \sqrt{2}$ and $\left.D(s)=\right] 0,1\left[{ }^{2}\right.$, for all $s \in J$, to show that $\operatorname{vol}_{3}(U)=2 \pi\left(1-\frac{\sqrt{2}}{4}\right)=4.061743 \cdots$ in this case.

Background. The result in part (x) above is a very special case of a result of H. Weyl: On the volume of tubes, Amer. J. Math. 61 (1939) 461-472. This paper has been very influential in modern differential geometry. Remarkable is that the formulae in parts (ix) and (x) are independent of the amount of "twisting" of the curve im (γ).

Illustration for part (ix).

Solution of Exercise 0.1

(i) Straightforward application of linear algebra.
(ii) Consider $s \mapsto\|x-\gamma(s)\|^{2}=\langle x-\gamma(s), x-\gamma(s)\rangle$. As it attains a minimum at s_{0}, its derivative has to vanish at s_{0}, in other words, on the basis of Corollary 2.4.3.(ii)

$$
\left\langle x-\gamma\left(s_{0}\right), \gamma^{\prime}\left(s_{0}\right)\right\rangle=\left\langle x-\gamma\left(s_{0}\right), T\left(s_{0}\right)\right\rangle=0, \quad \text { that is } \quad x \in \perp\left(s_{0}\right) .
$$

(iii) The matrix $O(s)$ from Definition 5.8.1 maps the standard basis vectors e_{1}, e_{2} and e_{3} in \mathbf{R}^{3} to $T(s), N(s)$ and $B(s)$, respectively, and being an element of $\mathbf{S O}(3, \mathbf{R})$ preserves outer products. As $e_{j} \times e_{j+1}=e_{j+2}$ where the indices are taken modulo 3, the desired identities follow.
(iv) $N(s)$ and $B(s)$ span the linear subspace of vectors in \mathbf{R}^{3} perpendicular to $T(s)$.
(v) If $x=\phi(s, \alpha)$, then $x=\gamma(s)+\lambda_{1} N(s)+\lambda_{2} B(s) \in \perp(s)$ according to part (iv). Furthermore

$$
\|x-\gamma(s)\|=r\|\cos \alpha N(s)+\sin \alpha B(s)\|=r
$$

since $N(s)$ and $B(s)$ are mutually perpendicular unit vectors. Thus, $\operatorname{im} \phi \subset \operatorname{tub}(r)$. Conversely, suppose $x \in \operatorname{tub}(r)$, then $x \in \operatorname{tub}(s, r)$, for some $s \in J$. Hence $x \in \perp(s)$ and $\|x-\gamma(s)\|=r$, that is

$$
x=\gamma(s)+r \cos \alpha N(s)+r \sin \alpha B(s)=\phi(s, \alpha),
$$

for some $\alpha \in]-\pi, \pi]$. Therefore, $\operatorname{tub}(r) \subset \operatorname{im} \phi$.
(vi) Using part (iii) one finds

$$
\begin{aligned}
\frac{\partial \phi}{\partial s}(s, \alpha) & =\gamma^{\prime}(s)+r \cos \alpha N^{\prime}(s)+r \sin \alpha B^{\prime}(s) \\
& =T(s)+r \cos \alpha(-\kappa(s) T(s)+\tau(s) B(s))-r \sin \alpha \tau(s) N(s) \\
& =(1-r \kappa(s) \cos \alpha) T(s)-r \tau(s) \sin \alpha N(s)+r \tau(s) \cos \alpha B(s), \\
\frac{\partial \phi}{\partial \alpha}(s, \alpha) & =-r \sin \alpha N(s)+r \cos \alpha B(s), \\
\frac{\partial \phi}{\partial s} \times \frac{\partial \phi}{\partial \alpha}(s, \alpha) & =-r \sin \alpha(1-r \kappa(s) \cos \alpha) B(s)-r \cos \alpha(1-r \kappa(s) \cos \alpha) N(s) \\
& -r^{2} \tau(s) \sin \alpha \cos \alpha T(s)+r^{2} \tau(s) \sin \alpha \cos \alpha T(s) \\
& =-r(1-r \kappa(s) \cos \alpha)(\cos \alpha N(s)+\sin \alpha B(s)), \\
\left\|\frac{\partial \phi}{\partial s} \times \frac{\partial \phi}{\partial \alpha}(s, \alpha)\right\| & =r(1-r \kappa(s) \cos \alpha) .
\end{aligned}
$$

(vii) In view of the preceding part

$$
r \kappa(s)<1 \quad \Longrightarrow \quad 1-r \kappa(s) \cos \alpha>0 \quad \Longrightarrow \quad \frac{\partial \phi}{\partial s} \times \frac{\partial \phi}{\partial \alpha}(s, \alpha) \neq 0
$$

which implies that $\frac{\partial \phi}{\partial s}(s, \alpha)$ and $\frac{\partial \phi}{\partial \alpha}(s, \alpha)$ are linearly independent, that is $\operatorname{rank} D \phi(s, \alpha)=2$, in other words, ϕ is an immersion. The second assertion is the Immersion Theorem 4.3.1.(i).
(viii) Consider $x \in \operatorname{tub}(r)$. According to part (ii) we have $x \in \perp(s)$, for a unique $s \in J$. Hence $x \in \operatorname{tub}(r, s)$, and by part (v) this implies $x=\phi(s, \alpha)$, for a unique $\alpha \in]-\pi, \pi]$; hence ϕ is injective. Next, suppose $x=\phi(s, \alpha)$. Then

$$
\langle x-\gamma(s), N(s)\rangle=r \cos \alpha \quad \text { and } \quad\langle x-\gamma(s), B(s)\rangle=r \sin \alpha
$$

yield that α depends continuously on x. As $\gamma(s)=x-r \cos \alpha N(s)-r \sin \alpha B(s)$, it follows that $\gamma(s)$ depends continuously on x; and so s itself too, because γ is an embedding. This proves that ϕ is an embedding.
(ix) As ϕ is an embedding one obtains from (v)

$$
\begin{aligned}
\operatorname{area}_{2}((\operatorname{tub}(r)) & =\int_{J \times]-\pi, \pi]}\left\|\frac{\partial \phi}{\partial s} \times \frac{\partial \phi}{\partial \alpha}(s, \alpha)\right\| d(s, \alpha) \\
& =\int_{J}\left(\int_{-\pi}^{\pi} r(1-r \kappa(s) \cos \alpha) d \alpha\right) d r=2 \pi r \operatorname{length}(\gamma) .
\end{aligned}
$$

(x) Part (ix) implies directly

$$
\operatorname{vol}_{3}(\operatorname{Tub}(r))=\int_{0}^{r} \operatorname{area}_{2}(\operatorname{tub}(r)) d r=\pi r^{2} \text { length }(\gamma) .
$$

(xi) Since $\frac{\partial \Psi}{\partial t_{1}} \times \frac{\partial \Psi}{\partial t_{2}}=N \times B=T$, we only need to know the component of $\frac{\partial \Psi}{\partial s}$ along T for the computation of the inner product. Now we have, applying the formulae of Frenet-Serret once more,

$$
\frac{\partial \Psi}{\partial s}=\gamma^{\prime}(s)+t_{1} N^{\prime}(s)+t_{2} B^{\prime}(s) \equiv T-\kappa t_{1} T=\left(1-\kappa t_{1}\right) T .
$$

(xii) The Change of Variables Theorem 6.6.1 implies

$$
\begin{aligned}
\operatorname{vol}_{3}(U) & =\int_{U} d x=\int_{\bigcup_{s \in J}(\{s\} \times D(s))}\left(1-\kappa(s) t_{1}\right) d(s, t) \\
& =\int_{J}\left(\int_{D(s)}\left(1-\kappa(s) t_{1}\right) d t d s=\int_{J}\left(\operatorname{area}(D(s))-\kappa(s) \int_{D(s)} t_{1} d t\right) d s\right. \\
& =\int_{\operatorname{im}(\gamma)}\left(a(s)-\kappa(s) \int_{U(s)}\langle y-\gamma(s), N(s)\rangle d_{2} y\right) d_{1} s .
\end{aligned}
$$

The last equality follows upon noting that $t \mapsto(\langle\Psi(t)-\gamma(s), N(s)\rangle,\langle\Psi(t)-\gamma(s), B(s)\rangle)$ is the identity mapping in \mathbf{R}^{2}.

Introduce the moments $m_{B}(s)$ and $m_{N}(s)$ of the planar set $U(s)$ about the lines $\gamma(s)+\mathbf{R} B(s)$ and $\gamma(s)+\mathbf{R} N(s) \subset \perp(s)$, respectively, by

$$
m_{B}(s)=\int_{U(s)}\langle y-\gamma(s), N(s)\rangle d_{2} y \quad \text { and } \quad m_{N}(s)=\int_{U(s)}\langle y-\gamma(s), B(s)\rangle d_{2} y .
$$

Then the centroid $c(s) \in \perp(s)$ of $U(s)$ with respect to $\gamma(s)$ is defined by

$$
c(s)=\frac{1}{a(s)}\left(m_{B}(s), m_{N}(s)\right) .
$$

These definitions then lead to the formulae

$$
\operatorname{vol}_{3}(U)=\int_{\operatorname{im}(\gamma)}\left(a(s)-\kappa(s) m_{B}(s)\right) d_{1} s=\int_{\operatorname{im}(\gamma)} a(s)\left(1-\kappa(s) c_{1}(s)\right) d_{1} s
$$

(xiii) Note that the helix is parametrized by arc length and that $\kappa(s)=\frac{1}{2} \sqrt{2}$ for all $s \in J$. Furthermore, Ψ is a diffeomorphism in this case, $a(s)=1$ and $\int_{D(s)} t_{1} d t=\int_{0}^{1} t_{1} d t_{1}=\frac{1}{2}$. Thus, the assertion is a direct application of the formula in the preceding part.

