
Exercise 0.1 (Vector field on open set is uniquely determined by its curl, divergence and restriction

to the boundary of its normal component). We call an open set Ω ⊂ R
3

admissible if it satisfies the

conditions of the Theorem on Integration of a Total Derivative. Let g be a C2 function on an open

neighborhood of an admissible set Ω and denote by f : Ω → R
3 the gradient vector field associated to

g. Suppose

div f = 0 on Ω and 〈 f, ν 〉 = 0 on ∂Ω.

Here ν(y) denotes, as usual, the outer normal to ∂Ω at y ∈ ∂Ω.

(i) Prove curl f = 0 on Ω.

(ii) Using Green’s first identity show that f = 0 on Ω.

Next, consider the special case of

g : R3 \ {0} → R with g(x) = −
1

‖x‖
and set f(x) = grad g(x) =

1

‖x‖3
x.

(iii) Verify div f = 0 on R
3 \ {0}.

(iv) Deduce from the preceding two parts that there exists no admissible open set Ω ⊂ R
3 \ {0}

having the property that Ry is contained in the tangent space of ∂Ω at y, for all y ∈ ∂Ω.

(v) Can you give an example of an admissible set open Ω ⊂ R
3 \ {0} having the property in part (iv)

for “more or less half” of the points y ∈ ∂Ω?

Background. The conditions div f and 〈 f, ν 〉 = 0 on the vector field f assert that it is incompressible

and that it has no flux through the boundary of Ω. Loosely speaking, these conditions force f to be the

vector field of a circulation within Ω, but that is ruled out by the condition that f be irrotational.

Solution of Exercise 0.1

(i) For every x ∈ Ω, the matrix of Df(x) ∈ End(R3) is given by (DjDig(x))1≤i,j≤3, which is

symmetric on account of Theorem 2.7.2. Therefore Af(x) = 0, and this leads to curl f = 0 on

Ω.

(ii) Green’s first identity implies

∫

Ω

(g ∆g)(x) dx+

∫

Ω

‖ grad g(x)‖2 dx =

∫

∂Ω

(

g
∂g

∂ν

)

(y) d1y.

By our assumptions on f we have ∆g = div grad g = div f = 0 on Ω and
∂g
∂ν = 〈 gradg, ν 〉 =

〈 f, ν 〉 = 0 on ∂Ω. It follows that
∫

Ω
‖ gradg(x)‖2 dx = 0. Since the integrand is a nonnegative

continuous function on Ω, it follows that f = grad g = 0 on Ω.

(iii) See Example 7.8.4 in the case of n = 3.

(iv) Note that the vector f(y) is proportional to y, for all y ∈ ∂Ω. Now argue by contradiction.

Indeed, suppose Ω is a set having the properties described in this part. Then the outer normal

ν(y) is perpendicular to y, and so to f(y), for y ∈ ∂Ω; but this means 〈 f, ν 〉 = 0 on ∂Ω. Part

(iii) then implies that the conclusion of part (ii) holds; in other words, f = 0 on Ω. This is a

contradiction because f is nowhere zero on Ω.

1


