Exercise 0.1 (Vector field on open set is uniquely determined by its curl, divergence and restriction to the boundary of its normal component). We call an open set $\Omega \subset \mathbf{R}^{3}$ admissible if it satisfies the conditions of the Theorem on Integration of a Total Derivative. Let g be a C^{2} function on an open neighborhood of an admissible set Ω and denote by $f: \Omega \rightarrow \mathbf{R}^{3}$ the gradient vector field associated to g. Suppose

$$
\operatorname{div} f=0 \quad \text { on } \Omega \quad \text { and } \quad\langle f, \nu\rangle=0 \quad \text { on } \partial \Omega .
$$

Here $\nu(y)$ denotes, as usual, the outer normal to $\partial \Omega$ at $y \in \partial \Omega$.
(i) Prove curl $f=0$ on Ω.
(ii) Using Green's first identity show that $f=0$ on Ω.

Next, consider the special case of

$$
g: \mathbf{R}^{3} \backslash\{0\} \rightarrow \mathbf{R} \quad \text { with } \quad g(x)=-\frac{1}{\|x\|} \quad \text { and set } \quad f(x)=\operatorname{grad} g(x)=\frac{1}{\|x\|^{3}} x
$$

(iii) Verify $\operatorname{div} f=0$ on $\mathbf{R}^{3} \backslash\{0\}$.
(iv) Deduce from the preceding two parts that there exists no admissible open set $\Omega \subset \mathbf{R}^{3} \backslash\{0\}$ having the property that $\mathbf{R} y$ is contained in the tangent space of $\partial \Omega$ at y, for all $y \in \partial \Omega$.
(v) Can you give an example of an admissible set open $\Omega \subset \mathbf{R}^{3} \backslash\{0\}$ having the property in part (iv) for "more or less half" of the points $y \in \partial \Omega$?

Background. The conditions div f and $\langle f, \nu\rangle=0$ on the vector field f assert that it is incompressible and that it has no flux through the boundary of Ω. Loosely speaking, these conditions force f to be the vector field of a circulation within Ω, but that is ruled out by the condition that f be irrotational.

Solution of Exercise 0.1

(i) For every $x \in \Omega$, the matrix of $D f(x) \in \operatorname{End}\left(\mathbf{R}^{3}\right)$ is given by $\left(D_{j} D_{i} g(x)\right)_{1 \leq i, j \leq 3}$, which is symmetric on account of Theorem 2.7.2. Therefore $A f(x)=0$, and this leads to curl $f=0$ on Ω.
(ii) Green's first identity implies

$$
\int_{\Omega}(g \Delta g)(x) d x+\int_{\Omega}\|\operatorname{grad} g(x)\|^{2} d x=\int_{\partial \Omega}\left(g \frac{\partial g}{\partial \nu}\right)(y) d_{1} y
$$

By our assumptions on f we have $\Delta g=\operatorname{div} \operatorname{grad} g=\operatorname{div} f=0$ on Ω and $\frac{\partial g}{\partial \nu}=\langle\operatorname{grad} g, \nu\rangle=$ $\langle f, \nu\rangle=0$ on $\partial \Omega$. It follows that $\int_{\Omega}\|\operatorname{grad} g(x)\|^{2} d x=0$. Since the integrand is a nonnegative continuous function on Ω, it follows that $f=\operatorname{grad} g=0$ on Ω.
(iii) See Example 7.8.4 in the case of $n=3$.
(iv) Note that the vector $f(y)$ is proportional to y, for all $y \in \partial \Omega$. Now argue by contradiction. Indeed, suppose Ω is a set having the properties described in this part. Then the outer normal $\nu(y)$ is perpendicular to y, and so to $f(y)$, for $y \in \partial \Omega$; but this means $\langle f, \nu\rangle=0$ on $\partial \Omega$. Part (iii) then implies that the conclusion of part (ii) holds; in other words, $f=0$ on Ω. This is a contradiction because f is nowhere zero on Ω.

